mesa/core: Add definitions and translations for EXT_texture_sRGB_R8
[mesa.git] / src / mesa / swrast / s_triangle.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /*
27 * When the device driver doesn't implement triangle rasterization it
28 * can hook in _swrast_Triangle, which eventually calls one of these
29 * functions to draw triangles.
30 */
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/imports.h"
35 #include "main/macros.h"
36 #include "main/mtypes.h"
37 #include "main/state.h"
38 #include "main/samplerobj.h"
39 #include "main/stencil.h"
40 #include "main/teximage.h"
41 #include "program/prog_instruction.h"
42
43 #include "s_aatriangle.h"
44 #include "s_context.h"
45 #include "s_feedback.h"
46 #include "s_span.h"
47 #include "s_triangle.h"
48
49
50 /**
51 * Test if a triangle should be culled. Used for feedback and selection mode.
52 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
53 */
54 GLboolean
55 _swrast_culltriangle( struct gl_context *ctx,
56 const SWvertex *v0,
57 const SWvertex *v1,
58 const SWvertex *v2 )
59 {
60 SWcontext *swrast = SWRAST_CONTEXT(ctx);
61 GLfloat ex = v1->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0];
62 GLfloat ey = v1->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1];
63 GLfloat fx = v2->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0];
64 GLfloat fy = v2->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1];
65 GLfloat c = ex*fy-ey*fx;
66
67 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
68 return GL_FALSE;
69
70 return GL_TRUE;
71 }
72
73
74
75 /*
76 * Render a flat-shaded RGBA triangle.
77 */
78 #define NAME flat_rgba_triangle
79 #define INTERP_Z 1
80 #define SETUP_CODE \
81 assert(ctx->Texture._EnabledCoordUnits == 0);\
82 assert(ctx->Light.ShadeModel==GL_FLAT); \
83 span.interpMask |= SPAN_RGBA; \
84 span.red = ChanToFixed(v2->color[0]); \
85 span.green = ChanToFixed(v2->color[1]); \
86 span.blue = ChanToFixed(v2->color[2]); \
87 span.alpha = ChanToFixed(v2->color[3]); \
88 span.redStep = 0; \
89 span.greenStep = 0; \
90 span.blueStep = 0; \
91 span.alphaStep = 0;
92 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
93 #include "s_tritemp.h"
94
95
96
97 /*
98 * Render a smooth-shaded RGBA triangle.
99 */
100 #define NAME smooth_rgba_triangle
101 #define INTERP_Z 1
102 #define INTERP_RGB 1
103 #define INTERP_ALPHA 1
104 #define SETUP_CODE \
105 { \
106 /* texturing must be off */ \
107 assert(ctx->Texture._EnabledCoordUnits == 0); \
108 assert(ctx->Light.ShadeModel==GL_SMOOTH); \
109 }
110 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
111 #include "s_tritemp.h"
112
113
114
115 /*
116 * Render an RGB, GL_DECAL, textured triangle.
117 * Interpolate S,T only w/out mipmapping or perspective correction.
118 *
119 * No fog. No depth testing.
120 */
121 #define NAME simple_textured_triangle
122 #define INTERP_INT_TEX 1
123 #define S_SCALE twidth
124 #define T_SCALE theight
125
126 #define SETUP_CODE \
127 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
128 const struct gl_texture_object *obj = \
129 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
130 const struct gl_texture_image *texImg = \
131 _mesa_base_tex_image(obj); \
132 const struct swrast_texture_image *swImg = \
133 swrast_texture_image_const(texImg); \
134 const GLfloat twidth = (GLfloat) texImg->Width; \
135 const GLfloat theight = (GLfloat) texImg->Height; \
136 const GLint twidth_log2 = texImg->WidthLog2; \
137 const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \
138 const GLint smask = texImg->Width - 1; \
139 const GLint tmask = texImg->Height - 1; \
140 assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \
141 if (!rb || !texture) { \
142 return; \
143 }
144
145 #define RENDER_SPAN( span ) \
146 GLuint i; \
147 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \
148 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
149 span.intTex[1] -= FIXED_HALF; \
150 for (i = 0; i < span.end; i++) { \
151 GLint s = FixedToInt(span.intTex[0]) & smask; \
152 GLint t = FixedToInt(span.intTex[1]) & tmask; \
153 GLint pos = (t << twidth_log2) + s; \
154 pos = pos + pos + pos; /* multiply by 3 */ \
155 rgba[i][RCOMP] = texture[pos+2]; \
156 rgba[i][GCOMP] = texture[pos+1]; \
157 rgba[i][BCOMP] = texture[pos+0]; \
158 rgba[i][ACOMP] = 0xff; \
159 span.intTex[0] += span.intTexStep[0]; \
160 span.intTex[1] += span.intTexStep[1]; \
161 } \
162 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, span.end, \
163 span.x, span.y, rgba, NULL);
164
165 #include "s_tritemp.h"
166
167
168
169 /*
170 * Render an RGB, GL_DECAL, textured triangle.
