pan/bi: Handle iand/ior/ixor in NIR->BIR
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "compiler/nir/nir_builder.h"
31
32 #include "disassemble.h"
33 #include "bifrost_compile.h"
34 #include "bifrost_nir.h"
35 #include "compiler.h"
36 #include "bi_quirks.h"
37 #include "bi_print.h"
38
39 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
40 static bi_instruction *bi_emit_branch(bi_context *ctx);
41 static void bi_schedule_barrier(bi_context *ctx);
42
43 static void
44 emit_jump(bi_context *ctx, nir_jump_instr *instr)
45 {
46 bi_instruction *branch = bi_emit_branch(ctx);
47
48 switch (instr->type) {
49 case nir_jump_break:
50 branch->branch.target = ctx->break_block;
51 break;
52 case nir_jump_continue:
53 branch->branch.target = ctx->continue_block;
54 break;
55 default:
56 unreachable("Unhandled jump type");
57 }
58
59 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
60 }
61
62 static bi_instruction
63 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
64 {
65 bi_instruction load = {
66 .type = T,
67 .vector_channels = instr->num_components,
68 .src = { BIR_INDEX_CONSTANT },
69 .src_types = { nir_type_uint32 },
70 .constant = { .u64 = nir_intrinsic_base(instr) },
71 };
72
73 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
74
75 if (info->has_dest)
76 load.dest = bir_dest_index(&instr->dest);
77
78 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
79 load.dest_type = nir_intrinsic_type(instr);
80
81 nir_src *offset = nir_get_io_offset_src(instr);
82
83 if (nir_src_is_const(*offset))
84 load.constant.u64 += nir_src_as_uint(*offset);
85 else
86 load.src[0] = bir_src_index(offset);
87
88 return load;
89 }
90
91 static void
92 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
93 {
94 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
95 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
96 ins.load_vary.reuse = false; /* TODO */
97 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
98 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
99
100 if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
101 /* Zero it out for direct */
102 ins.src[1] = BIR_INDEX_ZERO;
103 } else {
104 /* R61 contains sample mask stuff, TODO RA XXX */
105 ins.src[1] = BIR_INDEX_REGISTER | 61;
106 }
107
108 bi_emit(ctx, ins);
109 }
110
111 static void
112 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
113 {
114 if (!ctx->emitted_atest) {
115 bi_instruction ins = {
116 .type = BI_ATEST,
117 .src = {
118 BIR_INDEX_REGISTER | 60 /* TODO: RA */,
119 bir_src_index(&instr->src[0])
120 },
121 .src_types = {
122 nir_type_uint32,
123 nir_intrinsic_type(instr)
124 },
125 .swizzle = {
126 { 0 },
127 { 3, 0 } /* swizzle out the alpha */
128 },
129 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
130 .dest_type = nir_type_uint32,
131 };
132
133 bi_emit(ctx, ins);
134 bi_schedule_barrier(ctx);
135 ctx->emitted_atest = true;
136 }
137
138 bi_instruction blend = {
139 .type = BI_BLEND,
140 .blend_location = nir_intrinsic_base(instr),
141 .src = {
142 bir_src_index(&instr->src[0]),
143 BIR_INDEX_REGISTER | 60 /* Can this be arbitrary? */,
144 },
145 .src_types = {
146 nir_intrinsic_type(instr),
147 nir_type_uint32
148 },
149 .swizzle = {
150 { 0, 1, 2, 3 },
151 { 0 }
152 },
153 .dest = BIR_INDEX_REGISTER | 48 /* Looks like magic */,
154 .dest_type = nir_type_uint32,
