panfrost: Pre-allocate memory for pool
[mesa.git] / src / panfrost / bifrost / Notes.txt
1 # Notes on opcodes
2
3 _Notes mainly by Connor Abbott extracted from the disassembler_
4
5 LOG_FREXPM:
6
7 // From the ARM patent US20160364209A1:
8 // "Decompose v (the input) into numbers x1 and s such that v = x1 * 2^s,
9 // and x1 is a floating point value in a predetermined range where the
10 // value 1 is within the range and not at one extremity of the range (e.g.
11 // choose a range where 1 is towards middle of range)."
12 //
13 // This computes x1.
14
15 FRCP_FREXPM:
16
17 // Given a floating point number m * 2^e, returns m * 2^{-1}. This is
18 // exactly the same as the mantissa part of frexp().
19
20 FSQRT_FREXPM:
21 // Given a floating point number m * 2^e, returns m * 2^{-2} if e is even,
22 // and m * 2^{-1} if e is odd. In other words, scales by powers of 4 until
23 // within the range [0.25, 1). Used for square-root and reciprocal
24 // square-root.
25
26
27
28
29 FRCP_FREXPE:
30 // Given a floating point number m * 2^e, computes -e - 1 as an integer.
31 // Zero and infinity/NaN return 0.
32
33 FSQRT_FREXPE:
34 // Computes floor(e/2) + 1.
35
36 FRSQ_FREXPE:
37 // Given a floating point number m * 2^e, computes -floor(e/2) - 1 as an
38 // integer.
39
40 LSHIFT_ADD_LOW32:
41 // These instructions in the FMA slot, together with LSHIFT_ADD_HIGH32.i32
42 // in the ADD slot, allow one to do a 64-bit addition with an extra small
43 // shift on one of the sources. There are three possible scenarios:
44 //
45 // 1) Full 64-bit addition. Do:
46 // out.x = LSHIFT_ADD_LOW32.i64 src1.x, src2.x, shift
47 // out.y = LSHIFT_ADD_HIGH32.i32 src1.y, src2.y
48 //
49 // The shift amount is applied to src2 before adding. The shift amount, and
50 // any extra bits from src2 plus the overflow bit, are sent directly from
51 // FMA to ADD instead of being passed explicitly. Hence, these two must be
52 // bundled together into the same instruction.
53 //
54 // 2) Add a 64-bit value src1 to a zero-extended 32-bit value src2. Do:
55 // out.x = LSHIFT_ADD_LOW32.u32 src1.x, src2, shift
56 // out.y = LSHIFT_ADD_HIGH32.i32 src1.x, 0
57 //
58 // Note that in this case, the second argument to LSHIFT_ADD_HIGH32 is
59 // ignored, so it can actually be anything. As before, the shift is applied
60 // to src2 before adding.
61 //
62 // 3) Add a 64-bit value to a sign-extended 32-bit value src2. Do:
63 // out.x = LSHIFT_ADD_LOW32.i32 src1.x, src2, shift
64 // out.y = LSHIFT_ADD_HIGH32.i32 src1.x, 0
65 //
66 // The only difference is the .i32 instead of .u32. Otherwise, this is
67 // exactly the same as before.
68 //
69 // In all these instructions, the shift amount is stored where the third
70 // source would be, so the shift has to be a small immediate from 0 to 7.
71 // This is fine for the expected use-case of these instructions, which is
72 // manipulating 64-bit pointers.
73 //
74 // These instructions can also be combined with various load/store
75 // instructions which normally take a 64-bit pointer in order to add a
76 // 32-bit or 64-bit offset to the pointer before doing the operation,
77 // optionally shifting the offset. The load/store op implicity does
78 // LSHIFT_ADD_HIGH32.i32 internally. Letting ptr be the pointer, and offset
79 // the desired offset, the cases go as follows:
80 //
81 // 1) Add a 64-bit offset:
82 // LSHIFT_ADD_LOW32.i64 ptr.x, offset.x, shift
83 // ld_st_op ptr.y, offset.y, ...