171 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
172 * perspective correction.
173 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
174 *
175 * No fog.
176 */
177 #define NAME simple_z_textured_triangle
178 #define INTERP_Z 1
179 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
180 #define INTERP_INT_TEX 1
181 #define S_SCALE twidth
182 #define T_SCALE theight
183
184 #define SETUP_CODE \
185 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
186 const struct gl_texture_object *obj = \
187 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
188 const struct gl_texture_image *texImg = \
189 _mesa_base_tex_image(obj); \
190 const struct swrast_texture_image *swImg = \
191 swrast_texture_image_const(texImg); \
192 const GLfloat twidth = (GLfloat) texImg->Width; \
193 const GLfloat theight = (GLfloat) texImg->Height; \
194 const GLint twidth_log2 = texImg->WidthLog2; \
195 const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \
196 const GLint smask = texImg->Width - 1; \
197 const GLint tmask = texImg->Height - 1; \
198 assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \
199 if (!rb || !texture) { \
200 return; \
201 }
202
203 #define RENDER_SPAN( span ) \
204 GLuint i; \
205 GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \
206 GLubyte *mask = swrast->SpanArrays->mask; \
207 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
208 span.intTex[1] -= FIXED_HALF; \
209 for (i = 0; i < span.end; i++) { \
210 const GLuint z = FixedToDepth(span.z); \
211 if (z < zRow[i]) { \
212 GLint s = FixedToInt(span.intTex[0]) & smask; \
213 GLint t = FixedToInt(span.intTex[1]) & tmask; \
214 GLint pos = (t << twidth_log2) + s; \
215 pos = pos + pos + pos; /* multiply by 3 */ \
216 rgba[i][RCOMP] = texture[pos+2]; \
217 rgba[i][GCOMP] = texture[pos+1]; \
218 rgba[i][BCOMP] = texture[pos+0]; \
219 rgba[i][ACOMP] = 0xff; \
220 zRow[i] = z; \
221 mask[i] = 1; \
222 } \
223 else { \
224 mask[i] = 0; \
225 } \
226 span.intTex[0] += span.intTexStep[0]; \
227 span.intTex[1] += span.intTexStep[1]; \
228 span.z += span.zStep; \
229 } \
230 _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, \
231 span.end, span.x, span.y, rgba, mask);
232
233 #include "s_tritemp.h"
234
235
236 #if CHAN_TYPE != GL_FLOAT
237
238 struct affine_info
239 {
240 GLenum filter;
241 GLenum format;
242 GLenum envmode;
243 GLint smask, tmask;
244 GLint twidth_log2;
245 const GLchan *texture;
246 GLfixed er, eg, eb, ea;
247 GLint tbytesline, tsize;
248 };
249
250
251 static inline GLint
252 ilerp(GLint t, GLint a, GLint b)
253 {
254 return a + ((t * (b - a)) >> FIXED_SHIFT);
255 }
256
257 static inline GLint
258 ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
259 {
260 const GLint temp0 = ilerp(ia, v00, v10);
261 const GLint temp1 = ilerp(ia, v01, v11);
262 return ilerp(ib, temp0, temp1);
263 }
264
265
266 /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
267 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
268 * texture env modes.