155 .vector_channels = 4
156 };
157
158 assert(blend.blend_location < 8);
159 assert(ctx->blend_types);
160 ctx->blend_types[blend.blend_location] = blend.src_types[0];
161
162 bi_emit(ctx, blend);
163 bi_schedule_barrier(ctx);
164 }
165
166 static bi_instruction
167 bi_load_with_r61(enum bi_class T, nir_intrinsic_instr *instr)
168 {
169 bi_instruction ld = bi_load(T, instr);
170 ld.src[1] = BIR_INDEX_REGISTER | 61; /* TODO: RA */
171 ld.src[2] = BIR_INDEX_REGISTER | 62;
172 ld.src[3] = 0;
173 ld.src_types[1] = nir_type_uint32;
174 ld.src_types[2] = nir_type_uint32;
175 ld.src_types[3] = nir_intrinsic_type(instr);
176 return ld;
177 }
178
179 static void
180 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
181 {
182 bi_instruction address = bi_load_with_r61(BI_LOAD_VAR_ADDRESS, instr);
183 address.dest = bi_make_temp(ctx);
184 address.dest_type = nir_type_uint32;
185 address.vector_channels = 3;
186
187 unsigned nr = nir_intrinsic_src_components(instr, 0);
188 assert(nir_intrinsic_write_mask(instr) == ((1 << nr) - 1));
189
190 bi_instruction st = {
191 .type = BI_STORE_VAR,
192 .src = {
193 bir_src_index(&instr->src[0]),
194 address.dest, address.dest, address.dest,
195 },
196 .src_types = {
197 nir_type_uint32,
198 nir_type_uint32, nir_type_uint32, nir_type_uint32,
199 },
200 .swizzle = {
201 { 0 },
202 { 0 }, { 1 }, { 2}
203 },
204 .vector_channels = nr,
205 };
206
207 for (unsigned i = 0; i < nr; ++i)
208 st.swizzle[0][i] = i;
209
210 bi_emit(ctx, address);
211 bi_emit(ctx, st);
212 }
213
214 static void
215 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
216 {
217 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
218 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
219
220 /* TODO: Indirect access, since we need to multiply by the element
221 * size. I believe we can get this lowering automatically via
222 * nir_lower_io (as mul instructions) with the proper options, but this
223 * is TODO */
224 assert(ld.src[0] & BIR_INDEX_CONSTANT);
225 ld.constant.u64 += ctx->sysvals.sysval_count;
226 ld.constant.u64 *= 16;
227
228 bi_emit(ctx, ld);
229 }
230
231 static void
232 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
233 unsigned nr_components, unsigned offset)
234 {
235 nir_dest nir_dest;
236
237 /* Figure out which uniform this is */
238 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
239 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
240
241 /* Sysvals are prefix uniforms */
242 unsigned uniform = ((uintptr_t) val) - 1;
243
244 /* Emit the read itself -- this is never indirect */
245
246 bi_instruction load = {
247 .type = BI_LOAD_UNIFORM,
248 .vector_channels = nr_components,
249 .src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
250 .src_types = { nir_type_uint32, nir_type_uint32 },
251 .constant = { (uniform * 16) + offset },
252 .dest = bir_dest_index(&nir_dest),
253 .dest_type = nir_type_uint32, /* TODO */
254 };
255
256 bi_emit(ctx, load);
257 }
258
259 static void
260 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
261 {
262
263 switch (instr->intrinsic) {
264 case nir_intrinsic_load_barycentric_pixel:
265 /* stub */
266 break;
267 case nir_intrinsic_load_interpolated_input:
268 case nir_intrinsic_load_input:
269 if (ctx->stage == MESA_SHADER_FRAGMENT)
270 bi_emit_ld_vary(ctx, instr);
271 else if (ctx->stage == MESA_SHADER_VERTEX)
