pan/bi: Fix missing src_types
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "main/imports.h"
31 #include "compiler/nir/nir_builder.h"
32
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39
40 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
41 static bi_instruction *bi_emit_branch(bi_context *ctx);
42 static void bi_schedule_barrier(bi_context *ctx);
43
44 static void
45 emit_jump(bi_context *ctx, nir_jump_instr *instr)
46 {
47 bi_instruction *branch = bi_emit_branch(ctx);
48
49 switch (instr->type) {
50 case nir_jump_break:
51 branch->branch.target = ctx->break_block;
52 break;
53 case nir_jump_continue:
54 branch->branch.target = ctx->continue_block;
55 break;
56 default:
57 unreachable("Unhandled jump type");
58 }
59
60 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
61 }
62
63 /* Gets a bytemask for a complete vecN write */
64 static unsigned
65 bi_mask_for_channels_32(unsigned i)
66 {
67 return (1 << (4 * i)) - 1;
68 }
69
70 static bi_instruction
71 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
72 {
73 bi_instruction load = {
74 .type = T,
75 .writemask = bi_mask_for_channels_32(instr->num_components),
76 .src = { BIR_INDEX_CONSTANT },
77 .constant = { .u64 = nir_intrinsic_base(instr) },
78 };
79
80 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
81
82 if (info->has_dest)
83 load.dest = bir_dest_index(&instr->dest);
84
85 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
86 load.dest_type = nir_intrinsic_type(instr);
87
88 nir_src *offset = nir_get_io_offset_src(instr);
89
90 if (nir_src_is_const(*offset))
91 load.constant.u64 += nir_src_as_uint(*offset);
92 else
93 load.src[0] = bir_src_index(offset);
94
95 return load;
96 }
97
98 static void
99 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
100 {
101 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
102 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
103 ins.load_vary.reuse = false; /* TODO */
104 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
105 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest),
106 bi_emit(ctx, ins);
107 }
108
109 static void
110 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
111 {
112 if (!ctx->emitted_atest) {
113 bi_instruction ins = {
114 .type = BI_ATEST
115 };
116
117 bi_emit(ctx, ins);
118 bi_schedule_barrier(ctx);
119 ctx->emitted_atest = true;
120 }
121
122 bi_instruction blend = {
123 .type = BI_BLEND,
124 .blend_location = nir_intrinsic_base(instr),
125 .src = {
126 bir_src_index(&instr->src[0])
127 },
128 .src_types = {
129 nir_type_float32,
130 },
131 .swizzle = {
132 { 0, 1, 2, 3 }
133 }
134 };
135
136 bi_emit(ctx, blend);
137 bi_schedule_barrier(ctx);
138 }
139
140 static void
141 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
142 {
143 bi_instruction address = bi_load(BI_LOAD_VAR_ADDRESS, instr);
144 address.dest = bi_make_temp(ctx);
145 address.dest_type = nir_type_uint64;
146 address.writemask = (1 << 8) - 1;
147
148 bi_instruction st = {
149 .type = BI_STORE_VAR,
150 .src = {
151 address.dest,
152 bir_src_index(&instr->src[0])
153 },
154 .src_types = {
155 nir_type_uint64,
156 nir_type_uint32
157 },
158 .swizzle = {
159 { 0 },
160 { 0, 1, 2, 3 }
161 }
162 };
163
164 bi_emit(ctx, address);
165 bi_emit(ctx, st);
166 }
167
168 static void
169 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
170 {
171 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
172 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
173
174 /* TODO: Indirect access, since we need to multiply by the element
175 * size. I believe we can get this lowering automatically via
