Merge branch 'master' of git+ssh://joukj@git.freedesktop.org/git/mesa/mesa
[mesa.git] / src / mesa / swrast / s_tritemp.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.0
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /*
26 * Triangle Rasterizer Template
27 *
28 * This file is #include'd to generate custom triangle rasterizers.
29 *
30 * The following macros may be defined to indicate what auxillary information
31 * must be interpolated across the triangle:
32 * INTERP_Z - if defined, interpolate integer Z values
33 * INTERP_RGB - if defined, interpolate integer RGB values
34 * INTERP_ALPHA - if defined, interpolate integer Alpha values
35 * INTERP_INDEX - if defined, interpolate color index values
36 * INTERP_INT_TEX - if defined, interpolate integer ST texcoords
37 * (fast, simple 2-D texture mapping, without
38 * perspective correction)
39 * INTERP_ATTRIBS - if defined, interpolate arbitrary attribs (texcoords,
40 * varying vars, etc) This also causes W to be
41 * computed for perspective correction).
42 *
43 * When one can directly address pixels in the color buffer the following
44 * macros can be defined and used to compute pixel addresses during
45 * rasterization (see pRow):
46 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint)
47 * BYTES_PER_ROW - number of bytes per row in the color buffer
48 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where
49 * Y==0 at bottom of screen and increases upward.
50 *
51 * Similarly, for direct depth buffer access, this type is used for depth
52 * buffer addressing (see zRow):
53 * DEPTH_TYPE - either GLushort or GLuint
54 *
55 * Optionally, one may provide one-time setup code per triangle:
56 * SETUP_CODE - code which is to be executed once per triangle
57 *
58 * The following macro MUST be defined:
59 * RENDER_SPAN(span) - code to write a span of pixels.
60 *
61 * This code was designed for the origin to be in the lower-left corner.
62 *
63 * Inspired by triangle rasterizer code written by Allen Akin. Thanks Allen!
64 *
65 *
66 * Some notes on rasterization accuracy:
67 *
68 * This code uses fixed point arithmetic (the GLfixed type) to iterate
69 * over the triangle edges and interpolate ancillary data (such as Z,
70 * color, secondary color, etc). The number of fractional bits in
71 * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the
72 * accuracy of rasterization.
73 *
74 * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest
75 * 1/16 of a pixel. If we're walking up a long, nearly vertical edge
76 * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in
77 * GLfixed to walk the edge without error. If the maximum viewport
78 * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits.
79 *
80 * Historically, Mesa has used 11 fractional bits in GLfixed, snaps
81 * vertices to 1/16 pixel and allowed a maximum viewport height of 2K
82 * pixels. 11 fractional bits is actually insufficient for accurately
83 * rasterizing some triangles. More recently, the maximum viewport
84 * height was increased to 4K pixels. Thus, Mesa should be using 16
85 * fractional bits in GLfixed. Unfortunately, there may be some issues
86 * with setting FIXED_FRAC_BITS=16, such as multiplication overflow.
87 * This will have to be examined in some detail...
88 *
89 * For now, if you find rasterization errors, particularly with tall,
90 * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing
91 * SUB_PIXEL_BITS.
92 */
93
94
95 /*
96 * Some code we unfortunately need to prevent negative interpolated colors.
97 */
98 #ifndef CLAMP_INTERPOLANT
99 #define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN) \
100 do { \
101 GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP; \
102 if (endVal < 0) { \
103 span.CHANNEL -= endVal; \
104 } \
105 if (span.CHANNEL < 0) { \
106 span.CHANNEL = 0; \
107 } \
108 } while (0)
109 #endif
110
111
112 static void NAME(GLcontext *ctx, const SWvertex *v0,
113 const SWvertex *v1,
114 const SWvertex *v2 )
115 {
116 typedef struct {
117 const SWvertex *v0, *v1; /* Y(v0) < Y(v1) */
118 GLfloat dx; /* X(v1) - X(v0) */
119 GLfloat dy; /* Y(v1) - Y(v0) */
120 GLfloat dxdy; /* dx/dy */
121 GLfixed fdxdy; /* dx/dy in fixed-point */
122 GLfloat adjy; /* adjust from v[0]->fy to fsy, scaled */
123 GLfixed fsx; /* first sample point x coord */
124 GLfixed fsy;
125 GLfixed fx0; /* fixed pt X of lower endpoint */
126 GLint lines; /* number of lines to be sampled on this edge */
127 } EdgeT;
128
129 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
130 #ifdef INTERP_Z
131 const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
132 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
133 const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;
134 #define FixedToDepth(F) ((F) >> fixedToDepthShift)
135 #endif
136 EdgeT eMaj, eTop, eBot;
137 GLfloat oneOverArea;
138 const SWvertex *vMin, *vMid, *vMax; /* Y(vMin)<=Y(vMid)<=Y(vMax) */
139 GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
140 const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */
141 GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;
142
143 SWspan span;
144
145 (void) swrast;
146
147 INIT_SPAN(span, GL_POLYGON);
148 span.y = 0; /* silence warnings */
149
150 #ifdef INTERP_Z
151 (void) fixedToDepthShift;
152 #endif
153
154 /*
155 printf("%s()\n", __FUNCTION__);
156 printf(" %g, %g, %g\n",
157 v0->attrib[FRAG_ATTRIB_WPOS][0],
158 v0->attrib[FRAG_ATTRIB_WPOS][1],
159 v0->attrib[FRAG_ATTRIB_WPOS][2]);
160 printf(" %g, %g, %g\n",
161 v1->attrib[FRAG_ATTRIB_WPOS][0],
162 v1->attrib[FRAG_ATTRIB_WPOS][1],
163 v1->attrib[FRAG_ATTRIB_WPOS][2]);
164 printf(" %g, %g, %g\n",
165 v2->attrib[FRAG_ATTRIB_WPOS][0],
166 v2->attrib[FRAG_ATTRIB_WPOS][1],
167 v2->attrib[FRAG_ATTRIB_WPOS][2]);
168 */
169
170 /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.
