fix merge collision
[mesa.git] / src / mesa / tnl / t_vp_build.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 2007 Tungsten Graphics All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21 * WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file t_vp_build.c
28 * Create a vertex program to execute the current fixed function T&L pipeline.
29 * \author Keith Whitwell
30 */
31
32
33 #include "glheader.h"
34 #include "macros.h"
35 #include "enums.h"
36 #include "shader/program.h"
37 #include "shader/prog_instruction.h"
38 #include "shader/prog_parameter.h"
39 #include "shader/prog_print.h"
40 #include "shader/prog_statevars.h"
41 #include "t_context.h" /* NOTE: very light dependency on this */
42 #include "t_vp_build.h"
43
44
45 struct state_key {
46 unsigned light_global_enabled:1;
47 unsigned light_local_viewer:1;
48 unsigned light_twoside:1;
49 unsigned light_color_material:1;
50 unsigned light_color_material_mask:12;
51 unsigned light_material_mask:12;
52
53 unsigned normalize:1;
54 unsigned rescale_normals:1;
55 unsigned fog_source_is_depth:1;
56 unsigned tnl_do_vertex_fog:1;
57 unsigned separate_specular:1;
58 unsigned fog_mode:2;
59 unsigned point_attenuated:1;
60 unsigned texture_enabled_global:1;
61 unsigned fragprog_inputs_read:12;
62
63 struct {
64 unsigned light_enabled:1;
65 unsigned light_eyepos3_is_zero:1;
66 unsigned light_spotcutoff_is_180:1;
67 unsigned light_attenuated:1;
68 unsigned texunit_really_enabled:1;
69 unsigned texmat_enabled:1;
70 unsigned texgen_enabled:4;
71 unsigned texgen_mode0:4;
72 unsigned texgen_mode1:4;
73 unsigned texgen_mode2:4;
74 unsigned texgen_mode3:4;
75 } unit[8];
76 };
77
78
79
80 #define FOG_NONE 0
81 #define FOG_LINEAR 1
82 #define FOG_EXP 2
83 #define FOG_EXP2 3
84
85 static GLuint translate_fog_mode( GLenum mode )
86 {
87 switch (mode) {
88 case GL_LINEAR: return FOG_LINEAR;
89 case GL_EXP: return FOG_EXP;
90 case GL_EXP2: return FOG_EXP2;
91 default: return FOG_NONE;
92 }
93 }
94
95 #define TXG_NONE 0
96 #define TXG_OBJ_LINEAR 1
97 #define TXG_EYE_LINEAR 2
98 #define TXG_SPHERE_MAP 3
99 #define TXG_REFLECTION_MAP 4
100 #define TXG_NORMAL_MAP 5
101
102 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
103 {
104 if (!enabled)
105 return TXG_NONE;
106
107 switch (mode) {
108 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
109 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
110 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
111 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
112 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
113 default: return TXG_NONE;
114 }
115 }
116
117 static struct state_key *make_state_key( GLcontext *ctx )
118 {
119 TNLcontext *tnl = TNL_CONTEXT(ctx);
120 struct vertex_buffer *VB = &tnl->vb;
121 const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
122 struct state_key *key = CALLOC_STRUCT(state_key);
123 GLuint i;
124
125 /* This now relies on texenvprogram.c being active:
126 */
127 assert(fp);
128
129 key->fragprog_inputs_read = fp->Base.InputsRead;
130
131 key->separate_specular = (ctx->Light.Model.ColorControl ==
132 GL_SEPARATE_SPECULAR_COLOR);
133
134 if (ctx->Light.Enabled) {
135 key->light_global_enabled = 1;
136
137 if (ctx->Light.Model.LocalViewer)
138 key->light_local_viewer = 1;
139
140 if (ctx->Light.Model.TwoSide)
141 key->light_twoside = 1;
142
143 if (ctx->Light.ColorMaterialEnabled) {
144 key->light_color_material = 1;
145 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
146 }
147
148 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
149 if (VB->AttribPtr[i]->stride)
150 key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT);
151
152 for (i = 0; i < MAX_LIGHTS; i++) {
153 struct gl_light *light = &ctx->Light.Light[i];
154
155 if (light->Enabled) {
156 key->unit[i].light_enabled = 1;
157
158 if (light->EyePosition[3] == 0.0)
159 key->unit[i].light_eyepos3_is_zero = 1;
160
161 if (light->SpotCutoff == 180.0)
162 key->unit[i].light_spotcutoff_is_180 = 1;
163
164 if (light->ConstantAttenuation != 1.0 ||
165 light->LinearAttenuation != 0.0 ||
166 light->QuadraticAttenuation != 0.0)
167 key->unit[i].light_attenuated = 1;
168 }
169 }
170 }
171
172 if (ctx->Transform.Normalize)
173 key->normalize = 1;
174
175 if (ctx->Transform.RescaleNormals)
176 key->rescale_normals = 1;
177
178 key->fog_mode = translate_fog_mode(fp->FogOption);
179
180 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
181 key->fog_source_is_depth = 1;
182
183 if (tnl->_DoVertexFog)
184 key->tnl_do_vertex_fog = 1;
185
186 if (ctx->Point._Attenuated)
187 key->point_attenuated = 1;
188
189 if (ctx->Texture._TexGenEnabled ||
190 ctx->Texture._TexMatEnabled ||
191 ctx->Texture._EnabledUnits)
192 key->texture_enabled_global = 1;
193
194 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
195 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
196
197 if (texUnit->_ReallyEnabled)
198 key->unit[i].texunit_really_enabled = 1;
199
200 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
201 key->unit[i].texmat_enabled = 1;
202
203 if (texUnit->TexGenEnabled) {
204 key->unit[i].texgen_enabled = 1;
205
206 key->unit[i].texgen_mode0 =
207 translate_texgen( texUnit->TexGenEnabled & (1<<0),
208 texUnit->GenModeS );
209 key->unit[i].texgen_mode1 =
210 translate_texgen( texUnit->TexGenEnabled & (1<<1),
211 texUnit->GenModeT );
212 key->unit[i].texgen_mode2 =
213 translate_texgen( texUnit->TexGenEnabled & (1<<2),
214 texUnit->GenModeR );
215 key->unit[i].texgen_mode3 =
216 translate_texgen( texUnit->TexGenEnabled & (1<<3),
217 texUnit->GenModeQ );
218 }
219 }
220
221 return key;
222 }
223
224
225
226 /* Very useful debugging tool - produces annotated listing of
227 * generated program with line/function references for each
228 * instruction back into this file:
229 */
230 #define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM)
231
232 /* Should be tunable by the driver - do we want to do matrix
233 * multiplications with DP4's or with MUL/MAD's? SSE works better
234 * with the latter, drivers may differ.