84 //
85 // Note that the output of LSHIFT_ADD_LOW32.i64 is not used, instead being
86 // implicitly sent to the load/store op to serve as the low 32 bits of the
87 // pointer.
88 //
89 // 2) Add a 32-bit unsigned offset:
90 // temp = LSHIFT_ADD_LOW32.u32 ptr.x, offset, shift
91 // ld_st_op temp, ptr.y, ...
92 //
93 // Now, the low 32 bits of offset << shift + ptr are passed explicitly to
94 // the ld_st_op, to match the case where there is no offset and ld_st_op is
95 // called directly.
96 //
97 // 3) Add a 32-bit signed offset:
98 // temp = LSHIFT_ADD_LOW32.i32 ptr.x, offset, shift
99 // ld_st_op temp, ptr.y, ...
100 //
101 // Again, the same as the unsigned case except for the offset.
102
103 ---
104
105 ADD ops..
106
107 F16_TO_F32.X: // take the low 16 bits, and expand it to a 32-bit float
108 F16_TO_F32.Y: // take the high 16 bits, and expand it to a 32-bit float
109
110 MOV:
111 // Logically, this should be SWZ.XY, but that's equivalent to a move, and
112 // this seems to be the canonical way the blob generates a MOV.
113
114
115 FRCP_FREXPM:
116 // Given a floating point number m * 2^e, returns m ^ 2^{-1}.
117
118 FLOG_FREXPE:
119 // From the ARM patent US20160364209A1:
120 // "Decompose v (the input) into numbers x1 and s such that v = x1 * 2^s,
121 // and x1 is a floating point value in a predetermined range where the
122 // value 1 is within the range and not at one extremity of the range (e.g.
123 // choose a range where 1 is towards middle of range)."
124 //
125 // This computes s.
126
127 LD_UBO.v4i32
128 // src0 = offset, src1 = binding
129
130 FRCP_FAST.f32:
131 // *_FAST does not exist on G71 (added to G51, G72, and everything after)
132
133 FRCP_TABLE
134 // Given a floating point number m * 2^e, produces a table-based
135 // approximation of 2/m using the top 17 bits. Includes special cases for
136 // infinity, NaN, and zero, and copies the sign bit.
137
138 FRCP_FAST.f16.X
139 // Exists on G71
140
141 FRSQ_TABLE:
142 // A similar table for inverse square root, using the high 17 bits of the
143 // mantissa as well as the low bit of the exponent.
144
145 FRCP_APPROX:
146 // Used in the argument reduction for log. Given a floating-point number
147 // m * 2^e, uses the top 4 bits of m to produce an approximation to 1/m
148 // with the exponent forced to 0 and only the top 5 bits are nonzero. 0,
149 // infinity, and NaN all return 1.0.
150 // See the ARM patent for more information.
151
152 MUX:
153 // For each bit i, return src2[i] ? src0[i] : src1[i]. In other words, this
154 // is the same as (src2 & src0) | (~src2 & src1).
155
156 ST_VAR:
157 // store a varying given the address and datatype from LD_VAR_ADDR
158
159 LD_VAR_ADDR:
160 // Compute varying address and datatype (for storing in the vertex shader),
161 // and store the vec3 result in the data register. The result is passed as
162 // the 3 normal arguments to ST_VAR.
163
164 DISCARD
165 // Conditional discards (discard_if) in NIR. Compares the first two
166 // sources and discards if the result is true
167
168 ATEST.f32:
169 // Implements alpha-to-coverage, as well as possibly the late depth and
170 // stencil tests. The first source is the existing sample mask in R60
171 // (possibly modified by gl_SampleMask), and the second source is the alpha
172 // value. The sample mask is written right away based on the
173 // alpha-to-coverage result using the normal register write mechanism,
174 // since that doesn't need to read from any memory, and then written again
175 // later based on the result of the stencil and depth tests using the
176 // special register.
177
178 BLEND:
179 // This takes the sample coverage mask (computed by ATEST above) as a
180 // regular argument, in addition to the vec4 color in the special register.