171 * And find the order of the 3 vertices along the Y axis.
172 */
173 {
174 const GLfixed fy0 = FloatToFixed(v0->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
175 const GLfixed fy1 = FloatToFixed(v1->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
176 const GLfixed fy2 = FloatToFixed(v2->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;
177 if (fy0 <= fy1) {
178 if (fy1 <= fy2) {
179 /* y0 <= y1 <= y2 */
180 vMin = v0; vMid = v1; vMax = v2;
181 vMin_fy = fy0; vMid_fy = fy1; vMax_fy = fy2;
182 }
183 else if (fy2 <= fy0) {
184 /* y2 <= y0 <= y1 */
185 vMin = v2; vMid = v0; vMax = v1;
186 vMin_fy = fy2; vMid_fy = fy0; vMax_fy = fy1;
187 }
188 else {
189 /* y0 <= y2 <= y1 */
190 vMin = v0; vMid = v2; vMax = v1;
191 vMin_fy = fy0; vMid_fy = fy2; vMax_fy = fy1;
192 bf = -bf;
193 }
194 }
195 else {
196 if (fy0 <= fy2) {
197 /* y1 <= y0 <= y2 */
198 vMin = v1; vMid = v0; vMax = v2;
199 vMin_fy = fy1; vMid_fy = fy0; vMax_fy = fy2;
200 bf = -bf;
201 }
202 else if (fy2 <= fy1) {
203 /* y2 <= y1 <= y0 */
204 vMin = v2; vMid = v1; vMax = v0;
205 vMin_fy = fy2; vMid_fy = fy1; vMax_fy = fy0;
206 bf = -bf;
207 }
208 else {
209 /* y1 <= y2 <= y0 */
210 vMin = v1; vMid = v2; vMax = v0;
211 vMin_fy = fy1; vMid_fy = fy2; vMax_fy = fy0;
212 }
213 }
214
215 /* fixed point X coords */
216 vMin_fx = FloatToFixed(vMin->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
217 vMid_fx = FloatToFixed(vMid->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
218 vMax_fx = FloatToFixed(vMax->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;
219 }
220
221 /* vertex/edge relationship */
222 eMaj.v0 = vMin; eMaj.v1 = vMax; /*TODO: .v1's not needed */
223 eTop.v0 = vMid; eTop.v1 = vMax;
224 eBot.v0 = vMin; eBot.v1 = vMid;
225
226 /* compute deltas for each edge: vertex[upper] - vertex[lower] */
227 eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);
228 eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);
229 eTop.dx = FixedToFloat(vMax_fx - vMid_fx);
230 eTop.dy = FixedToFloat(vMax_fy - vMid_fy);
231 eBot.dx = FixedToFloat(vMid_fx - vMin_fx);
232 eBot.dy = FixedToFloat(vMid_fy - vMin_fy);
233
234 /* compute area, oneOverArea and perform backface culling */
235 {
236 const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;
237 /* Do backface culling */
238 if (area * bf < 0.0)
239 return;
240
241 if (IS_INF_OR_NAN(area) || area == 0.0F)
242 return;
243
244 oneOverArea = 1.0F / area;
245 }
246
247
248 span.facing = ctx->_Facing; /* for 2-sided stencil test */
249
250 /* Edge setup. For a triangle strip these could be reused... */
251 {
252 eMaj.fsy = FixedCeil(vMin_fy);
253 eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));
254 if (eMaj.lines > 0) {
255 eMaj.dxdy = eMaj.dx / eMaj.dy;
256 eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);
257 eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy); /* SCALED! */
258 eMaj.fx0 = vMin_fx;
259 eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);
260 }
261 else {
262 return; /*CULLED*/
263 }
264
265 eTop.fsy = FixedCeil(vMid_fy);
266 eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));
267 if (eTop.lines > 0) {
268 eTop.dxdy = eTop.dx / eTop.dy;
269 eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);
270 eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */
271 eTop.fx0 = vMid_fx;
272 eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);
273 }
274
275 eBot.fsy = FixedCeil(vMin_fy);
276 eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));
277 if (eBot.lines > 0) {
278 eBot.dxdy = eBot.dx / eBot.dy;
279 eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);
280 eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy); /* SCALED! */
281 eBot.fx0 = vMin_fx;
282 eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);
283 }
284 }
285
286 /*
287 * Conceptually, we view a triangle as two subtriangles
288 * separated by a perfectly horizontal line. The edge that is
289 * intersected by this line is one with maximal absolute dy; we
290 * call it a ``major'' edge. The other two edges are the
291 * ``top'' edge (for the upper subtriangle) and the ``bottom''
292 * edge (for the lower subtriangle). If either of these two
293 * edges is horizontal or very close to horizontal, the
294 * corresponding subtriangle might cover zero sample points;
295 * we take care to handle such cases, for performance as well
296 * as correctness.