269 */
270 static inline void
271 affine_span(struct gl_context *ctx, SWspan *span,
272 struct affine_info *info)
273 {
274 GLchan sample[4]; /* the filtered texture sample */
275 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
276
277 /* Instead of defining a function for each mode, a test is done
278 * between the outer and inner loops. This is to reduce code size
279 * and complexity. Observe that an optimizing compiler kills
280 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
281 */
282
283 #define NEAREST_RGB \
284 sample[RCOMP] = tex00[2]; \
285 sample[GCOMP] = tex00[1]; \
286 sample[BCOMP] = tex00[0]; \
287 sample[ACOMP] = CHAN_MAX;
288
289 #define LINEAR_RGB \
290 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
291 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
292 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
293 sample[ACOMP] = CHAN_MAX;
294
295 #define NEAREST_RGBA \
296 sample[RCOMP] = tex00[3]; \
297 sample[GCOMP] = tex00[2]; \
298 sample[BCOMP] = tex00[1]; \
299 sample[ACOMP] = tex00[0];
300
301 #define LINEAR_RGBA \
302 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\
303 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
304 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
305 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0])
306
307 #define MODULATE \
308 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
309 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
310 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
311 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
312
313 #define DECAL \
314 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
315 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
316 >> (FIXED_SHIFT + 8); \
317 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
318 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
319 >> (FIXED_SHIFT + 8); \
320 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
321 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
322 >> (FIXED_SHIFT + 8); \
323 dest[ACOMP] = FixedToInt(span->alpha)
324
325 #define BLEND \
326 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
327 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
328 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
329 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
330 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
331 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
332 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
333
334 #define REPLACE COPY_CHAN4(dest, sample)
335
336 #define ADD \
337 { \
338 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
339 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
340 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
341 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
342 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
343 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
344 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
345 }
346
347 /* shortcuts */
348
349 #define NEAREST_RGB_REPLACE \
350 NEAREST_RGB; \
351 dest[0] = sample[0]; \
352 dest[1] = sample[1]; \
353 dest[2] = sample[2]; \
354 dest[3] = FixedToInt(span->alpha);
355
356 #define NEAREST_RGBA_REPLACE \
357 dest[RCOMP] = tex00[3]; \
358 dest[GCOMP] = tex00[2]; \
359 dest[BCOMP] = tex00[1]; \
360 dest[ACOMP] = tex00[0]
361
362 #define SPAN_NEAREST(DO_TEX, COMPS) \
363 for (i = 0; i < span->end; i++) { \
364 /* Isn't it necessary to use FixedFloor below?? */ \
365 GLint s = FixedToInt(span->intTex[0]) & info->smask; \
366 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
367 GLint pos = (t << info->twidth_log2) + s; \
368 const GLchan *tex00 = info->texture + COMPS * pos; \
369 DO_TEX; \
370 span->red += span->redStep; \
371 span->green += span->greenStep; \
372 span->blue += span->blueStep; \
373 span->alpha += span->alphaStep; \
374 span->intTex[0] += span->intTexStep[0]; \
375 span->intTex[1] += span->intTexStep[1]; \
376 dest += 4; \
377 }
378
379 #define SPAN_LINEAR(DO_TEX, COMPS) \
380 for (i = 0; i < span->end; i++) { \
381 /* Isn't it necessary to use FixedFloor below?? */ \
382 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
383 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
384 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
385 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
386 const GLint pos = (t << info->twidth_log2) + s; \
387 const GLchan *tex00 = info->texture + COMPS * pos; \
388 const GLchan *tex10 = tex00 + info->tbytesline; \
389 const GLchan *tex01 = tex00 + COMPS; \
390 const GLchan *tex11 = tex10 + COMPS; \
391 if (t == info->tmask) { \
392 tex10 -= info->tsize; \
393 tex11 -= info->tsize; \
394 } \
395 if (s == info->smask) { \
396 tex01 -= info->tbytesline; \
397 tex11 -= info->tbytesline; \
398 } \
399 DO_TEX; \
400 span->red += span->redStep; \
401 span->green += span->greenStep; \
402 span->blue += span->blueStep; \
403 span->alpha += span->alphaStep; \
404 span->intTex[0] += span->intTexStep[0]; \
405 span->intTex[1] += span->intTexStep[1]; \
406 dest += 4; \
407 }
408
409
410 GLuint i;
411 GLchan *dest = span->array->rgba[0];
412
413 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */
414 ctx->Texture._EnabledCoordUnits = 0x0;
415
416 span->intTex[0] -= FIXED_HALF;
417 span->intTex[1] -= FIXED_HALF;
418 switch (info->filter) {
419 case GL_NEAREST:
420 switch (info->format) {
421 case MESA_FORMAT_BGR_UNORM8:
422 switch (info->envmode) {
423 case GL_MODULATE:
424 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
425 break;
426 case GL_DECAL:
427 case GL_REPLACE:
428 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
429 break;
430 case GL_BLEND:
431 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
432 break;
433 case GL_ADD:
434 SPAN_NEAREST(NEAREST_RGB;ADD,3);
435 break;
436 default:
437 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
438 return;
439 }
440 break;
441 case MESA_FORMAT_A8B8G8R8_UNORM:
442 switch(info->envmode) {
443 case GL_MODULATE:
444 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
445 break;
446 case GL_DECAL:
447 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
448 break;
449 case GL_BLEND:
450 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
451 break;
452 case GL_ADD:
453 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
454 break;
455 case GL_REPLACE:
456 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
457 break;
458 default:
459 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
460 return;
461 }
462 break;
463 }
464 break;
465
466 case GL_LINEAR:
467 span->intTex[0] -= FIXED_HALF;
468 span->intTex[1] -= FIXED_HALF;
469 switch (info->format) {
470 case MESA_FORMAT_BGR_UNORM8:
471 switch (info->envmode) {
472 case GL_MODULATE:
473 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
474 break;
475 case GL_DECAL:
476 case GL_REPLACE:
477 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
478 break;
479 case GL_BLEND:
480 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
481 break;
482 case GL_ADD:
483 SPAN_LINEAR(LINEAR_RGB;ADD,3);
484 break;
485 default:
486 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
487 return;
488 }
489 break;
490 case MESA_FORMAT_A8B8G8R8_UNORM:
491 switch (info->envmode) {
492 case GL_MODULATE:
493 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
494 break;
495 case GL_DECAL:
496 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
497 break;
498 case GL_BLEND:
499 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
500 break;
501 case GL_ADD:
502 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
503 break;
504 case GL_REPLACE:
505 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
506 break;
507 default:
508 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
509 return;
510 }
511 break;
512 }
513 break;
514 }
515 span->interpMask &= ~SPAN_RGBA;
516 assert(span->arrayMask & SPAN_RGBA);
517
518 _swrast_write_rgba_span(ctx, span);
519
520 /* re-enable texture units */
521 ctx->Texture._EnabledCoordUnits = texEnableSave;
522
523 #undef SPAN_NEAREST
524 #undef SPAN_LINEAR
525 }
526
527
528
529 /*
530 * Render an RGB/RGBA textured triangle without perspective correction.
531 */
532 #define NAME affine_textured_triangle
533 #define INTERP_Z 1
534 #define INTERP_RGB 1
535 #define INTERP_ALPHA 1
536 #define INTERP_INT_TEX 1
537 #define S_SCALE twidth
538 #define T_SCALE theight
539
540 #define SETUP_CODE \
541 struct affine_info info; \
542 struct gl_fixedfunc_texture_unit *unit = ctx->Texture.FixedFuncUnit+0; \
543 const struct gl_texture_object *obj = \
544 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
545 const struct gl_texture_image *texImg = \
546 _mesa_base_tex_image(obj); \
547 const struct swrast_texture_image *swImg = \
548 swrast_texture_image_const(texImg); \
549 const GLfloat twidth = (GLfloat) texImg->Width; \
550 const GLfloat theight = (GLfloat) texImg->Height; \
551 info.texture = (const GLchan *) swImg->ImageSlices[0]; \
552 info.twidth_log2 = texImg->WidthLog2; \
553 info.smask = texImg->Width - 1; \
554 info.tmask = texImg->Height - 1; \
555 info.format = texImg->TexFormat; \
556 info.filter = obj->Sampler.MinFilter; \
557 info.envmode = unit->EnvMode; \
558 info.er = 0; \
559 info.eg = 0; \
560 info.eb = 0; \
561 span.arrayMask |= SPAN_RGBA; \
562 \
563 if (info.envmode == GL_BLEND) { \
564 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
565 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
566 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
567 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
568 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
569 } \
570 if (!info.texture) { \
571 /* this shouldn't happen */ \
572 return; \
573 } \
574 \
575 switch (info.format) { \
576 case MESA_FORMAT_BGR_UNORM8: \
577 info.tbytesline = texImg->Width * 3; \
578 break; \
579 case MESA_FORMAT_A8B8G8R8_UNORM: \
580 info.tbytesline = texImg->Width * 4; \
581 break; \
582 default: \
583 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
584 return; \
585 } \
586 info.tsize = texImg->Height * info.tbytesline;
587
588 #define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
589
590 #include "s_tritemp.h"
591
592
593
594 struct persp_info
595 {
596 GLenum filter;
597 GLenum format;
598 GLenum envmode;
599 GLint smask, tmask;
600 GLint twidth_log2;
601 const GLchan *texture;
602 GLfixed er, eg, eb, ea; /* texture env color */
603 GLint tbytesline, tsize;
604 };
605
606
607 static inline void
608 fast_persp_span(struct gl_context *ctx, SWspan *span,
609 struct persp_info *info)
610 {
611 GLchan sample[4]; /* the filtered texture sample */
612
613 /* Instead of defining a function for each mode, a test is done
614 * between the outer and inner loops. This is to reduce code size
615 * and complexity. Observe that an optimizing compiler kills
616 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
617 */