235 */
236 #define PREFER_DP4 0
237
238 #define MAX_INSN 256
239
240 /* Use uregs to represent registers internally, translate to Mesa's
241 * expected formats on emit.
242 *
243 * NOTE: These are passed by value extensively in this file rather
244 * than as usual by pointer reference. If this disturbs you, try
245 * remembering they are just 32bits in size.
246 *
247 * GCC is smart enough to deal with these dword-sized structures in
248 * much the same way as if I had defined them as dwords and was using
249 * macros to access and set the fields. This is much nicer and easier
250 * to evolve.
251 */
252 struct ureg {
253 GLuint file:4;
254 GLint idx:8; /* relative addressing may be negative */
255 GLuint negate:1;
256 GLuint swz:12;
257 GLuint pad:7;
258 };
259
260
261 struct tnl_program {
262 const struct state_key *state;
263 struct gl_vertex_program *program;
264
265 GLuint temp_in_use;
266 GLuint temp_reserved;
267
268 struct ureg eye_position;
269 struct ureg eye_position_normalized;
270 struct ureg eye_normal;
271 struct ureg identity;
272
273 GLuint materials;
274 GLuint color_materials;
275 };
276
277
278 static const struct ureg undef = {
279 PROGRAM_UNDEFINED,
280 ~0,
281 0,
282 0,
283 0
284 };
285
286 /* Local shorthand:
287 */
288 #define X SWIZZLE_X
289 #define Y SWIZZLE_Y
290 #define Z SWIZZLE_Z
291 #define W SWIZZLE_W
292
293
294 /* Construct a ureg:
295 */
296 static struct ureg make_ureg(GLuint file, GLint idx)
297 {
298 struct ureg reg;
299 reg.file = file;
300 reg.idx = idx;
301 reg.negate = 0;
302 reg.swz = SWIZZLE_NOOP;
303 reg.pad = 0;
304 return reg;
305 }
306
307
308
309 static struct ureg negate( struct ureg reg )
310 {
311 reg.negate ^= 1;
312 return reg;
313 }
314
315
316 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
317 {
318 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
319 GET_SWZ(reg.swz, y),
320 GET_SWZ(reg.swz, z),
321 GET_SWZ(reg.swz, w));
322
323 return reg;
324 }
325
326 static struct ureg swizzle1( struct ureg reg, int x )
327 {
328 return swizzle(reg, x, x, x, x);
329 }
330
331 static struct ureg get_temp( struct tnl_program *p )
332 {
333 int bit = _mesa_ffs( ~p->temp_in_use );
334 if (!bit) {
335 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
336 _mesa_exit(1);
337 }
338
339 if ((GLuint) bit > p->program->Base.NumTemporaries)
340 p->program->Base.NumTemporaries = bit;
341
342 p->temp_in_use |= 1<<(bit-1);
343 return make_ureg(PROGRAM_TEMPORARY, bit-1);
344 }
345
346 static struct ureg reserve_temp( struct tnl_program *p )
347 {
348 struct ureg temp = get_temp( p );
349 p->temp_reserved |= 1<<temp.idx;
350 return temp;
351 }
352
353 static void release_temp( struct tnl_program *p, struct ureg reg )
354 {
355 if (reg.file == PROGRAM_TEMPORARY) {
356 p->temp_in_use &= ~(1<<reg.idx);
357 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
358 }
359 }
360
361 static void release_temps( struct tnl_program *p )
362 {
363 p->temp_in_use = p->temp_reserved;
364 }
365
366
367
368 static struct ureg register_input( struct tnl_program *p, GLuint input )
369 {
370 p->program->Base.InputsRead |= (1<<input);
371 return make_ureg(PROGRAM_INPUT, input);
372 }
373
374 static struct ureg register_output( struct tnl_program *p, GLuint output )
375 {
376 p->program->Base.OutputsWritten |= (1<<output);
377 return make_ureg(PROGRAM_OUTPUT, output);
378 }
379
380 static struct ureg register_const4f( struct tnl_program *p,
381 GLfloat s0,
382 GLfloat s1,
383 GLfloat s2,
384 GLfloat s3)
385 {
386 GLfloat values[4];
387 GLint idx;
388 GLuint swizzle;
389 values[0] = s0;
390 values[1] = s1;
391 values[2] = s2;
392 values[3] = s3;
393 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
394 &swizzle );
395 ASSERT(swizzle == SWIZZLE_NOOP);
396 return make_ureg(PROGRAM_STATE_VAR, idx);
397 }
398
399 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
400 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
401 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
402 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
403
404 static GLboolean is_undef( struct ureg reg )
405 {
406 return reg.file == PROGRAM_UNDEFINED;
407 }
408
409 static struct ureg get_identity_param( struct tnl_program *p )
410 {
411 if (is_undef(p->identity))
412 p->identity = register_const4f(p, 0,0,0,1);
413
414 return p->identity;
415 }
416
417 static struct ureg register_param5(struct tnl_program *p,
418 GLint s0,
419 GLint s1,
420 GLint s2,
421 GLint s3,
422 GLint s4)
423 {
424 gl_state_index tokens[STATE_LENGTH];
425 GLint idx;
426 tokens[0] = s0;
427 tokens[1] = s1;
428 tokens[2] = s2;
429 tokens[3] = s3;
430 tokens[4] = s4;
431 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
432 return make_ureg(PROGRAM_STATE_VAR, idx);
433 }
434
435
436 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
437 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
438 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
439 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
440
441
442 static void register_matrix_param5( struct tnl_program *p,
443 GLint s0, /* modelview, projection, etc */
444 GLint s1, /* texture matrix number */
445 GLint s2, /* first row */
446 GLint s3, /* last row */
447 GLint s4, /* inverse, transpose, etc */
448 struct ureg *matrix )
449 {
450 GLint i;
451
452 /* This is a bit sad as the support is there to pull the whole
453 * matrix out in one go:
454 */
455 for (i = 0; i <= s3 - s2; i++)
456 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
457 }
458
459
460 /**
461 * Convert a ureg source register to a prog_src_register.