297 *
298 * By stepping rasterization parameters along the major edge,
299 * we can avoid recomputing them at the discontinuity where
300 * the top and bottom edges meet. However, this forces us to
301 * be able to scan both left-to-right and right-to-left.
302 * Also, we must determine whether the major edge is at the
303 * left or right side of the triangle. We do this by
304 * computing the magnitude of the cross-product of the major
305 * and top edges. Since this magnitude depends on the sine of
306 * the angle between the two edges, its sign tells us whether
307 * we turn to the left or to the right when travelling along
308 * the major edge to the top edge, and from this we infer
309 * whether the major edge is on the left or the right.
310 *
311 * Serendipitously, this cross-product magnitude is also a
312 * value we need to compute the iteration parameter
313 * derivatives for the triangle, and it can be used to perform
314 * backface culling because its sign tells us whether the
315 * triangle is clockwise or counterclockwise. In this code we
316 * refer to it as ``area'' because it's also proportional to
317 * the pixel area of the triangle.
318 */
319
320 {
321 GLint scan_from_left_to_right; /* true if scanning left-to-right */
322 #ifdef INTERP_INDEX
323 GLfloat didx, didy;
324 #endif
325
326 /*
327 * Execute user-supplied setup code
328 */
329 #ifdef SETUP_CODE
330 SETUP_CODE
331 #endif
332
333 scan_from_left_to_right = (oneOverArea < 0.0F);
334
335
336 /* compute d?/dx and d?/dy derivatives */
337 #ifdef INTERP_Z
338 span.interpMask |= SPAN_Z;
339 {
340 GLfloat eMaj_dz = vMax->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
341 GLfloat eBot_dz = vMid->attrib[FRAG_ATTRIB_WPOS][2] - vMin->attrib[FRAG_ATTRIB_WPOS][2];
342 span.attrStepX[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj_dz * eBot.dy - eMaj.dy * eBot_dz);
343 if (span.attrStepX[FRAG_ATTRIB_WPOS][2] > maxDepth ||
344 span.attrStepX[FRAG_ATTRIB_WPOS][2] < -maxDepth) {
345 /* probably a sliver triangle */
346 span.attrStepX[FRAG_ATTRIB_WPOS][2] = 0.0;
347 span.attrStepY[FRAG_ATTRIB_WPOS][2] = 0.0;
348 }
349 else {
350 span.attrStepY[FRAG_ATTRIB_WPOS][2] = oneOverArea * (eMaj.dx * eBot_dz - eMaj_dz * eBot.dx);
351 }
352 if (depthBits <= 16)
353 span.zStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_WPOS][2]);
354 else
355 span.zStep = (GLint) span.attrStepX[FRAG_ATTRIB_WPOS][2];
356 }
357 #endif
358 #ifdef INTERP_RGB
359 span.interpMask |= SPAN_RGBA;
360 if (ctx->Light.ShadeModel == GL_SMOOTH) {
361 GLfloat eMaj_dr = (GLfloat) (vMax->color[RCOMP] - vMin->color[RCOMP]);
362 GLfloat eBot_dr = (GLfloat) (vMid->color[RCOMP] - vMin->color[RCOMP]);
363 GLfloat eMaj_dg = (GLfloat) (vMax->color[GCOMP] - vMin->color[GCOMP]);
364 GLfloat eBot_dg = (GLfloat) (vMid->color[GCOMP] - vMin->color[GCOMP]);
365 GLfloat eMaj_db = (GLfloat) (vMax->color[BCOMP] - vMin->color[BCOMP]);
366 GLfloat eBot_db = (GLfloat) (vMid->color[BCOMP] - vMin->color[BCOMP]);
367 # ifdef INTERP_ALPHA
368 GLfloat eMaj_da = (GLfloat) (vMax->color[ACOMP] - vMin->color[ACOMP]);
369 GLfloat eBot_da = (GLfloat) (vMid->color[ACOMP] - vMin->color[ACOMP]);
370 # endif
371 span.attrStepX[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj_dr * eBot.dy - eMaj.dy * eBot_dr);
372 span.attrStepY[FRAG_ATTRIB_COL0][0] = oneOverArea * (eMaj.dx * eBot_dr - eMaj_dr * eBot.dx);
373 span.attrStepX[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj_dg * eBot.dy - eMaj.dy * eBot_dg);
374 span.attrStepY[FRAG_ATTRIB_COL0][1] = oneOverArea * (eMaj.dx * eBot_dg - eMaj_dg * eBot.dx);
375 span.attrStepX[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj_db * eBot.dy - eMaj.dy * eBot_db);
376 span.attrStepY[FRAG_ATTRIB_COL0][2] = oneOverArea * (eMaj.dx * eBot_db - eMaj_db * eBot.dx);
377 span.redStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][0]);
378 span.greenStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][1]);