618 #define SPAN_NEAREST(DO_TEX,COMP) \
619 for (i = 0; i < span->end; i++) { \
620 GLdouble invQ = tex_coord[2] ? \
621 (1.0 / tex_coord[2]) : 1.0; \
622 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
623 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
624 GLint s = IFLOOR(s_tmp) & info->smask; \
625 GLint t = IFLOOR(t_tmp) & info->tmask; \
626 GLint pos = (t << info->twidth_log2) + s; \
627 const GLchan *tex00 = info->texture + COMP * pos; \
628 DO_TEX; \
629 span->red += span->redStep; \
630 span->green += span->greenStep; \
631 span->blue += span->blueStep; \
632 span->alpha += span->alphaStep; \
633 tex_coord[0] += tex_step[0]; \
634 tex_coord[1] += tex_step[1]; \
635 tex_coord[2] += tex_step[2]; \
636 dest += 4; \
637 }
638
639 #define SPAN_LINEAR(DO_TEX,COMP) \
640 for (i = 0; i < span->end; i++) { \
641 GLdouble invQ = tex_coord[2] ? \
642 (1.0 / tex_coord[2]) : 1.0; \
643 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
644 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
645 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
646 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
647 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
648 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
649 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
650 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
651 const GLint pos = (t << info->twidth_log2) + s; \
652 const GLchan *tex00 = info->texture + COMP * pos; \
653 const GLchan *tex10 = tex00 + info->tbytesline; \
654 const GLchan *tex01 = tex00 + COMP; \
655 const GLchan *tex11 = tex10 + COMP; \
656 if (t == info->tmask) { \
657 tex10 -= info->tsize; \
658 tex11 -= info->tsize; \
659 } \
660 if (s == info->smask) { \
661 tex01 -= info->tbytesline; \
662 tex11 -= info->tbytesline; \
663 } \
664 DO_TEX; \
665 span->red += span->redStep; \
666 span->green += span->greenStep; \
667 span->blue += span->blueStep; \
668 span->alpha += span->alphaStep; \
669 tex_coord[0] += tex_step[0]; \
670 tex_coord[1] += tex_step[1]; \
671 tex_coord[2] += tex_step[2]; \
672 dest += 4; \
673 }
674
675 GLuint i;
676 GLfloat tex_coord[3], tex_step[3];
677 GLchan *dest = span->array->rgba[0];
678
679 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
680 ctx->Texture._EnabledCoordUnits = 0;
681
682 tex_coord[0] = span->attrStart[VARYING_SLOT_TEX0][0] * (info->smask + 1);
683 tex_step[0] = span->attrStepX[VARYING_SLOT_TEX0][0] * (info->smask + 1);
684 tex_coord[1] = span->attrStart[VARYING_SLOT_TEX0][1] * (info->tmask + 1);
685 tex_step[1] = span->attrStepX[VARYING_SLOT_TEX0][1] * (info->tmask + 1);
686 /* span->attrStart[VARYING_SLOT_TEX0][2] only if 3D-texturing, here only 2D */
687 tex_coord[2] = span->attrStart[VARYING_SLOT_TEX0][3];
688 tex_step[2] = span->attrStepX[VARYING_SLOT_TEX0][3];
689
690 switch (info->filter) {
691 case GL_NEAREST:
692 switch (info->format) {
693 case MESA_FORMAT_BGR_UNORM8:
694 switch (info->envmode) {
695 case GL_MODULATE:
696 SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
697 break;
698 case GL_DECAL:
699 case GL_REPLACE:
700 SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
701 break;
702 case GL_BLEND:
703 SPAN_NEAREST(NEAREST_RGB;BLEND,3);
704 break;
705 case GL_ADD:
706 SPAN_NEAREST(NEAREST_RGB;ADD,3);
707 break;
708 default:
709 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
710 return;
711 }
712 break;
713 case MESA_FORMAT_A8B8G8R8_UNORM:
714 switch(info->envmode) {
715 case GL_MODULATE:
716 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
717 break;
718 case GL_DECAL:
719 SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
720 break;
721 case GL_BLEND:
722 SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
723 break;
724 case GL_ADD:
725 SPAN_NEAREST(NEAREST_RGBA;ADD,4);
726 break;
727 case GL_REPLACE:
728 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
729 break;
730 default:
731 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
732 return;
733 }
734 break;
735 }
736 break;
737
738 case GL_LINEAR:
739 switch (info->format) {
740 case MESA_FORMAT_BGR_UNORM8:
741 switch (info->envmode) {
742 case GL_MODULATE:
743 SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
744 break;
745 case GL_DECAL:
746 case GL_REPLACE:
747 SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
748 break;
749 case GL_BLEND:
750 SPAN_LINEAR(LINEAR_RGB;BLEND,3);
751 break;
752 case GL_ADD:
753 SPAN_LINEAR(LINEAR_RGB;ADD,3);
754 break;
755 default:
756 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
757 return;
758 }
759 break;
760 case MESA_FORMAT_A8B8G8R8_UNORM:
761 switch (info->envmode) {
762 case GL_MODULATE:
763 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
764 break;
765 case GL_DECAL:
766 SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
767 break;
768 case GL_BLEND:
769 SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
770 break;
771 case GL_ADD:
772 SPAN_LINEAR(LINEAR_RGBA;ADD,4);
773 break;
774 case GL_REPLACE:
775 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
776 break;
777 default:
778 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
779 return;
780 }
781 break;
782 }
783 break;
784 }
785
786 assert(span->arrayMask & SPAN_RGBA);
787 _swrast_write_rgba_span(ctx, span);
788
789 #undef SPAN_NEAREST
790 #undef SPAN_LINEAR
791
792 /* restore state */
793 ctx->Texture._EnabledCoordUnits = texEnableSave;
794 }
795
796
797 /*
798 * Render an perspective corrected RGB/RGBA textured triangle.