462 */
463 static void emit_arg( struct prog_src_register *src,
464 struct ureg reg )
465 {
466 assert(reg.file != PROGRAM_OUTPUT);
467 src->File = reg.file;
468 src->Index = reg.idx;
469 src->Swizzle = reg.swz;
470 src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
471 src->Abs = 0;
472 src->NegateAbs = 0;
473 src->RelAddr = 0;
474 }
475
476 /**
477 * Convert a ureg dest register to a prog_dst_register.
478 */
479 static void emit_dst( struct prog_dst_register *dst,
480 struct ureg reg, GLuint mask )
481 {
482 /* Check for legal output register type. UNDEFINED will occur in
483 * instruction that don't produce a result (like END).
484 */
485 assert(reg.file == PROGRAM_TEMPORARY ||
486 reg.file == PROGRAM_OUTPUT ||
487 reg.file == PROGRAM_UNDEFINED);
488 dst->File = reg.file;
489 dst->Index = reg.idx;
490 /* allow zero as a shorthand for xyzw */
491 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
492 dst->CondMask = COND_TR; /* always pass cond test */
493 dst->CondSwizzle = SWIZZLE_NOOP;
494 dst->CondSrc = 0;
495 dst->pad = 0;
496 }
497
498 static void debug_insn( struct prog_instruction *inst, const char *fn,
499 GLuint line )
500 {
501 if (DISASSEM) {
502 static const char *last_fn;
503
504 if (fn != last_fn) {
505 last_fn = fn;
506 _mesa_printf("%s:\n", fn);
507 }
508
509 _mesa_printf("%d:\t", line);
510 _mesa_print_instruction(inst);
511 }
512 }
513
514
515 static void emit_op3fn(struct tnl_program *p,
516 enum prog_opcode op,
517 struct ureg dest,
518 GLuint mask,
519 struct ureg src0,
520 struct ureg src1,
521 struct ureg src2,
522 const char *fn,
523 GLuint line)
524 {
525 GLuint nr = p->program->Base.NumInstructions++;
526 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
527
528 if (p->program->Base.NumInstructions > MAX_INSN) {
529 _mesa_problem(0, "Out of instructions in emit_op3fn\n");
530 return;
531 }
532
533 inst->Opcode = (enum prog_opcode) op;
534 inst->StringPos = 0;
535 inst->Data = 0;
536
537 emit_arg( &inst->SrcReg[0], src0 );
538 emit_arg( &inst->SrcReg[1], src1 );
539 emit_arg( &inst->SrcReg[2], src2 );
540
541 emit_dst( &inst->DstReg, dest, mask );
542
543 debug_insn(inst, fn, line);
544 }
545
546
547 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
548 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
549
550 #define emit_op2(p, op, dst, mask, src0, src1) \
551 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
552
553 #define emit_op1(p, op, dst, mask, src0) \
554 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
555
556
557 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
558 {
559 if (reg.file == PROGRAM_TEMPORARY &&
560 !(p->temp_reserved & (1<<reg.idx)))
561 return reg;
562 else {
563 struct ureg temp = get_temp(p);
564 emit_op1(p, OPCODE_MOV, temp, 0, reg);
565 return temp;
566 }
567 }
568
569
570 /* Currently no tracking performed of input/output/register size or
571 * active elements. Could be used to reduce these operations, as
572 * could the matrix type.
573 */
574 static void emit_matrix_transform_vec4( struct tnl_program *p,
575 struct ureg dest,
576 const struct ureg *mat,
577 struct ureg src)
578 {
579 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
580 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
581 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
582 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
583 }
584
585 /* This version is much easier to implement if writemasks are not
586 * supported natively on the target or (like SSE), the target doesn't
587 * have a clean/obvious dotproduct implementation.