379 span.blueStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][2]);
380 # ifdef INTERP_ALPHA
381 span.attrStepX[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
382 span.attrStepY[FRAG_ATTRIB_COL0][3] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
383 span.alphaStep = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_COL0][3]);
384 # endif /* INTERP_ALPHA */
385 }
386 else {
387 ASSERT(ctx->Light.ShadeModel == GL_FLAT);
388 span.interpMask |= SPAN_FLAT;
389 span.attrStepX[FRAG_ATTRIB_COL0][0] = span.attrStepY[FRAG_ATTRIB_COL0][0] = 0.0F;
390 span.attrStepX[FRAG_ATTRIB_COL0][1] = span.attrStepY[FRAG_ATTRIB_COL0][1] = 0.0F;
391 span.attrStepX[FRAG_ATTRIB_COL0][2] = span.attrStepY[FRAG_ATTRIB_COL0][2] = 0.0F;
392 span.redStep = 0;
393 span.greenStep = 0;
394 span.blueStep = 0;
395 # ifdef INTERP_ALPHA
396 span.attrStepX[FRAG_ATTRIB_COL0][3] = span.attrStepY[FRAG_ATTRIB_COL0][3] = 0.0F;
397 span.alphaStep = 0;
398 # endif
399 }
400 #endif /* INTERP_RGB */
401 #ifdef INTERP_INDEX
402 span.interpMask |= SPAN_INDEX;
403 if (ctx->Light.ShadeModel == GL_SMOOTH) {
404 GLfloat eMaj_di = vMax->attrib[FRAG_ATTRIB_CI][0] - vMin->attrib[FRAG_ATTRIB_CI][0];
405 GLfloat eBot_di = vMid->attrib[FRAG_ATTRIB_CI][0] - vMin->attrib[FRAG_ATTRIB_CI][0];
406 didx = oneOverArea * (eMaj_di * eBot.dy - eMaj.dy * eBot_di);
407 didy = oneOverArea * (eMaj.dx * eBot_di - eMaj_di * eBot.dx);
408 span.indexStep = SignedFloatToFixed(didx);
409 }
410 else {
411 span.interpMask |= SPAN_FLAT;
412 didx = didy = 0.0F;
413 span.indexStep = 0;
414 }
415 #endif
416 #ifdef INTERP_INT_TEX
417 {
418 GLfloat eMaj_ds = (vMax->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE;
419 GLfloat eBot_ds = (vMid->attrib[FRAG_ATTRIB_TEX0][0] - vMin->attrib[FRAG_ATTRIB_TEX0][0]) * S_SCALE;
420 GLfloat eMaj_dt = (vMax->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE;
421 GLfloat eBot_dt = (vMid->attrib[FRAG_ATTRIB_TEX0][1] - vMin->attrib[FRAG_ATTRIB_TEX0][1]) * T_SCALE;
422 span.attrStepX[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj_ds * eBot.dy - eMaj.dy * eBot_ds);
423 span.attrStepY[FRAG_ATTRIB_TEX0][0] = oneOverArea * (eMaj.dx * eBot_ds - eMaj_ds * eBot.dx);
424 span.attrStepX[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj_dt * eBot.dy - eMaj.dy * eBot_dt);
425 span.attrStepY[FRAG_ATTRIB_TEX0][1] = oneOverArea * (eMaj.dx * eBot_dt - eMaj_dt * eBot.dx);
426 span.intTexStep[0] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][0]);
427 span.intTexStep[1] = SignedFloatToFixed(span.attrStepX[FRAG_ATTRIB_TEX0][1]);
428 }
429 #endif
430 #ifdef INTERP_ATTRIBS
431 {
432 /* attrib[FRAG_ATTRIB_WPOS][3] is 1/W */
433 const GLfloat wMax = vMax->attrib[FRAG_ATTRIB_WPOS][3];
434 const GLfloat wMin = vMin->attrib[FRAG_ATTRIB_WPOS][3];
435 const GLfloat wMid = vMid->attrib[FRAG_ATTRIB_WPOS][3];
436 {
437 const GLfloat eMaj_dw = wMax - wMin;
438 const GLfloat eBot_dw = wMid - wMin;
439 span.attrStepX[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj_dw * eBot.dy - eMaj.dy * eBot_dw);
440 span.attrStepY[FRAG_ATTRIB_WPOS][3] = oneOverArea * (eMaj.dx * eBot_dw - eMaj_dw * eBot.dx);
441 }
442 ATTRIB_LOOP_BEGIN
443 if (swrast->_InterpMode[attr] == GL_FLAT) {
444 ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
445 ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
446 }
447 else {
448 GLuint c;
449 for (c = 0; c < 4; c++) {
450 GLfloat eMaj_da = vMax->attrib[attr][c] * wMax - vMin->attrib[attr][c] * wMin;
451 GLfloat eBot_da = vMid->attrib[attr][c] * wMid - vMin->attrib[attr][c] * wMin;
452 span.attrStepX[attr][c] = oneOverArea * (eMaj_da * eBot.dy - eMaj.dy * eBot_da);
453 span.attrStepY[attr][c] = oneOverArea * (eMaj.dx * eBot_da - eMaj_da * eBot.dx);
454 }
455 }
456 ATTRIB_LOOP_END
457 }
458 #endif
459
460 /*
461 * We always sample at pixel centers. However, we avoid
462 * explicit half-pixel offsets in this code by incorporating
463 * the proper offset in each of x and y during the
464 * transformation to window coordinates.