176 * nir_lower_io (as mul instructions) with the proper options, but this
177 * is TODO */
178 assert(ld.src[0] & BIR_INDEX_CONSTANT);
179 ld.constant.u64 += ctx->sysvals.sysval_count;
180 ld.constant.u64 *= 16;
181
182 bi_emit(ctx, ld);
183 }
184
185 static void
186 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
187 unsigned nr_components, unsigned offset)
188 {
189 nir_dest nir_dest;
190
191 /* Figure out which uniform this is */
192 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
193 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
194
195 /* Sysvals are prefix uniforms */
196 unsigned uniform = ((uintptr_t) val) - 1;
197
198 /* Emit the read itself -- this is never indirect */
199
200 bi_instruction load = {
201 .type = BI_LOAD_UNIFORM,
202 .writemask = (1 << (nr_components * 4)) - 1,
203 .src = { BIR_INDEX_CONSTANT},
204 .constant = { (uniform * 16) + offset },
205 .dest = bir_dest_index(&nir_dest),
206 .dest_type = nir_type_uint32, /* TODO */
207 };
208
209 bi_emit(ctx, load);
210 }
211
212 static void
213 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
214 {
215
216 switch (instr->intrinsic) {
217 case nir_intrinsic_load_barycentric_pixel:
218 /* stub */
219 break;
220 case nir_intrinsic_load_interpolated_input:
221 case nir_intrinsic_load_input:
222 if (ctx->stage == MESA_SHADER_FRAGMENT)
223 bi_emit_ld_vary(ctx, instr);
224 else if (ctx->stage == MESA_SHADER_VERTEX)
225 bi_emit(ctx, bi_load(BI_LOAD_ATTR, instr));
226 else {
227 unreachable("Unsupported shader stage");
228 }
229 break;
230
231 case nir_intrinsic_store_output:
232 if (ctx->stage == MESA_SHADER_FRAGMENT)
233 bi_emit_frag_out(ctx, instr);
234 else if (ctx->stage == MESA_SHADER_VERTEX)
235 bi_emit_st_vary(ctx, instr);
236 else
237 unreachable("Unsupported shader stage");
238 break;
239
240 case nir_intrinsic_load_uniform:
241 bi_emit_ld_uniform(ctx, instr);
242 break;
243
244 case nir_intrinsic_load_ssbo_address:
245 bi_emit_sysval(ctx, &instr->instr, 1, 0);
246 break;
247
248 case nir_intrinsic_get_buffer_size:
249 bi_emit_sysval(ctx, &instr->instr, 1, 8);
250 break;
251
252 case nir_intrinsic_load_viewport_scale:
253 case nir_intrinsic_load_viewport_offset:
254 case nir_intrinsic_load_num_work_groups:
255 case nir_intrinsic_load_sampler_lod_parameters_pan:
256 bi_emit_sysval(ctx, &instr->instr, 3, 0);
257 break;
258
259 default:
260 /* todo */
261 break;
262 }
263 }
264
265 static void
266 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
267 {
268 /* Make sure we've been lowered */
269 assert(instr->def.num_components == 1);
270
271 bi_instruction move = {
272 .type = BI_MOV,
273 .dest = bir_ssa_index(&instr->def),
274 .dest_type = instr->def.bit_size | nir_type_uint,
275 .writemask = (1 << (instr->def.bit_size / 8)) - 1,
276 .src = {
277 BIR_INDEX_CONSTANT
278 },
279 .constant = {
280 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
281 }
282 };
283
284 bi_emit(ctx, move);
285 }
286
287 static enum bi_class
288 bi_class_for_nir_alu(nir_op op)
289 {
290 switch (op) {
291 case nir_op_iadd:
292 case nir_op_fadd:
293 case nir_op_fsub:
294 return BI_ADD;
295 case nir_op_isub:
296 return BI_ISUB;
297
298 case nir_op_flt:
299 case nir_op_fge:
300 case nir_op_feq:
301 case nir_op_fne:
302 case nir_op_ilt:
303 case nir_op_ige:
304 case nir_op_ieq:
305 case nir_op_ine:
306 return BI_CMP;
307
308 case nir_op_bcsel:
309 return BI_CSEL;
310
311 case nir_op_i2i8:
312 case nir_op_i2i16:
313 case nir_op_i2i32:
314 case nir_op_i2i64:
315 case nir_op_u2u8:
316 case nir_op_u2u16:
317 case nir_op_u2u32:
318 case nir_op_u2u64:
319 case nir_op_f2i16:
320 case nir_op_f2i32:
321 case nir_op_f2i64:
322 case nir_op_f2u16:
323 case nir_op_f2u32:
324 case nir_op_f2u64:
325 case nir_op_i2f16:
326 case nir_op_i2f32:
327 case nir_op_i2f64:
328 case nir_op_u2f16:
329 case nir_op_u2f32:
330 case nir_op_u2f64:
331 return BI_CONVERT;
332
333 case nir_op_ffma:
334 case nir_op_fmul:
335 return BI_FMA;
336
337 case nir_op_imin:
338 case nir_op_imax:
339 case nir_op_umin:
340 case nir_op_umax:
341 case nir_op_fmin:
342 case nir_op_fmax:
343 return BI_MINMAX;
344
345 case nir_op_fsat:
346 case nir_op_fneg:
347 case nir_op_fabs:
348 case nir_op_mov:
349 return BI_MOV;
350
351 case nir_op_frcp:
352 case nir_op_frsq:
353 case nir_op_fsin:
354 case nir_op_fcos:
355 return BI_SPECIAL;
356
357 default:
358 unreachable("Unknown ALU op");
359 }
360 }
361
362 static enum bi_cond
363 bi_cond_for_nir(nir_op op)
364 {
365 switch (op) {
366 case nir_op_flt:
367 case nir_op_ilt:
368 return BI_COND_LT;
369 case nir_op_fge:
370 case nir_op_ige:
371 return BI_COND_GE;
372 case nir_op_feq:
373 case nir_op_ieq:
374 return BI_COND_EQ;
375 case nir_op_fne:
376 case nir_op_ine:
377 return BI_COND_NE;
378 default:
379 unreachable("Invalid compare");
380 }
381 }
382
383 static void
384 emit_alu(bi_context *ctx, nir_alu_instr *instr)
385 {
386 /* Assume it's something we can handle normally */
387 bi_instruction alu = {
388 .type = bi_class_for_nir_alu(instr->op),
389 .dest = bir_dest_index(&instr->dest.dest),
390 .dest_type = nir_op_infos[instr->op].output_type
391 | nir_dest_bit_size(instr->dest.dest),
392 };
393
394 /* TODO: Implement lowering of special functions for older Bifrost */
395 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
396
397 if (instr->dest.dest.is_ssa) {
398 /* Construct a writemask */
399 unsigned bits_per_comp = instr->dest.dest.ssa.bit_size;
400 unsigned comps = instr->dest.dest.ssa.num_components;
401 assert(comps == 1);
402 unsigned bits = bits_per_comp * comps;
403 unsigned bytes = MAX2(bits / 8, 1);
404 alu.writemask = (1 << bytes) - 1;
405 } else {
406 unsigned comp_mask = instr->dest.write_mask;
407
408 alu.writemask = pan_to_bytemask(nir_dest_bit_size(instr->dest.dest),
409 comp_mask);
410 }
411
412 /* We inline constants as we go. This tracks how many constants have
413 * been inlined, since we're limited to 64-bits of constants per
414 * instruction */
415
416 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
417 unsigned constants_left = (64 / dest_bits);
418 unsigned constant_shift = 0;
419
420 /* Copy sources */
421
422 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
423 assert(num_inputs <= ARRAY_SIZE(alu.src));
424
425 for (unsigned i = 0; i < num_inputs; ++i) {
426 unsigned bits = nir_src_bit_size(instr->src[i].src);
427 alu.src_types[i] = nir_op_infos[instr->op].input_types[i]
428 | bits;
429
430 /* Try to inline a constant */
431 if (nir_src_is_const(instr->src[i].src) && constants_left && (dest_bits == bits)) {
432 alu.constant.u64 |=
433 (nir_src_as_uint(instr->src[i].src)) << constant_shift;
434
435 alu.src[i] = BIR_INDEX_CONSTANT | constant_shift;
436 --constants_left;
437 constant_shift += dest_bits;
438 continue;
439 }
440
441 alu.src[i] = bir_src_index(&instr->src[i].src);
442
443 /* We assert scalarization above */
444 alu.swizzle[i][0] = instr->src[i].swizzle[0];
445 }
446
447 /* Op-specific fixup */
448 switch (instr->op) {
449 case nir_op_fmul:
450 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
451 break;
452 case nir_op_fsat:
453 alu.outmod = BIFROST_SAT; /* MOV */
454 break;
455 case nir_op_fneg:
456 alu.src_neg[0] = true; /* MOV */
457 break;
458 case nir_op_fabs:
459 alu.src_abs[0] = true; /* MOV */
460 break;
461 case nir_op_fsub:
462 alu.src_neg[1] = true; /* ADD */
463 break;
464 case nir_op_fmax:
465 case nir_op_imax:
466 case nir_op_umax:
467 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
468 break;
469 case nir_op_frcp:
470 alu.op.special = BI_SPECIAL_FRCP;
471 break;
472 case nir_op_frsq:
473 alu.op.special = BI_SPECIAL_FRSQ;
474 break;
475 case nir_op_fsin:
476 alu.op.special = BI_SPECIAL_FSIN;
477 break;
478 case nir_op_fcos:
479 alu.op.special = BI_SPECIAL_FCOS;
480 break;
481 case nir_op_flt:
482 case nir_op_ilt:
483 case nir_op_fge:
484 case nir_op_ige:
485 case nir_op_feq:
486 case nir_op_ieq:
487 case nir_op_fne:
488 case nir_op_ine:
489 alu.op.compare = bi_cond_for_nir(instr->op);
490 break;
491 default:
492 break;
493 }
494
495 bi_emit(ctx, alu);
496 }
497
498 static void
499 emit_instr(bi_context *ctx, struct nir_instr *instr)
500 {
501 switch (instr->type) {
502 case nir_instr_type_load_const:
503 emit_load_const(ctx, nir_instr_as_load_const(instr));
504 break;
505
506 case nir_instr_type_intrinsic:
507 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
508 break;
509
510 case nir_instr_type_alu:
511 emit_alu(ctx, nir_instr_as_alu(instr));
512 break;
513
514 #if 0
515 case nir_instr_type_tex:
516 emit_tex(ctx, nir_instr_as_tex(instr));
517 break;
518 #endif
519
520 case nir_instr_type_jump:
521 emit_jump(ctx, nir_instr_as_jump(instr));
522 break;
523
524 case nir_instr_type_ssa_undef:
525 /* Spurious */
526 break;
527
528 default:
529 //unreachable("Unhandled instruction type");
530 break;
531 }
532 }
533
534
535
536 static bi_block *
537 create_empty_block(bi_context *ctx)
538 {
539 bi_block *blk = rzalloc(ctx, bi_block);
540
541 blk->base.predecessors = _mesa_set_create(blk,
542 _mesa_hash_pointer,
543 _mesa_key_pointer_equal);
544
545 blk->base.name = ctx->block_name_count++;
546
547 return blk;
548 }
549
550 static void
551 bi_schedule_barrier(bi_context *ctx)
552 {
553 bi_block *temp = ctx->after_block;
554 ctx->after_block = create_empty_block(ctx);
555 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
556 list_inithead(&ctx->after_block->base.instructions);
557 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
558 ctx->current_block = ctx->after_block;
559 ctx->after_block = temp;
560 }
561
562 static bi_block *
563 emit_block(bi_context *ctx, nir_block *block)
564 {
565 if (ctx->after_block) {
566 ctx->current_block = ctx->after_block;
567 ctx->after_block = NULL;
568 } else {
569 ctx->current_block = create_empty_block(ctx);
570 }
571
572 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
573 list_inithead(&ctx->current_block->base.instructions);
574
575 nir_foreach_instr(instr, block) {
576 emit_instr(ctx, instr);
577 ++ctx->instruction_count;
578 }
579
580 return ctx->current_block;
581 }
582
583 /* Emits an unconditional branch to the end of the current block, returning a
584 * pointer so the user can fill in details */
585
586 static bi_instruction *
587 bi_emit_branch(bi_context *ctx)
588 {
589 bi_instruction branch = {
590 .type = BI_BRANCH,
591 .branch = {
592 .cond = BI_COND_ALWAYS
593 }
594 };
595
596 return bi_emit(ctx, branch);
597 }
598
599 /* Sets a condition for a branch by examing the NIR condition. If we're
600 * familiar with the condition, we unwrap it to fold it into the branch
601 * instruction. Otherwise, we consume the condition directly. We
602 * generally use 1-bit booleans which allows us to use small types for
603 * the conditions.