588 */
589 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
590 struct ureg dest,
591 const struct ureg *mat,
592 struct ureg src)
593 {
594 struct ureg tmp;
595
596 if (dest.file != PROGRAM_TEMPORARY)
597 tmp = get_temp(p);
598 else
599 tmp = dest;
600
601 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
602 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
603 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
604 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
605
606 if (dest.file != PROGRAM_TEMPORARY)
607 release_temp(p, tmp);
608 }
609
610 static void emit_matrix_transform_vec3( struct tnl_program *p,
611 struct ureg dest,
612 const struct ureg *mat,
613 struct ureg src)
614 {
615 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
616 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
617 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
618 }
619
620
621 static void emit_normalize_vec3( struct tnl_program *p,
622 struct ureg dest,
623 struct ureg src )
624 {
625 struct ureg tmp = get_temp(p);
626 emit_op2(p, OPCODE_DP3, tmp, 0, src, src);
627 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
628 emit_op2(p, OPCODE_MUL, dest, 0, src, tmp);
629 release_temp(p, tmp);
630 }
631
632 static void emit_passthrough( struct tnl_program *p,
633 GLuint input,
634 GLuint output )
635 {
636 struct ureg out = register_output(p, output);
637 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
638 }
639
640 static struct ureg get_eye_position( struct tnl_program *p )
641 {
642 if (is_undef(p->eye_position)) {
643 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
644 struct ureg modelview[4];
645
646 p->eye_position = reserve_temp(p);
647
648 if (PREFER_DP4) {
649 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
650 0, modelview );
651
652 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
653 }
654 else {
655 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
656 STATE_MATRIX_TRANSPOSE, modelview );
657
658 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
659 }
660 }
661
662 return p->eye_position;
663 }
664
665
666 static struct ureg get_eye_position_normalized( struct tnl_program *p )
667 {
668 if (is_undef(p->eye_position_normalized)) {
669 struct ureg eye = get_eye_position(p);
670 p->eye_position_normalized = reserve_temp(p);
671 emit_normalize_vec3(p, p->eye_position_normalized, eye);
672 }
673
674 return p->eye_position_normalized;
675 }
676
677
678 static struct ureg get_eye_normal( struct tnl_program *p )
679 {
680 if (is_undef(p->eye_normal)) {
681 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
682 struct ureg mvinv[3];
683
684 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
685 STATE_MATRIX_INVTRANS, mvinv );
686
687 p->eye_normal = reserve_temp(p);
688
689 /* Transform to eye space:
690 */
691 emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal );
692
693 /* Normalize/Rescale:
694 */
695 if (p->state->normalize) {
696 emit_normalize_vec3( p, p->eye_normal, p->eye_normal );
697 }
698 else if (p->state->rescale_normals) {
699 struct ureg rescale = register_param2(p, STATE_INTERNAL,
700 STATE_NORMAL_SCALE);
701
702 emit_op2( p, OPCODE_MUL, p->eye_normal, 0, p->eye_normal,
703 swizzle1(rescale, X));
704 }
705 }
706
707 return p->eye_normal;
708 }
709
710
711
712 static void build_hpos( struct tnl_program *p )
713 {
714 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
715 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
716 struct ureg mvp[4];
717
718 if (PREFER_DP4) {
719 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
720 0, mvp );
721 emit_matrix_transform_vec4( p, hpos, mvp, pos );
722 }
723 else {
724 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
725 STATE_MATRIX_TRANSPOSE, mvp );
726 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
727 }
728 }
729
730
731 static GLuint material_attrib( GLuint side, GLuint property )
732 {
733 return ((property - STATE_AMBIENT) * 2 +
734 side);
735 }
736
737 /* Get a bitmask of which material values vary on a per-vertex basis.
738 */
739 static void set_material_flags( struct tnl_program *p )
740 {
741 p->color_materials = 0;
742 p->materials = 0;
743
744 if (p->state->light_color_material) {
745 p->materials =
746 p->color_materials = p->state->light_color_material_mask;
747 }
748
749 p->materials |= p->state->light_material_mask;
750 }
751
752
753 static struct ureg get_material( struct tnl_program *p, GLuint side,
754 GLuint property )
755 {
756 GLuint attrib = material_attrib(side, property);
757
758 if (p->color_materials & (1<<attrib))
759 return register_input(p, VERT_ATTRIB_COLOR0);
760 else if (p->materials & (1<<attrib))
761 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
762 else
763 return register_param3( p, STATE_MATERIAL, side, property );
764 }
765
766 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
767 MAT_BIT_FRONT_AMBIENT | \
768 MAT_BIT_FRONT_DIFFUSE) << (side))
769
770 /* Either return a precalculated constant value or emit code to
771 * calculate these values dynamically in the case where material calls
772 * are present between begin/end pairs.
773 *
774 * Probably want to shift this to the program compilation phase - if
775 * we always emitted the calculation here, a smart compiler could
776 * detect that it was constant (given a certain set of inputs), and
777 * lift it out of the main loop. That way the programs created here
778 * would be independent of the vertex_buffer details.
779 */
780 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
781 {
782 if (p->materials & SCENE_COLOR_BITS(side)) {
783 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
784 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
785 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
786 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
787 struct ureg tmp = make_temp(p, material_diffuse);
788 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
789 material_ambient, material_emission);
790 return tmp;
791 }
792 else
793 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
794 }
795
796
797 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
798 GLuint side, GLuint property )
799 {
800 GLuint attrib = material_attrib(side, property);
801 if (p->materials & (1<<attrib)) {
802 struct ureg light_value =
803 register_param3(p, STATE_LIGHT, light, property);
804 struct ureg material_value = get_material(p, side, property);
805 struct ureg tmp = get_temp(p);
806 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
807 return tmp;
808 }
809 else
810 return register_param4(p, STATE_LIGHTPROD, light, side, property);
811 }
812
813 static struct ureg calculate_light_attenuation( struct tnl_program *p,
814 GLuint i,
815 struct ureg VPpli,
816 struct ureg dist )
817 {
818 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
819 STATE_ATTENUATION);
820 struct ureg att = get_temp(p);
821
822 /* Calculate spot attenuation:
823 */
824 if (!p->state->unit[i].light_spotcutoff_is_180) {
825 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
826 STATE_SPOT_DIR_NORMALIZED, i);
827 struct ureg spot = get_temp(p);
828 struct ureg slt = get_temp(p);
829
830 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
831 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
832 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
833 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
834
835 release_temp(p, spot);
836 release_temp(p, slt);
837 }
838
839 /* Calculate distance attenuation:
840 */
841 if (p->state->unit[i].light_attenuated) {
842
843 /* 1/d,d,d,1/d */
844 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
845 /* 1,d,d*d,1/d */
846 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
847 /* 1/dist-atten */
848 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
849
850 if (!p->state->unit[i].light_spotcutoff_is_180) {
851 /* dist-atten */
852 emit_op1(p, OPCODE_RCP, dist, 0, dist);
853 /* spot-atten * dist-atten */
854 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
855 } else {
856 /* dist-atten */
857 emit_op1(p, OPCODE_RCP, att, 0, dist);
858 }
859 }
860
861 return att;
862 }
863
864
865
866
867
868 /* Need to add some addtional parameters to allow lighting in object
869 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
870 * space lighting.