465 *
466 * We also apply the usual rasterization rules to prevent
467 * cracks and overlaps. A pixel is considered inside a
468 * subtriangle if it meets all of four conditions: it is on or
469 * to the right of the left edge, strictly to the left of the
470 * right edge, on or below the top edge, and strictly above
471 * the bottom edge. (Some edges may be degenerate.)
472 *
473 * The following discussion assumes left-to-right scanning
474 * (that is, the major edge is on the left); the right-to-left
475 * case is a straightforward variation.
476 *
477 * We start by finding the half-integral y coordinate that is
478 * at or below the top of the triangle. This gives us the
479 * first scan line that could possibly contain pixels that are
480 * inside the triangle.
481 *
482 * Next we creep down the major edge until we reach that y,
483 * and compute the corresponding x coordinate on the edge.
484 * Then we find the half-integral x that lies on or just
485 * inside the edge. This is the first pixel that might lie in
486 * the interior of the triangle. (We won't know for sure
487 * until we check the other edges.)
488 *
489 * As we rasterize the triangle, we'll step down the major
490 * edge. For each step in y, we'll move an integer number
491 * of steps in x. There are two possible x step sizes, which
492 * we'll call the ``inner'' step (guaranteed to land on the
493 * edge or inside it) and the ``outer'' step (guaranteed to
494 * land on the edge or outside it). The inner and outer steps
495 * differ by one. During rasterization we maintain an error
496 * term that indicates our distance from the true edge, and
497 * select either the inner step or the outer step, whichever
498 * gets us to the first pixel that falls inside the triangle.
499 *
500 * All parameters (z, red, etc.) as well as the buffer
501 * addresses for color and z have inner and outer step values,
502 * so that we can increment them appropriately. This method
503 * eliminates the need to adjust parameters by creeping a
504 * sub-pixel amount into the triangle at each scanline.
505 */
506
507 {
508 GLint subTriangle;
509 GLfixed fxLeftEdge = 0, fxRightEdge = 0;
510 GLfixed fdxLeftEdge = 0, fdxRightEdge = 0;
511 GLfixed fError = 0, fdError = 0;
512 #ifdef PIXEL_ADDRESS
513 PIXEL_TYPE *pRow = NULL;
514 GLint dPRowOuter = 0, dPRowInner; /* offset in bytes */
515 #endif
516 #ifdef INTERP_Z
517 # ifdef DEPTH_TYPE
518 struct gl_renderbuffer *zrb
519 = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
520 DEPTH_TYPE *zRow = NULL;
521 GLint dZRowOuter = 0, dZRowInner; /* offset in bytes */
522 # endif
523 GLuint zLeft = 0;
524 GLfixed fdzOuter = 0, fdzInner;
525 #endif
526 #ifdef INTERP_RGB
527 GLint rLeft = 0, fdrOuter = 0, fdrInner;
528 GLint gLeft = 0, fdgOuter = 0, fdgInner;
529 GLint bLeft = 0, fdbOuter = 0, fdbInner;
530 #endif
531 #ifdef INTERP_ALPHA
532 GLint aLeft = 0, fdaOuter = 0, fdaInner;
533 #endif
534 #ifdef INTERP_INDEX
535 GLfixed iLeft=0, diOuter=0, diInner;
536 #endif
537 #ifdef INTERP_INT_TEX
538 GLfixed sLeft=0, dsOuter=0, dsInner;
539 GLfixed tLeft=0, dtOuter=0, dtInner;
540 #endif
541 #ifdef INTERP_ATTRIBS
542 GLfloat wLeft = 0, dwOuter = 0, dwInner;
543 GLfloat attrLeft[FRAG_ATTRIB_MAX][4];
544 GLfloat daOuter[FRAG_ATTRIB_MAX][4], daInner[FRAG_ATTRIB_MAX][4];
545 #endif
546
547 for (subTriangle=0; subTriangle<=1; subTriangle++) {
548 EdgeT *eLeft, *eRight;
549 int setupLeft, setupRight;
550 int lines;
551
552 if (subTriangle==0) {
553 /* bottom half */
554 if (scan_from_left_to_right) {
555 eLeft = &eMaj;
556 eRight = &eBot;
557 lines = eRight->lines;
558 setupLeft = 1;
559 setupRight = 1;
560 }
561 else {
562 eLeft = &eBot;
563 eRight = &eMaj;
564 lines = eLeft->lines;
565 setupLeft = 1;
566 setupRight = 1;
567 }
568 }
569 else {
570 /* top half */
571 if (scan_from_left_to_right) {
572 eLeft = &eMaj;
573 eRight = &eTop;
574 lines = eRight->lines;
575 setupLeft = 0;
576 setupRight = 1;
577 }
578 else {
579 eLeft = &eTop;
580 eRight = &eMaj;
581 lines = eLeft->lines;
582 setupLeft = 1;
583 setupRight = 0;
584 }
585 if (lines == 0)
586 return;
587 }
588
589 if (setupLeft && eLeft->lines > 0) {
590 const SWvertex *vLower = eLeft->v0;
591 const GLfixed fsy = eLeft->fsy;
592 const GLfixed fsx = eLeft->fsx; /* no fractional part */
593 const GLfixed fx = FixedCeil(fsx); /* no fractional part */
594 const GLfixed adjx = (GLfixed) (fx - eLeft->fx0); /* SCALED! */
595 const GLfixed adjy = (GLfixed) eLeft->adjy; /* SCALED! */
596 GLint idxOuter;
597 GLfloat dxOuter;
598 GLfixed fdxOuter;
599
600 fError = fx - fsx - FIXED_ONE;
601 fxLeftEdge = fsx - FIXED_EPSILON;
602 fdxLeftEdge = eLeft->fdxdy;
603 fdxOuter = FixedFloor(fdxLeftEdge - FIXED_EPSILON);
604 fdError = fdxOuter - fdxLeftEdge + FIXED_ONE;
605 idxOuter = FixedToInt(fdxOuter);
606 dxOuter = (GLfloat) idxOuter;
607 span.y = FixedToInt(fsy);
608
609 /* silence warnings on some compilers */
610 (void) dxOuter;
611 (void) adjx;
612 (void) adjy;
613 (void) vLower;
614
615 #ifdef PIXEL_ADDRESS
616 {
617 pRow = (PIXEL_TYPE *) PIXEL_ADDRESS(FixedToInt(fxLeftEdge), span.y);
618 dPRowOuter = -((int)BYTES_PER_ROW) + idxOuter * sizeof(PIXEL_TYPE);
619 /* negative because Y=0 at bottom and increases upward */
620 }
621 #endif
622 /*
623 * Now we need the set of parameter (z, color, etc.) values at
624 * the point (fx, fsy). This gives us properly-sampled parameter
625 * values that we can step from pixel to pixel. Furthermore,
626 * although we might have intermediate results that overflow
627 * the normal parameter range when we step temporarily outside
628 * the triangle, we shouldn't overflow or underflow for any
629 * pixel that's actually inside the triangle.