799 * The Q (aka V in Mesa) coordinate must be zero such that the divide
800 * by interpolated Q/W comes out right.
801 *
802 */
803 #define NAME persp_textured_triangle
804 #define INTERP_Z 1
805 #define INTERP_RGB 1
806 #define INTERP_ALPHA 1
807 #define INTERP_ATTRIBS 1
808
809 #define SETUP_CODE \
810 struct persp_info info; \
811 const struct gl_fixedfunc_texture_unit *unit = ctx->Texture.FixedFuncUnit+0; \
812 const struct gl_texture_object *obj = \
813 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
814 const struct gl_texture_image *texImg = \
815 _mesa_base_tex_image(obj); \
816 const struct swrast_texture_image *swImg = \
817 swrast_texture_image_const(texImg); \
818 info.texture = (const GLchan *) swImg->ImageSlices[0]; \
819 info.twidth_log2 = texImg->WidthLog2; \
820 info.smask = texImg->Width - 1; \
821 info.tmask = texImg->Height - 1; \
822 info.format = texImg->TexFormat; \
823 info.filter = obj->Sampler.MinFilter; \
824 info.envmode = unit->EnvMode; \
825 info.er = 0; \
826 info.eg = 0; \
827 info.eb = 0; \
828 \
829 if (info.envmode == GL_BLEND) { \
830 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
831 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
832 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
833 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
834 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
835 } \
836 if (!info.texture) { \
837 /* this shouldn't happen */ \
838 return; \
839 } \
840 \
841 switch (info.format) { \
842 case MESA_FORMAT_BGR_UNORM8: \
843 info.tbytesline = texImg->Width * 3; \
844 break; \
845 case MESA_FORMAT_A8B8G8R8_UNORM: \
846 info.tbytesline = texImg->Width * 4; \
847 break; \
848 default: \
849 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
850 return; \
851 } \
852 info.tsize = texImg->Height * info.tbytesline;
853
854 #define RENDER_SPAN( span ) \
855 span.interpMask &= ~SPAN_RGBA; \
856 span.arrayMask |= SPAN_RGBA; \
857 fast_persp_span(ctx, &span, &info);
858
859 #include "s_tritemp.h"
860
861 #endif /*CHAN_TYPE != GL_FLOAT*/
862
863
864
865 /*
866 * Render an RGBA triangle with arbitrary attributes.
867 */
868 #define NAME general_triangle
869 #define INTERP_Z 1
870 #define INTERP_RGB 1
871 #define INTERP_ALPHA 1
872 #define INTERP_ATTRIBS 1
873 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
874 #include "s_tritemp.h"
875
876
877
878
879 /*
880 * Special tri function for occlusion testing
881 */
882 #define NAME occlusion_zless_16_triangle
883 #define INTERP_Z 1
884 #define SETUP_CODE \
885 struct gl_renderbuffer *rb = \
886 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; \
887 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
888 assert(ctx->Depth.Test); \
889 assert(!ctx->Depth.Mask); \
890 assert(ctx->Depth.Func == GL_LESS); \
891 assert(rb->Format == MESA_FORMAT_Z_UNORM16); \
892 if (!q) { \
893 return; \
894 }
895 #define RENDER_SPAN( span ) \
896 { \
897 GLuint i; \
898 const GLushort *zRow = (const GLushort *) \
899 _swrast_pixel_address(rb, span.x, span.y); \
900 for (i = 0; i < span.end; i++) { \
901 GLuint z = FixedToDepth(span.z); \
902 if (z < zRow[i]) { \
903 q->Result++; \
904 } \
905 span.z += span.zStep; \
906 } \
907 }
908 #include "s_tritemp.h"
909
910
911
912 static void
913 nodraw_triangle( struct gl_context *ctx,
914 const SWvertex *v0,
915 const SWvertex *v1,
916 const SWvertex *v2 )
917 {
918 (void) (ctx && v0 && v1 && v2);
919 }
920
921
922 /*
923 * This is used when separate specular color is enabled, but not
924 * texturing. We add the specular color to the primary color,
925 * draw the triangle, then restore the original primary color.