871 */
872 static void build_lighting( struct tnl_program *p )
873 {
874 const GLboolean twoside = p->state->light_twoside;
875 const GLboolean separate = p->state->separate_specular;
876 GLuint nr_lights = 0, count = 0;
877 struct ureg normal = get_eye_normal(p);
878 struct ureg lit = get_temp(p);
879 struct ureg dots = get_temp(p);
880 struct ureg _col0 = undef, _col1 = undef;
881 struct ureg _bfc0 = undef, _bfc1 = undef;
882 GLuint i;
883
884 for (i = 0; i < MAX_LIGHTS; i++)
885 if (p->state->unit[i].light_enabled)
886 nr_lights++;
887
888 set_material_flags(p);
889
890 {
891 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
892 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
893
894 _col0 = make_temp(p, get_scenecolor(p, 0));
895 if (separate)
896 _col1 = make_temp(p, get_identity_param(p));
897 else
898 _col1 = _col0;
899
900 }
901
902 if (twoside) {
903 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
904 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
905 negate(swizzle1(shininess,X)));
906
907 _bfc0 = make_temp(p, get_scenecolor(p, 1));
908 if (separate)
909 _bfc1 = make_temp(p, get_identity_param(p));
910 else
911 _bfc1 = _bfc0;
912 }
913
914
915 /* If no lights, still need to emit the scenecolor.
916 */
917 {
918 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
919 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
920 }
921
922 if (separate) {
923 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
924 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
925 }
926
927 if (twoside) {
928 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
929 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
930 }
931
932 if (twoside && separate) {
933 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
934 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
935 }
936
937 if (nr_lights == 0) {
938 release_temps(p);
939 return;
940 }
941
942
943 for (i = 0; i < MAX_LIGHTS; i++) {
944 if (p->state->unit[i].light_enabled) {
945 struct ureg half = undef;
946 struct ureg att = undef, VPpli = undef;
947
948 count++;
949
950 if (p->state->unit[i].light_eyepos3_is_zero) {
951 /* Can used precomputed constants in this case.
952 * Attenuation never applies to infinite lights.
953 */
954 VPpli = register_param3(p, STATE_LIGHT, i,
955 STATE_POSITION_NORMALIZED);
956 if (p->state->light_local_viewer) {
957 struct ureg eye_hat = get_eye_position_normalized(p);
958 half = get_temp(p);
959 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
960 emit_normalize_vec3(p, half, half);
961 } else {
962 half = register_param3(p, STATE_LIGHT, i, STATE_HALF_VECTOR);
963 }
964 }
965 else {
966 struct ureg Ppli = register_param3(p, STATE_LIGHT, i,
967 STATE_POSITION);
968 struct ureg V = get_eye_position(p);
969 struct ureg dist = get_temp(p);
970 struct ureg tmpPpli = get_temp(p);
971
972 VPpli = get_temp(p);
973
974 /* In homogeneous object coordinates
975 */
976 emit_op1(p, OPCODE_RCP, dist, 0, swizzle1(Ppli, W));
977 emit_op2(p, OPCODE_MUL, tmpPpli, 0, Ppli, dist);
978
979 /* Calculate VPpli vector
980 */
981 emit_op2(p, OPCODE_SUB, VPpli, 0, tmpPpli, V);
982
983 /* we're done with tmpPpli now */
984 release_temp(p, tmpPpli);
985
986 /* Normalize VPpli. The dist value also used in
987 * attenuation below.