630 */
631
632 #ifdef INTERP_Z
633 {
634 GLfloat z0 = vLower->attrib[FRAG_ATTRIB_WPOS][2];
635 if (depthBits <= 16) {
636 /* interpolate fixed-pt values */
637 GLfloat tmp = (z0 * FIXED_SCALE
638 + span.attrStepX[FRAG_ATTRIB_WPOS][2] * adjx
639 + span.attrStepY[FRAG_ATTRIB_WPOS][2] * adjy) + FIXED_HALF;
640 if (tmp < MAX_GLUINT / 2)
641 zLeft = (GLfixed) tmp;
642 else
643 zLeft = MAX_GLUINT / 2;
644 fdzOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_WPOS][2] +
645 dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
646 }
647 else {
648 /* interpolate depth values w/out scaling */
649 zLeft = (GLuint) (z0 + span.attrStepX[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjx)
650 + span.attrStepY[FRAG_ATTRIB_WPOS][2] * FixedToFloat(adjy));
651 fdzOuter = (GLint) (span.attrStepY[FRAG_ATTRIB_WPOS][2] +
652 dxOuter * span.attrStepX[FRAG_ATTRIB_WPOS][2]);
653 }
654 # ifdef DEPTH_TYPE
655 zRow = (DEPTH_TYPE *)
656 zrb->GetPointer(ctx, zrb, FixedToInt(fxLeftEdge), span.y);
657 dZRowOuter = (ctx->DrawBuffer->Width + idxOuter) * sizeof(DEPTH_TYPE);
658 # endif
659 }
660 #endif
661 #ifdef INTERP_RGB
662 if (ctx->Light.ShadeModel == GL_SMOOTH) {
663 rLeft = (GLint)(ChanToFixed(vLower->color[RCOMP])
664 + span.attrStepX[FRAG_ATTRIB_COL0][0] * adjx
665 + span.attrStepY[FRAG_ATTRIB_COL0][0] * adjy) + FIXED_HALF;
666 gLeft = (GLint)(ChanToFixed(vLower->color[GCOMP])
667 + span.attrStepX[FRAG_ATTRIB_COL0][1] * adjx
668 + span.attrStepY[FRAG_ATTRIB_COL0][1] * adjy) + FIXED_HALF;
669 bLeft = (GLint)(ChanToFixed(vLower->color[BCOMP])
670 + span.attrStepX[FRAG_ATTRIB_COL0][2] * adjx
671 + span.attrStepY[FRAG_ATTRIB_COL0][2] * adjy) + FIXED_HALF;
672 fdrOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][0]
673 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][0]);
674 fdgOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][1]
675 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][1]);
676 fdbOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][2]
677 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][2]);
678 # ifdef INTERP_ALPHA
679 aLeft = (GLint)(ChanToFixed(vLower->color[ACOMP])
680 + span.attrStepX[FRAG_ATTRIB_COL0][3] * adjx
681 + span.attrStepY[FRAG_ATTRIB_COL0][3] * adjy) + FIXED_HALF;
682 fdaOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_COL0][3]
683 + dxOuter * span.attrStepX[FRAG_ATTRIB_COL0][3]);
684 # endif
685 }
686 else {
687 ASSERT(ctx->Light.ShadeModel == GL_FLAT);
688 rLeft = ChanToFixed(v2->color[RCOMP]);
689 gLeft = ChanToFixed(v2->color[GCOMP]);
690 bLeft = ChanToFixed(v2->color[BCOMP]);
691 fdrOuter = fdgOuter = fdbOuter = 0;
692 # ifdef INTERP_ALPHA
693 aLeft = ChanToFixed(v2->color[ACOMP]);
694 fdaOuter = 0;
695 # endif
696 }
697 #endif /* INTERP_RGB */
698
699
700 #ifdef INTERP_INDEX
701 if (ctx->Light.ShadeModel == GL_SMOOTH) {
702 iLeft = (GLfixed)(vLower->attrib[FRAG_ATTRIB_CI][0] * FIXED_SCALE
703 + didx * adjx + didy * adjy) + FIXED_HALF;
704 diOuter = SignedFloatToFixed(didy + dxOuter * didx);
705 }
706 else {
707 ASSERT(ctx->Light.ShadeModel == GL_FLAT);
708 iLeft = FloatToFixed(v2->attrib[FRAG_ATTRIB_CI][0]);
709 diOuter = 0;
710 }
711 #endif
712 #ifdef INTERP_INT_TEX
713 {
714 GLfloat s0, t0;
715 s0 = vLower->attrib[FRAG_ATTRIB_TEX0][0] * S_SCALE;
716 sLeft = (GLfixed)(s0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][0] * adjx
717 + span.attrStepY[FRAG_ATTRIB_TEX0][0] * adjy) + FIXED_HALF;
718 dsOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][0]
719 + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][0]);