926 * Inefficient, but seldom needed.
927 */
928 void
929 _swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0,
930 const SWvertex *v1, const SWvertex *v2)
931 {
932 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
933 SWvertex *ncv1 = (SWvertex *)v1;
934 SWvertex *ncv2 = (SWvertex *)v2;
935 GLfloat rSum, gSum, bSum;
936 GLchan cSave[3][4];
937
938 /* save original colors */
939 COPY_CHAN4( cSave[0], ncv0->color );
940 COPY_CHAN4( cSave[1], ncv1->color );
941 COPY_CHAN4( cSave[2], ncv2->color );
942 /* sum v0 */
943 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[VARYING_SLOT_COL1][0];
944 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[VARYING_SLOT_COL1][1];
945 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[VARYING_SLOT_COL1][2];
946 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
947 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
948 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
949 /* sum v1 */
950 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[VARYING_SLOT_COL1][0];
951 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[VARYING_SLOT_COL1][1];
952 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[VARYING_SLOT_COL1][2];
953 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
954 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
955 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
956 /* sum v2 */
957 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[VARYING_SLOT_COL1][0];
958 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[VARYING_SLOT_COL1][1];
959 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[VARYING_SLOT_COL1][2];
960 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
961 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
962 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
963 /* draw */
964 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
965 /* restore original colors */
966 COPY_CHAN4( ncv0->color, cSave[0] );
967 COPY_CHAN4( ncv1->color, cSave[1] );
968 COPY_CHAN4( ncv2->color, cSave[2] );
969 }
970
971
972
973 #ifdef DEBUG
974
975 /* record the current triangle function name */
976 const char *_mesa_triFuncName = NULL;
977
978 #define USE(triFunc) \
979 do { \
980 _mesa_triFuncName = #triFunc; \
981 /*printf("%s\n", _mesa_triFuncName);*/ \
982 swrast->Triangle = triFunc; \
983 } while (0)
984
985 #else
986
987 #define USE(triFunc) swrast->Triangle = triFunc;
988
989 #endif
990
991
992
993
994 /*
995 * Determine which triangle rendering function to use given the current
996 * rendering context.
997 *
998 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
999 * remove tests to this code.
1000 */
1001 void
1002 _swrast_choose_triangle( struct gl_context *ctx )
1003 {
1004 SWcontext *swrast = SWRAST_CONTEXT(ctx);
1005
1006 if (ctx->Polygon.CullFlag &&
1007 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1008 USE(nodraw_triangle);
1009 return;
1010 }
1011
1012 if (ctx->RenderMode==GL_RENDER) {
1013 struct gl_renderbuffer *depthRb =
1014 ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
1015
1016 if (ctx->Polygon.SmoothFlag) {
1017 _swrast_set_aa_triangle_function(ctx);
1018 assert(swrast->Triangle);
1019 return;
1020 }
1021
1022 /* special case for occlusion testing */
1023 if (ctx->Query.CurrentOcclusionObject &&
1024 ctx->Depth.Test &&
1025 ctx->Depth.Mask == GL_FALSE &&
1026 ctx->Depth.Func == GL_LESS &&
1027 !_mesa_stencil_is_enabled(ctx) &&
1028 depthRb &&
1029 depthRb->Format == MESA_FORMAT_Z_UNORM16) {
1030 if (GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 0) == 0 &&
1031 GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 1) == 0 &&
1032 GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 2) == 0 &&
1033 GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 3) == 0) {
1034 USE(occlusion_zless_16_triangle);
1035 return;
1036 }
1037 }
1038
1039 /*
1040 * XXX should examine swrast->_ActiveAttribMask to determine what
1041 * needs to be interpolated.