988 */
989 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
990 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
991 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
992
993
994 /* Calculate attenuation:
995 */
996 if (!p->state->unit[i].light_spotcutoff_is_180 ||
997 p->state->unit[i].light_attenuated) {
998 att = calculate_light_attenuation(p, i, VPpli, dist);
999 }
1000
1001 /* We're done with dist now */
1002 release_temp(p, dist);
1003
1004
1005 /* Calculate viewer direction, or use infinite viewer:
1006 */
1007 half = get_temp(p);
1008 if (p->state->light_local_viewer) {
1009 struct ureg eye_hat = get_eye_position_normalized(p);
1010 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1011 }
1012 else {
1013 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1014 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1015 }
1016
1017 emit_normalize_vec3(p, half, half);
1018 }
1019
1020 /* Calculate dot products:
1021 */
1022 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1023 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1024
1025 /* we're done with VPpli and half now, so free them as to not drive up
1026 our temp usage unnecessary */
1027 release_temp(p, VPpli);
1028 release_temp(p, half);
1029
1030 /* Front face lighting:
1031 */
1032 {
1033 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1034 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1035 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1036 struct ureg res0, res1;
1037 GLuint mask0, mask1;
1038
1039 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1040
1041 if (!is_undef(att))
1042 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1043
1044
1045 if (count == nr_lights) {
1046 if (separate) {
1047 mask0 = WRITEMASK_XYZ;
1048 mask1 = WRITEMASK_XYZ;
1049 res0 = register_output( p, VERT_RESULT_COL0 );
1050 res1 = register_output( p, VERT_RESULT_COL1 );
1051 }
1052 else {
1053 mask0 = 0;
1054 mask1 = WRITEMASK_XYZ;
1055 res0 = _col0;
1056 res1 = register_output( p, VERT_RESULT_COL0 );
1057 }
1058 } else {
1059 mask0 = 0;
1060 mask1 = 0;
1061 res0 = _col0;
1062 res1 = _col1;
1063 }
1064
1065 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1066 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1067 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1068
1069 release_temp(p, ambient);
1070 release_temp(p, diffuse);
1071 release_temp(p, specular);
1072 }
1073
1074 /* Back face lighting:
1075 */
1076 if (twoside) {
1077 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1078 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1079 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1080 struct ureg res0, res1;
1081 GLuint mask0, mask1;
1082
1083 emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1084
1085 if (!is_undef(att))
1086 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1087
1088 if (count == nr_lights) {
1089 if (separate) {
1090 mask0 = WRITEMASK_XYZ;
1091 mask1 = WRITEMASK_XYZ;
1092 res0 = register_output( p, VERT_RESULT_BFC0 );
1093 res1 = register_output( p, VERT_RESULT_BFC1 );
1094 }
1095 else {
1096 mask0 = 0;
1097 mask1 = WRITEMASK_XYZ;
1098 res0 = _bfc0;
1099 res1 = register_output( p, VERT_RESULT_BFC0 );
1100 }
1101 } else {
1102 res0 = _bfc0;
1103 res1 = _bfc1;
1104 mask0 = 0;
1105 mask1 = 0;
1106 }
1107
1108 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1109 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1110 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1111
1112 release_temp(p, ambient);
1113 release_temp(p, diffuse);
1114 release_temp(p, specular);
1115 }
1116
1117 release_temp(p, att);
1118 }
1119 }
1120
1121 release_temps( p );
1122 }
1123
1124
1125 static void build_fog( struct tnl_program *p )
1126 {
1127 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1128 struct ureg input;
1129
1130 if (p->state->fog_source_is_depth) {
1131 input = swizzle1(get_eye_position(p), Z);
1132 }
1133 else {
1134 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1135 }
1136
1137 if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1138 struct ureg params = register_param2(p, STATE_INTERNAL,
1139 STATE_FOG_PARAMS_OPTIMIZED);
1140 struct ureg tmp = get_temp(p);
1141 GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1142
1143 if (useabs) {
1144 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1145 }
1146
1147 switch (p->state->fog_mode) {
1148 case FOG_LINEAR: {
1149 struct ureg id = get_identity_param(p);
1150 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1151 swizzle1(params,X), swizzle1(params,Y));
1152 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1153 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1154 break;
1155 }
1156 case FOG_EXP:
1157 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1158 swizzle1(params,Z));
1159 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1160 break;
1161 case FOG_EXP2:
1162 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1163 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1164 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1165 break;
1166 }
1167
1168 release_temp(p, tmp);
1169 }
1170 else {
1171 /* results = incoming fog coords (compute fog per-fragment later)
1172 *
1173 * KW: Is it really necessary to do anything in this case?
1174 * BP: Yes, we always need to compute the absolute value, unless
1175 * we want to push that down into the fragment program...
1176 */
1177 GLboolean useabs = GL_TRUE;
1178 emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1179 }
1180 }
1181
1182 static void build_reflect_texgen( struct tnl_program *p,
1183 struct ureg dest,
1184 GLuint writemask )
1185 {
1186 struct ureg normal = get_eye_normal(p);
1187 struct ureg eye_hat = get_eye_position_normalized(p);
1188 struct ureg tmp = get_temp(p);
1189
1190 /* n.u */
1191 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1192 /* 2n.u */
1193 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1194 /* (-2n.u)n + u */
1195 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1196
1197 release_temp(p, tmp);
1198 }
1199