720
721 t0 = vLower->attrib[FRAG_ATTRIB_TEX0][1] * T_SCALE;
722 tLeft = (GLfixed)(t0 * FIXED_SCALE + span.attrStepX[FRAG_ATTRIB_TEX0][1] * adjx
723 + span.attrStepY[FRAG_ATTRIB_TEX0][1] * adjy) + FIXED_HALF;
724 dtOuter = SignedFloatToFixed(span.attrStepY[FRAG_ATTRIB_TEX0][1]
725 + dxOuter * span.attrStepX[FRAG_ATTRIB_TEX0][1]);
726 }
727 #endif
728 #ifdef INTERP_ATTRIBS
729 {
730 const GLuint attr = FRAG_ATTRIB_WPOS;
731 wLeft = vLower->attrib[FRAG_ATTRIB_WPOS][3]
732 + (span.attrStepX[attr][3] * adjx
733 + span.attrStepY[attr][3] * adjy) * (1.0F/FIXED_SCALE);
734 dwOuter = span.attrStepY[attr][3] + dxOuter * span.attrStepX[attr][3];
735 }
736 ATTRIB_LOOP_BEGIN
737 const GLfloat invW = vLower->attrib[FRAG_ATTRIB_WPOS][3];
738 if (swrast->_InterpMode[attr] == GL_FLAT) {
739 GLuint c;
740 for (c = 0; c < 4; c++) {
741 attrLeft[attr][c] = v2->attrib[attr][c] * invW;
742 daOuter[attr][c] = 0.0;
743 }
744 }
745 else {
746 GLuint c;
747 for (c = 0; c < 4; c++) {
748 const GLfloat a = vLower->attrib[attr][c] * invW;
749 attrLeft[attr][c] = a + ( span.attrStepX[attr][c] * adjx
750 + span.attrStepY[attr][c] * adjy) * (1.0F/FIXED_SCALE);
751 daOuter[attr][c] = span.attrStepY[attr][c] + dxOuter * span.attrStepX[attr][c];
752 }
753 }
754 ATTRIB_LOOP_END
755 #endif
756 } /*if setupLeft*/
757
758
759 if (setupRight && eRight->lines>0) {
760 fxRightEdge = eRight->fsx - FIXED_EPSILON;
761 fdxRightEdge = eRight->fdxdy;
762 }
763
764 if (lines==0) {
765 continue;
766 }
767
768
769 /* Rasterize setup */
770 #ifdef PIXEL_ADDRESS
771 dPRowInner = dPRowOuter + sizeof(PIXEL_TYPE);
772 #endif
773 #ifdef INTERP_Z
774 # ifdef DEPTH_TYPE
775 dZRowInner = dZRowOuter + sizeof(DEPTH_TYPE);
776 # endif
777 fdzInner = fdzOuter + span.zStep;
778 #endif
779 #ifdef INTERP_RGB
780 fdrInner = fdrOuter + span.redStep;
781 fdgInner = fdgOuter + span.greenStep;
782 fdbInner = fdbOuter + span.blueStep;
783 #endif
784 #ifdef INTERP_ALPHA
785 fdaInner = fdaOuter + span.alphaStep;
786 #endif
787 #ifdef INTERP_INDEX
788 diInner = diOuter + span.indexStep;
789 #endif
790 #ifdef INTERP_INT_TEX
791 dsInner = dsOuter + span.intTexStep[0];
792 dtInner = dtOuter + span.intTexStep[1];
793 #endif
794 #ifdef INTERP_ATTRIBS
795 dwInner = dwOuter + span.attrStepX[FRAG_ATTRIB_WPOS][3];
796 ATTRIB_LOOP_BEGIN
797 GLuint c;
798 for (c = 0; c < 4; c++) {
799 daInner[attr][c] = daOuter[attr][c] + span.attrStepX[attr][c];
800 }
801 ATTRIB_LOOP_END
802 #endif
803
804 while (lines > 0) {
805 /* initialize the span interpolants to the leftmost value */
806 /* ff = fixed-pt fragment */
807 const GLint right = FixedToInt(fxRightEdge);
808 span.x = FixedToInt(fxLeftEdge);
809 if (right <= span.x)
810 span.end = 0;
811 else
812 span.end = right - span.x;
813
814 #ifdef INTERP_Z
815 span.z = zLeft;
816 #endif
817 #ifdef INTERP_RGB
818 span.red = rLeft;
819 span.green = gLeft;
820 span.blue = bLeft;
821 #endif
822 #ifdef INTERP_ALPHA
823 span.alpha = aLeft;
824 #endif
825 #ifdef INTERP_INDEX
826 span.index = iLeft;
827 #endif
828 #ifdef INTERP_INT_TEX
829 span.intTex[0] = sLeft;
830 span.intTex[1] = tLeft;
831 #endif
832
833 #ifdef INTERP_ATTRIBS
834 span.attrStart[FRAG_ATTRIB_WPOS][3] = wLeft;
835 ATTRIB_LOOP_BEGIN
836 GLuint c;
837 for (c = 0; c < 4; c++) {
838 span.attrStart[attr][c] = attrLeft[attr][c];
839 }
840 ATTRIB_LOOP_END
841 #endif
842
843 /* This is where we actually generate fragments */
844 /* XXX the test for span.y > 0 _shouldn't_ be needed but
845 * it fixes a problem on 64-bit Opterons (bug 4842).