1042 */
1043 if (ctx->Texture._EnabledCoordUnits ||
1044 _swrast_use_fragment_program(ctx) ||
1045 _mesa_ati_fragment_shader_enabled(ctx) ||
1046 _mesa_need_secondary_color(ctx) ||
1047 swrast->_FogEnabled) {
1048 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1049 const struct gl_texture_object *texObj2D;
1050 const struct gl_sampler_object *samp;
1051 const struct gl_texture_image *texImg;
1052 const struct swrast_texture_image *swImg;
1053 GLenum minFilter, magFilter, envMode;
1054 mesa_format format;
1055 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
1056 if (ctx->Texture.Unit[0].Sampler)
1057 samp = ctx->Texture.Unit[0].Sampler;
1058 else if (texObj2D)
1059 samp = &texObj2D->Sampler;
1060 else
1061 samp = NULL;
1062
1063 texImg = texObj2D ? _mesa_base_tex_image(texObj2D) : NULL;
1064 swImg = swrast_texture_image_const(texImg);
1065
1066 format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE;
1067 minFilter = texObj2D ? samp->MinFilter : GL_NONE;
1068 magFilter = texObj2D ? samp->MagFilter : GL_NONE;
1069 envMode = ctx->Texture.FixedFuncUnit[0].EnvMode;
1070
1071 /* First see if we can use an optimized 2-D texture function */
1072 if (ctx->Texture._EnabledCoordUnits == 0x1
1073 && !_swrast_use_fragment_program(ctx)
1074 && !_mesa_ati_fragment_shader_enabled(ctx)
1075 && ctx->Texture._MaxEnabledTexImageUnit == 0
1076 && ctx->Texture.Unit[0]._Current->Target == GL_TEXTURE_2D
1077 && samp->WrapS == GL_REPEAT
1078 && samp->WrapT == GL_REPEAT
1079 && texObj2D->_Swizzle == SWIZZLE_NOOP
1080 && swImg->_IsPowerOfTwo
1081 && texImg->Border == 0
1082 && (_mesa_format_row_stride(format, texImg->Width) ==
1083 swImg->RowStride)
1084 && (format == MESA_FORMAT_BGR_UNORM8 || format == MESA_FORMAT_A8B8G8R8_UNORM)
1085 && minFilter == magFilter
1086 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1087 && !swrast->_FogEnabled
1088 && ctx->Texture.FixedFuncUnit[0].EnvMode != GL_COMBINE_EXT
1089 && ctx->Texture.FixedFuncUnit[0].EnvMode != GL_COMBINE4_NV) {
1090 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1091 if (minFilter == GL_NEAREST
1092 && format == MESA_FORMAT_BGR_UNORM8
1093 && (envMode == GL_REPLACE || envMode == GL_DECAL)
1094 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1095 && ctx->Depth.Func == GL_LESS
1096 && ctx->Depth.Mask == GL_TRUE)
1097 || swrast->_RasterMask == TEXTURE_BIT)
1098 && ctx->Polygon.StippleFlag == GL_FALSE
1099 && ctx->DrawBuffer->Visual.depthBits <= 16) {
1100 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1101 USE(simple_z_textured_triangle);
1102 }
1103 else {
1104 USE(simple_textured_triangle);
1105 }
1106 }
1107 else {
1108 #if CHAN_BITS != 8
1109 USE(general_triangle);
1110 #else
1111 if (format == MESA_FORMAT_A8B8G8R8_UNORM && !_mesa_little_endian()) {
1112 /* We only handle RGBA8888 correctly on little endian
1113 * in the optimized code above.
1114 */
1115 USE(general_triangle);
1116 }
1117 else {
1118 USE(affine_textured_triangle);
1119 }
1120 #endif
1121 }
1122 }
1123 else {
1124 #if CHAN_BITS != 8
1125 USE(general_triangle);
1126 #else
1127 USE(persp_textured_triangle);
1128 #endif
1129 }
1130 }
1131 else {
1132 /* general case textured triangles */
1133 USE(general_triangle);
1134 }
1135 }
1136 else {
1137 assert(!swrast->_FogEnabled);
1138 assert(!_mesa_need_secondary_color(ctx));
1139 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1140 /* smooth shaded, no texturing, stippled or some raster ops */
1141 #if CHAN_BITS != 8
1142 USE(general_triangle);
1143 #else
1144 USE(smooth_rgba_triangle);
1145 #endif
1146 }
1147 else {
1148 /* flat shaded, no texturing, stippled or some raster ops */
1149 #if CHAN_BITS != 8
1150 USE(general_triangle);
1151 #else
1152 USE(flat_rgba_triangle);
1153 #endif
1154 }
1155 }
1156 }
1157 else if (ctx->RenderMode==GL_FEEDBACK) {
1158 USE(_swrast_feedback_triangle);
1159 }
1160 else {
1161 /* GL_SELECT mode */
1162 USE(_swrast_select_triangle);
1163 }
1164 }