604 */
605
606 static void
607 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
608 {
609 /* TODO: Try to unwrap instead of always bailing */
610 branch->src[0] = bir_src_index(cond);
611 branch->src[1] = BIR_INDEX_ZERO;
612 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
613 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
614 }
615
616 static void
617 emit_if(bi_context *ctx, nir_if *nif)
618 {
619 bi_block *before_block = ctx->current_block;
620
621 /* Speculatively emit the branch, but we can't fill it in until later */
622 bi_instruction *then_branch = bi_emit_branch(ctx);
623 bi_set_branch_cond(then_branch, &nif->condition, true);
624
625 /* Emit the two subblocks. */
626 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
627 bi_block *end_then_block = ctx->current_block;
628
629 /* Emit a jump from the end of the then block to the end of the else */
630 bi_instruction *then_exit = bi_emit_branch(ctx);
631
632 /* Emit second block, and check if it's empty */
633
634 int count_in = ctx->instruction_count;
635 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
636 bi_block *end_else_block = ctx->current_block;
637 ctx->after_block = create_empty_block(ctx);
638
639 /* Now that we have the subblocks emitted, fix up the branches */
640
641 assert(then_block);
642 assert(else_block);
643
644 if (ctx->instruction_count == count_in) {
645 /* The else block is empty, so don't emit an exit jump */
646 bi_remove_instruction(then_exit);
647 then_branch->branch.target = ctx->after_block;
648 } else {
649 then_branch->branch.target = else_block;
650 then_exit->branch.target = ctx->after_block;
651 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
652 }
653
654 /* Wire up the successors */
655
656 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
657
658 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
659 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
660 }
661
662 static void
663 emit_loop(bi_context *ctx, nir_loop *nloop)
664 {
665 /* Remember where we are */
666 bi_block *start_block = ctx->current_block;
667
668 bi_block *saved_break = ctx->break_block;
669 bi_block *saved_continue = ctx->continue_block;
670
671 ctx->continue_block = create_empty_block(ctx);
672 ctx->break_block = create_empty_block(ctx);
673 ctx->after_block = ctx->continue_block;
674
675 /* Emit the body itself */
676 emit_cf_list(ctx, &nloop->body);
677
678 /* Branch back to loop back */
679 bi_instruction *br_back = bi_emit_branch(ctx);
680 br_back->branch.target = ctx->continue_block;
681 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
682 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
683
684 ctx->after_block = ctx->break_block;
685
686 /* Pop off */
687 ctx->break_block = saved_break;
688 ctx->continue_block = saved_continue;
689 ++ctx->loop_count;
690 }
691
692 static bi_block *
693 emit_cf_list(bi_context *ctx, struct exec_list *list)
694 {
695 bi_block *start_block = NULL;
696
697 foreach_list_typed(nir_cf_node, node, node, list) {
698 switch (node->type) {
699 case nir_cf_node_block: {
700 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
701
702 if (!start_block)
703 start_block = block;
704
705 break;
706 }
707
708 case nir_cf_node_if:
709 emit_if(ctx, nir_cf_node_as_if(node));
710 break;
711
712 case nir_cf_node_loop:
713 emit_loop(ctx, nir_cf_node_as_loop(node));
714 break;
715
716 default:
717 unreachable("Unknown control flow");
718 }
719 }
720
721 return start_block;
722 }
723
724 static int
725 glsl_type_size(const struct glsl_type *type, bool bindless)
726 {
727 return glsl_count_attribute_slots(type, false);
728 }
729
730 static void
731 bi_optimize_nir(nir_shader *nir)
732 {
733 bool progress;
734 unsigned lower_flrp = 16 | 32 | 64;
735
736 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
737 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
738
739 nir_lower_tex_options lower_tex_options = {
740 .lower_txs_lod = true,
