simplify INIT_SPAN code
[mesa.git] / src / mesa / swrast / s_span.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5
4 *
5 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #ifndef S_SPAN_H
27 #define S_SPAN_H
28
29
30 #include "mtypes.h"
31 #include "swrast.h"
32
33
34 /**
35 * \defgroup SpanFlags
36 * Special bitflags to describe span data.
37 *
38 * In general, the point/line/triangle functions interpolate/emit the
39 * attributes specified by swrast->_ActiveAttribs (i.e. FRAT_BIT_* values).
40 * Some things don't fit into that, though, so we have these flags.
41 */
42 /*@{*/
43 #define SPAN_RGBA 0x01 /**< interpMask and arrayMask */
44 #define SPAN_INDEX 0x02 /**< interpMask and arrayMask */
45 #define SPAN_Z 0x04 /**< interpMask and arrayMask */
46 #define SPAN_FLAT 0x08 /**< interpMask: flat shading? */
47 #define SPAN_XY 0x10 /**< array.x[], y[] valid? */
48 #define SPAN_MASK 0x20 /**< was array.mask[] filled in by caller? */
49 #define SPAN_LAMBDA 0x40 /**< array.lambda[] valid? */
50 #define SPAN_COVERAGE 0x80 /**< array.coverage[] valid? */
51 /*@}*/
52
53
54 /**
55 * \sw_span_arrays
56 * \brief Arrays of fragment values.
57 *
58 * These will either be computed from the span x/xStep values or
59 * filled in by glDraw/CopyPixels, etc.
60 * These arrays are separated out of sw_span to conserve memory.
61 */
62 typedef struct sw_span_arrays
63 {
64 /** Per-fragment attributes (indexed by FRAG_ATTRIB_* tokens) */
65 /* XXX someday look at transposing first two indexes for better memory
66 * access pattern.
67 */
68 GLfloat attribs[FRAG_ATTRIB_MAX][MAX_WIDTH][4];
69
70 /** This mask indicates which fragments are alive or culled */
71 GLubyte mask[MAX_WIDTH];
72
73 GLenum ChanType; /**< Color channel type, GL_UNSIGNED_BYTE, GL_FLOAT */
74
75 /** Attribute arrays that don't fit into attribs[] array above */
76 /*@{*/
77 GLubyte rgba8[MAX_WIDTH][4];
78 GLushort rgba16[MAX_WIDTH][4];
79 GLchan (*rgba)[4]; /** either == rgba8 or rgba16 */
80 GLint x[MAX_WIDTH]; /**< fragment X coords */
81 GLint y[MAX_WIDTH]; /**< fragment Y coords */
82 GLuint z[MAX_WIDTH]; /**< fragment Z coords */
83 GLuint index[MAX_WIDTH]; /**< Color indexes */
84 GLfloat lambda[MAX_TEXTURE_COORD_UNITS][MAX_WIDTH]; /**< Texture LOD */
85 GLfloat coverage[MAX_WIDTH]; /**< Fragment coverage for AA/smoothing */
86 /*@}*/
87 } SWspanarrays;
88
89
90 /**
91 * The SWspan structure describes the colors, Z, fogcoord, texcoords,
92 * etc for either a horizontal run or an array of independent pixels.
93 * We can either specify a base/step to indicate interpolated values, or
94 * fill in explicit arrays of values. The interpMask and arrayMask bitfields
95 * indicate which attributes are active interpolants or arrays, respectively.
96 *
97 * It would be interesting to experiment with multiprocessor rasterization
98 * with this structure. The triangle rasterizer could simply emit a
99 * stream of these structures which would be consumed by one or more
100 * span-processing threads which could run in parallel.
101 */
102 typedef struct sw_span
103 {
104 /** Coord of first fragment in horizontal span/run */
105 GLint x, y;
106
107 /** Number of fragments in the span */
108 GLuint end;
109
110 /** This flag indicates that mask[] array is effectively filled with ones */
111 GLboolean writeAll;
112
113 /** either GL_POLYGON, GL_LINE, GL_POLYGON, GL_BITMAP */
114 GLenum primitive;
115
116 /** 0 = front-facing span, 1 = back-facing span (for two-sided stencil) */
117 GLuint facing;
118
119 /**
120 * This bitmask (of \link SpanFlags SPAN_* flags\endlink) indicates
121 * which of the attrStart/StepX/StepY variables are relevant.
122 */
123 GLbitfield interpMask;
124
125 /** Fragment attribute interpolants */
126 GLfloat attrStart[FRAG_ATTRIB_MAX][4]; /**< initial value */
127 GLfloat attrStepX[FRAG_ATTRIB_MAX][4]; /**< dvalue/dx */
128 GLfloat attrStepY[FRAG_ATTRIB_MAX][4]; /**< dvalue/dy */
129
130 /* XXX the rest of these will go away eventually... */
131
132 /* For horizontal spans, step is the partial derivative wrt X.
133 * For lines, step is the delta from one fragment to the next.
134 */
135 GLfixed red, redStep;
136 GLfixed green, greenStep;
137 GLfixed blue, blueStep;
138 GLfixed alpha, alphaStep;
139 GLfixed index, indexStep;
140 GLfixed z, zStep; /**< XXX z should probably be GLuint */
141 GLfixed intTex[2], intTexStep[2]; /**< (s,t) for unit[0] only */
142
143 /**
144 * This bitmask (of \link SpanFlags SPAN_* flags\endlink) indicates
145 * which of the fragment arrays in the span_arrays struct are relevant.
146 */
147 GLbitfield arrayMask;
148
149 GLbitfield arrayAttribs;
150
151 /**
152 * We store the arrays of fragment values in a separate struct so
153 * that we can allocate sw_span structs on the stack without using
154 * a lot of memory. The span_arrays struct is about 1.4MB while the
155 * sw_span struct is only about 512 bytes.
156 */
157 SWspanarrays *array;
158 } SWspan;
159
160
161
162 #define INIT_SPAN(S, PRIMITIVE) \
163 do { \
164 (S).primitive = (PRIMITIVE); \
165 (S).interpMask = 0x0; \
166 (S).arrayMask = 0x0; \
167 (S).arrayAttribs = 0x0; \
168 (S).end = 0; \
169 (S).facing = 0; \
170 (S).array = SWRAST_CONTEXT(ctx)->SpanArrays; \
171 } while (0)
172
173
174
175 extern void
176 _swrast_span_default_attribs(GLcontext *ctx, SWspan *span);
177
178 extern void
179 _swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span );
180
181 extern GLfloat
182 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
183 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
184 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ);
185
186 extern void
187 _swrast_write_index_span( GLcontext *ctx, SWspan *span);
188
189
190 extern void
191 _swrast_write_rgba_span( GLcontext *ctx, SWspan *span);
192
193
194 extern void
195 _swrast_read_rgba_span(GLcontext *ctx, struct gl_renderbuffer *rb,
196 GLuint n, GLint x, GLint y, GLenum type, GLvoid *rgba);
197
198 extern void
199 _swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb,
200 GLuint n, GLint x, GLint y, GLuint indx[] );
201
202 extern void
203 _swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
204 GLuint count, const GLint x[], const GLint y[],
205 void *values, GLuint valueSize);
206
207 extern void
208 _swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb,
209 GLuint count, GLint x, GLint y,
210 const GLvoid *values, GLuint valueSize);
211
212 extern void
213 _swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb,
214 GLuint count, GLint x, GLint y,
215 GLvoid *values, GLuint valueSize);
216
217
218 extern void *
219 _swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb,
220 SWspan *span);
221
222 #endif