846 */
847 if (span.end > 0 && span.y >= 0) {
848 const GLint len = span.end - 1;
849 (void) len;
850 #ifdef INTERP_RGB
851 CLAMP_INTERPOLANT(red, redStep, len);
852 CLAMP_INTERPOLANT(green, greenStep, len);
853 CLAMP_INTERPOLANT(blue, blueStep, len);
854 #endif
855 #ifdef INTERP_ALPHA
856 CLAMP_INTERPOLANT(alpha, alphaStep, len);
857 #endif
858 #ifdef INTERP_INDEX
859 CLAMP_INTERPOLANT(index, indexStep, len);
860 #endif
861 {
862 RENDER_SPAN( span );
863 }
864 }
865
866 /*
867 * Advance to the next scan line. Compute the
868 * new edge coordinates, and adjust the
869 * pixel-center x coordinate so that it stays
870 * on or inside the major edge.
871 */
872 span.y++;
873 lines--;
874
875 fxLeftEdge += fdxLeftEdge;
876 fxRightEdge += fdxRightEdge;
877
878 fError += fdError;
879 if (fError >= 0) {
880 fError -= FIXED_ONE;
881
882 #ifdef PIXEL_ADDRESS
883 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowOuter);
884 #endif
885 #ifdef INTERP_Z
886 # ifdef DEPTH_TYPE
887 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowOuter);
888 # endif
889 zLeft += fdzOuter;
890 #endif
891 #ifdef INTERP_RGB
892 rLeft += fdrOuter;
893 gLeft += fdgOuter;
894 bLeft += fdbOuter;
895 #endif
896 #ifdef INTERP_ALPHA
897 aLeft += fdaOuter;
898 #endif
899 #ifdef INTERP_INDEX
900 iLeft += diOuter;
901 #endif
902 #ifdef INTERP_INT_TEX
903 sLeft += dsOuter;
904 tLeft += dtOuter;
905 #endif
906 #ifdef INTERP_ATTRIBS
907 wLeft += dwOuter;
908 ATTRIB_LOOP_BEGIN
909 GLuint c;
910 for (c = 0; c < 4; c++) {
911 attrLeft[attr][c] += daOuter[attr][c];
912 }
913 ATTRIB_LOOP_END
914 #endif
915 }
916 else {
917 #ifdef PIXEL_ADDRESS
918 pRow = (PIXEL_TYPE *) ((GLubyte *) pRow + dPRowInner);
919 #endif
920 #ifdef INTERP_Z
921 # ifdef DEPTH_TYPE
922 zRow = (DEPTH_TYPE *) ((GLubyte *) zRow + dZRowInner);
923 # endif
924 zLeft += fdzInner;
925 #endif
926 #ifdef INTERP_RGB
927 rLeft += fdrInner;
928 gLeft += fdgInner;
929 bLeft += fdbInner;
930 #endif
931 #ifdef INTERP_ALPHA
932 aLeft += fdaInner;
933 #endif
934 #ifdef INTERP_INDEX
935 iLeft += diInner;
936 #endif
937 #ifdef INTERP_INT_TEX
938 sLeft += dsInner;
939 tLeft += dtInner;
940 #endif
941 #ifdef INTERP_ATTRIBS
942 wLeft += dwInner;
943 ATTRIB_LOOP_BEGIN
944 GLuint c;
945 for (c = 0; c < 4; c++) {
946 attrLeft[attr][c] += daInner[attr][c];
947 }
948 ATTRIB_LOOP_END
949 #endif
950 }
951 } /*while lines>0*/
952
953 } /* for subTriangle */
954
955 }
956 }
957 }
958
959 #undef SETUP_CODE
960 #undef RENDER_SPAN
961
962 #undef PIXEL_TYPE
963 #undef BYTES_PER_ROW
964 #undef PIXEL_ADDRESS
965 #undef DEPTH_TYPE
966
967 #undef INTERP_Z
968 #undef INTERP_RGB
969 #undef INTERP_ALPHA
970 #undef INTERP_INDEX
971 #undef INTERP_INT_TEX
972 #undef INTERP_ATTRIBS
973
974 #undef S_SCALE
975 #undef T_SCALE
976
977 #undef FixedToDepth
978
979 #undef NAME