741 .lower_txp = ~0,
742 .lower_tex_without_implicit_lod = true,
743 .lower_txd = true,
744 };
745
746 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
747 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
748 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
749
750 do {
751 progress = false;
752
753 NIR_PASS(progress, nir, nir_lower_var_copies);
754 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
755
756 NIR_PASS(progress, nir, nir_copy_prop);
757 NIR_PASS(progress, nir, nir_opt_remove_phis);
758 NIR_PASS(progress, nir, nir_opt_dce);
759 NIR_PASS(progress, nir, nir_opt_dead_cf);
760 NIR_PASS(progress, nir, nir_opt_cse);
761 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
762 NIR_PASS(progress, nir, nir_opt_algebraic);
763 NIR_PASS(progress, nir, nir_opt_constant_folding);
764
765 if (lower_flrp != 0) {
766 bool lower_flrp_progress = false;
767 NIR_PASS(lower_flrp_progress,
768 nir,
769 nir_lower_flrp,
770 lower_flrp,
771 false /* always_precise */,
772 nir->options->lower_ffma);
773 if (lower_flrp_progress) {
774 NIR_PASS(progress, nir,
775 nir_opt_constant_folding);
776 progress = true;
777 }
778
779 /* Nothing should rematerialize any flrps, so we only
780 * need to do this lowering once.
781 */
782 lower_flrp = 0;
783 }
784
785 NIR_PASS(progress, nir, nir_opt_undef);
786 NIR_PASS(progress, nir, nir_opt_loop_unroll,
787 nir_var_shader_in |
788 nir_var_shader_out |
789 nir_var_function_temp);
790 } while (progress);
791
792 NIR_PASS(progress, nir, nir_opt_algebraic_late);
793 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
794 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
795 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
796
797 /* Take us out of SSA */
798 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
799 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
800
801 /* We're a primary scalar architecture but there's enough vector that
802 * we use a vector IR so let's not also deal with scalar hacks on top
803 * of the vector hacks */
804
805 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
806 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
807 NIR_PASS(progress, nir, nir_opt_dce);
808 }
809
810 void
811 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
812 {
813 bi_context *ctx = rzalloc(NULL, bi_context);
814 ctx->nir = nir;
815 ctx->stage = nir->info.stage;
816 ctx->quirks = bifrost_get_quirks(product_id);
817 list_inithead(&ctx->blocks);
818
819 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
820 * (so we don't accidentally duplicate the epilogue since mesa/st has
821 * messed with our I/O quite a bit already) */
822
823 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
824
825 if (ctx->stage == MESA_SHADER_VERTEX) {
826 NIR_PASS_V(nir, nir_lower_viewport_transform);
827 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
828 }
829
830 NIR_PASS_V(nir, nir_split_var_copies);
831 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
832 NIR_PASS_V(nir, nir_lower_var_copies);
833 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
834 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
835 NIR_PASS_V(nir, nir_lower_ssbo);
836
837 bi_optimize_nir(nir);
838 nir_print_shader(nir, stdout);
839
840 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
841 program->sysval_count = ctx->sysvals.sysval_count;
842 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
843
844 nir_foreach_function(func, nir) {
845 if (!func->impl)
846 continue;
847
848 ctx->impl = func->impl;
849 emit_cf_list(ctx, &func->impl->body);
850 break; /* TODO: Multi-function shaders */
851 }
852
853 bool progress = false;
854
855 do {
856 progress = false;
857
858 bi_foreach_block(ctx, _block) {
859 bi_block *block = (bi_block *) _block;
860 progress |= bi_opt_dead_code_eliminate(ctx, block);
861 }
862 } while(progress);
863
864 bi_print_shader(ctx, stdout);
865 bi_schedule(ctx);
866
867 ralloc_free(ctx);
868 }