1200 static void build_sphere_texgen( struct tnl_program *p,
1201 struct ureg dest,
1202 GLuint writemask )
1203 {
1204 struct ureg normal = get_eye_normal(p);
1205 struct ureg eye_hat = get_eye_position_normalized(p);
1206 struct ureg tmp = get_temp(p);
1207 struct ureg half = register_scalar_const(p, .5);
1208 struct ureg r = get_temp(p);
1209 struct ureg inv_m = get_temp(p);
1210 struct ureg id = get_identity_param(p);
1211
1212 /* Could share the above calculations, but it would be
1213 * a fairly odd state for someone to set (both sphere and
1214 * reflection active for different texture coordinate
1215 * components. Of course - if two texture units enable
1216 * reflect and/or sphere, things start to tilt in favour
1217 * of seperating this out:
1218 */
1219
1220 /* n.u */
1221 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1222 /* 2n.u */
1223 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1224 /* (-2n.u)n + u */
1225 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1226 /* r + 0,0,1 */
1227 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1228 /* rx^2 + ry^2 + (rz+1)^2 */
1229 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1230 /* 2/m */
1231 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1232 /* 1/m */
1233 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1234 /* r/m + 1/2 */
1235 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1236
1237 release_temp(p, tmp);
1238 release_temp(p, r);
1239 release_temp(p, inv_m);
1240 }
1241
1242
1243 static void build_texture_transform( struct tnl_program *p )
1244 {
1245 GLuint i, j;
1246
1247 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1248
1249 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1250 continue;
1251
1252 if (p->state->unit[i].texgen_enabled ||
1253 p->state->unit[i].texmat_enabled) {
1254
1255 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1256 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1257 struct ureg out_texgen = undef;
1258
1259 if (p->state->unit[i].texgen_enabled) {
1260 GLuint copy_mask = 0;
1261 GLuint sphere_mask = 0;
1262 GLuint reflect_mask = 0;
1263 GLuint normal_mask = 0;
1264 GLuint modes[4];
1265
1266 if (texmat_enabled)
1267 out_texgen = get_temp(p);
1268 else
1269 out_texgen = out;
1270
1271 modes[0] = p->state->unit[i].texgen_mode0;
1272 modes[1] = p->state->unit[i].texgen_mode1;
1273 modes[2] = p->state->unit[i].texgen_mode2;
1274 modes[3] = p->state->unit[i].texgen_mode3;
1275
1276 for (j = 0; j < 4; j++) {
1277 switch (modes[j]) {
1278 case TXG_OBJ_LINEAR: {
1279 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1280 struct ureg plane =
1281 register_param3(p, STATE_TEXGEN, i,
1282 STATE_TEXGEN_OBJECT_S + j);
1283
1284 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1285 obj, plane );
1286 break;
1287 }
1288 case TXG_EYE_LINEAR: {
1289 struct ureg eye = get_eye_position(p);
1290 struct ureg plane =
1291 register_param3(p, STATE_TEXGEN, i,
1292 STATE_TEXGEN_EYE_S + j);
1293
1294 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1295 eye, plane );
1296 break;
1297 }
1298 case TXG_SPHERE_MAP:
1299 sphere_mask |= WRITEMASK_X << j;
1300 break;
1301 case TXG_REFLECTION_MAP:
1302 reflect_mask |= WRITEMASK_X << j;
1303 break;
1304 case TXG_NORMAL_MAP:
1305 normal_mask |= WRITEMASK_X << j;
1306 break;
1307 case TXG_NONE:
1308 copy_mask |= WRITEMASK_X << j;
1309 }
1310
1311 }
1312
1313
1314 if (sphere_mask) {
1315 build_sphere_texgen(p, out_texgen, sphere_mask);
1316 }
1317
1318 if (reflect_mask) {
1319 build_reflect_texgen(p, out_texgen, reflect_mask);
1320 }
1321
1322 if (normal_mask) {
1323 struct ureg normal = get_eye_normal(p);
1324 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1325 }
1326
1327 if (copy_mask) {
1328 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1329 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1330 }
1331 }
1332
1333 if (texmat_enabled) {
1334 struct ureg texmat[4];
1335 struct ureg in = (!is_undef(out_texgen) ?
1336 out_texgen :
1337 register_input(p, VERT_ATTRIB_TEX0+i));
1338 if (PREFER_DP4) {
1339 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1340 0, texmat );
1341 emit_matrix_transform_vec4( p, out, texmat, in );
1342 }
1343 else {
1344 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1345 STATE_MATRIX_TRANSPOSE, texmat );
1346 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1347 }
1348 }
1349
1350 release_temps(p);
1351 }
1352 else {
1353 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1354 }
1355 }
1356 }
1357
1358
1359 static void build_pointsize( struct tnl_program *p )
1360 {
1361 struct ureg eye = get_eye_position(p);
1362 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1363 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1364 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1365 struct ureg ut = get_temp(p);
1366
1367 /* dist = |eyez| */
1368 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1369 /* p1 + dist * (p2 + dist * p3); */
1370 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1371 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1372 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1373 ut, swizzle1(state_attenuation, X));
1374
1375 /* 1 / sqrt(factor) */
1376 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1377
1378 #if 1
1379 /* out = pointSize / sqrt(factor) */
1380 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1381 #else
1382 /* not sure, might make sense to do clamping here,
1383 but it's not done in t_vb_points neither */
1384 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1385 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1386 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1387 #endif
1388
1389 release_temp(p, ut);
1390 }
1391
1392 static void build_tnl_program( struct tnl_program *p )
1393 { /* Emit the program, starting with modelviewproject:
1394 */
1395 build_hpos(p);
1396
1397 /* Lighting calculations:
1398 */
1399 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1400 if (p->state->light_global_enabled)
1401 build_lighting(p);
1402 else {
1403 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1404 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1405
1406 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1407 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1408 }
1409 }
1410
1411 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1412 p->state->fog_mode != FOG_NONE)
1413 build_fog(p);
1414
1415 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1416 build_texture_transform(p);
1417
1418 if (p->state->point_attenuated)
1419 build_pointsize(p);
1420
1421 /* Finish up:
1422 */
1423 emit_op1(p, OPCODE_END, undef, 0, undef);
1424
1425 /* Disassemble:
1426 */
1427 if (DISASSEM) {
1428 _mesa_printf ("\n");
1429 }
1430 }
1431
1432
1433 static void
1434 create_new_program( const struct state_key *key,
1435 struct gl_vertex_program *program,
1436 GLuint max_temps)
1437 {
1438 struct tnl_program p;
1439
1440 _mesa_memset(&p, 0, sizeof(p));
1441 p.state = key;
1442 p.program = program;
1443 p.eye_position = undef;
1444 p.eye_position_normalized = undef;
1445 p.eye_normal = undef;
1446 p.identity = undef;
1447 p.temp_in_use = 0;
1448
1449 if (max_temps >= sizeof(int) * 8)
1450 p.temp_reserved = 0;
1451 else
1452 p.temp_reserved = ~((1<<max_temps)-1);
1453
1454 p.program->Base.Instructions = _mesa_alloc_instructions(MAX_INSN);
1455 p.program->Base.String = NULL;
1456 p.program->Base.NumInstructions =
1457 p.program->Base.NumTemporaries =
1458 p.program->Base.NumParameters =
1459 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1460 p.program->Base.Parameters = _mesa_new_parameter_list();
1461 p.program->Base.InputsRead = 0;
1462 p.program->Base.OutputsWritten = 0;
1463
1464 build_tnl_program( &p );
1465 }
1466
1467
1468 static struct gl_vertex_program *
1469 search_cache(struct tnl_cache *cache, GLuint hash,
1470 const void *key, GLuint keysize)
1471 {
1472 struct tnl_cache_item *c;
1473
1474 for (c = cache->items[hash % cache->size]; c; c = c->next) {
1475 if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0)
1476 return c->prog;
1477 }
1478
1479 return NULL;
1480 }
1481
1482
1483 static void rehash( struct tnl_cache *cache )
1484 {
1485 struct tnl_cache_item **items;
1486 struct tnl_cache_item *c, *next;
1487 GLuint size, i;
1488
1489 size = cache->size * 3;
1490 items = (struct tnl_cache_item**) _mesa_malloc(size * sizeof(*items));
1491 _mesa_memset(items, 0, size * sizeof(*items));
1492
1493 for (i = 0; i < cache->size; i++)
1494 for (c = cache->items[i]; c; c = next) {
1495 next = c->next;
1496 c->next = items[c->hash % size];
1497 items[c->hash % size] = c;
1498 }
1499
1500 FREE(cache->items);
1501 cache->items = items;
1502 cache->size = size;
1503 }
1504
1505 static void cache_item( GLcontext *ctx,
1506 struct tnl_cache *cache,
1507 GLuint hash,
1508 void *key,
1509 struct gl_vertex_program *prog )
1510 {
1511 struct tnl_cache_item *c = CALLOC_STRUCT(tnl_cache_item);
1512 c->hash = hash;
1513 c->key = key;
1514 _mesa_reference_vertprog(ctx, &c->prog, prog);
1515
1516 if (++cache->n_items > cache->size * 1.5)
1517 rehash(cache);
1518
1519 c->next = cache->items[hash % cache->size];
1520 cache->items[hash % cache->size] = c;
1521 }
1522
1523 static GLuint hash_key( struct state_key *key )
1524 {
1525 GLuint *ikey = (GLuint *)key;
1526 GLuint hash = 0, i;
1527
1528 /* I'm sure this can be improved on, but speed is important:
1529 */
1530 for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++)
1531 hash ^= ikey[i];
1532
1533 return hash;
1534 }
1535
1536 void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx )
1537 {
1538 TNLcontext *tnl = TNL_CONTEXT(ctx);
1539 struct state_key *key;
1540 GLuint hash;
1541 const struct gl_vertex_program *prev = ctx->VertexProgram._Current;
1542
1543 if (!ctx->VertexProgram._Current ||
1544 ctx->VertexProgram._Current == ctx->VertexProgram._TnlProgram) {
1545 struct gl_vertex_program *newProg;
1546
1547 /* Grab all the relevent state and put it in a single structure:
1548 */
1549 key = make_state_key(ctx);
1550 hash = hash_key(key);
1551
1552 /* Look for an already-prepared program for this state:
1553 */
1554 newProg = search_cache( tnl->vp_cache, hash, key, sizeof(*key));
1555
1556 /* OK, we'll have to build a new one:
1557 */
1558 if (!newProg) {
1559
1560 if (0)
1561 _mesa_printf("Build new TNL program\n");
1562
1563 newProg = (struct gl_vertex_program *)
1564 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1565
1566 create_new_program( key, newProg, ctx->Const.VertexProgram.MaxTemps );
1567
1568 if (ctx->Driver.ProgramStringNotify)
1569 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1570 &newProg->Base );
1571
1572 cache_item(ctx, tnl->vp_cache, hash, key, newProg);
1573
1574 _mesa_reference_vertprog(ctx, &ctx->VertexProgram._TnlProgram, newProg);
1575 }
1576 else {
1577 FREE(key);
1578 }
1579
1580 _mesa_reference_vertprog(ctx, &ctx->VertexProgram._TnlProgram, newProg);
1581 _mesa_reference_vertprog(ctx, &ctx->VertexProgram._Current, newProg);
1582 }
1583
1584 /* Tell the driver about the change. Could define a new target for
1585 * this?
1586 */
1587 if (ctx->VertexProgram._Current != prev && ctx->Driver.BindProgram) {
1588 ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB,
1589 (struct gl_program *) ctx->VertexProgram._Current);
1590 }
1591 }
1592
1593 void _tnl_ProgramCacheInit( GLcontext *ctx )
1594 {
1595 TNLcontext *tnl = TNL_CONTEXT(ctx);
1596
1597 tnl->vp_cache = (struct tnl_cache *) MALLOC(sizeof(*tnl->vp_cache));
1598 tnl->vp_cache->size = 17;
1599 tnl->vp_cache->n_items = 0;
1600 tnl->vp_cache->items = (struct tnl_cache_item**)
1601 _mesa_calloc(tnl->vp_cache->size * sizeof(*tnl->vp_cache->items));
1602 }
1603
1604 void _tnl_ProgramCacheDestroy( GLcontext *ctx )
1605 {
1606 TNLcontext *tnl = TNL_CONTEXT(ctx);
1607 struct tnl_cache_item *c, *next;
1608 GLuint i;
1609
1610 for (i = 0; i < tnl->vp_cache->size; i++)
1611 for (c = tnl->vp_cache->items[i]; c; c = next) {
1612 next = c->next;
1613 FREE(c->key);
1614 _mesa_reference_vertprog(ctx, &c->prog, NULL);
1615 FREE(c);
1616 }
1617
1618 FREE(tnl->vp_cache->items);
1619 FREE(tnl->vp_cache);
1620 }