272 bi_emit(ctx, bi_load_with_r61(BI_LOAD_ATTR, instr));
273 else {
274 unreachable("Unsupported shader stage");
275 }
276 break;
277
278 case nir_intrinsic_store_output:
279 if (ctx->stage == MESA_SHADER_FRAGMENT)
280 bi_emit_frag_out(ctx, instr);
281 else if (ctx->stage == MESA_SHADER_VERTEX)
282 bi_emit_st_vary(ctx, instr);
283 else
284 unreachable("Unsupported shader stage");
285 break;
286
287 case nir_intrinsic_load_uniform:
288 bi_emit_ld_uniform(ctx, instr);
289 break;
290
291 case nir_intrinsic_load_ssbo_address:
292 bi_emit_sysval(ctx, &instr->instr, 1, 0);
293 break;
294
295 case nir_intrinsic_get_buffer_size:
296 bi_emit_sysval(ctx, &instr->instr, 1, 8);
297 break;
298
299 case nir_intrinsic_load_viewport_scale:
300 case nir_intrinsic_load_viewport_offset:
301 case nir_intrinsic_load_num_work_groups:
302 case nir_intrinsic_load_sampler_lod_parameters_pan:
303 bi_emit_sysval(ctx, &instr->instr, 3, 0);
304 break;
305
306 default:
307 /* todo */
308 break;
309 }
310 }
311
312 static void
313 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
314 {
315 /* Make sure we've been lowered */
316 assert(instr->def.num_components == 1);
317
318 bi_instruction move = {
319 .type = BI_MOV,
320 .dest = bir_ssa_index(&instr->def),
321 .dest_type = instr->def.bit_size | nir_type_uint,
322 .src = {
323 BIR_INDEX_CONSTANT
324 },
325 .src_types = {
326 instr->def.bit_size | nir_type_uint,
327 },
328 .constant = {
329 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
330 }
331 };
332
333 bi_emit(ctx, move);
334 }
335
336 #define BI_CASE_CMP(op) \
337 case op##8: \
338 case op##16: \
339 case op##32: \
340
341 static enum bi_class
342 bi_class_for_nir_alu(nir_op op)
343 {
344 switch (op) {
345 case nir_op_iadd:
346 case nir_op_fadd:
347 case nir_op_fsub:
348 return BI_ADD;
349 case nir_op_isub:
350 return BI_ISUB;
351
352 case nir_op_iand:
353 case nir_op_ior:
354 case nir_op_ixor:
355 return BI_BITWISE;
356
357 BI_CASE_CMP(nir_op_flt)
358 BI_CASE_CMP(nir_op_fge)
359 BI_CASE_CMP(nir_op_feq)
360 BI_CASE_CMP(nir_op_fne)
361 BI_CASE_CMP(nir_op_ilt)
362 BI_CASE_CMP(nir_op_ige)
363 BI_CASE_CMP(nir_op_ieq)
364 BI_CASE_CMP(nir_op_ine)
365 return BI_CMP;
366
367 case nir_op_b8csel:
368 case nir_op_b16csel:
369 case nir_op_b32csel:
370 return BI_CSEL;
371
372 case nir_op_i2i8:
373 case nir_op_i2i16:
374 case nir_op_i2i32:
375 case nir_op_i2i64:
376 case nir_op_u2u8:
377 case nir_op_u2u16:
378 case nir_op_u2u32:
379 case nir_op_u2u64:
380 case nir_op_f2i16:
381 case nir_op_f2i32:
382 case nir_op_f2i64:
383 case nir_op_f2u16:
384 case nir_op_f2u32:
385 case nir_op_f2u64:
386 case nir_op_i2f16:
387 case nir_op_i2f32:
388 case nir_op_i2f64:
389 case nir_op_u2f16:
390 case nir_op_u2f32:
391 case nir_op_u2f64:
392 case nir_op_f2f16:
393 case nir_op_f2f32:
394 case nir_op_f2f64:
395 case nir_op_f2fmp:
396 return BI_CONVERT;
397
398 case nir_op_vec2:
399 case nir_op_vec3:
400 case nir_op_vec4:
401 return BI_COMBINE;
402
403 case nir_op_vec8:
404 case nir_op_vec16:
405 unreachable("should've been lowered");
406
407 case nir_op_ffma:
408 case nir_op_fmul:
409 return BI_FMA;
410
411 case nir_op_imin:
412 case nir_op_imax:
413 case nir_op_umin:
414 case nir_op_umax:
415 case nir_op_fmin:
416 case nir_op_fmax:
417 return BI_MINMAX;
418
419 case nir_op_fsat:
420 case nir_op_fneg:
421 case nir_op_fabs:
422 return BI_FMOV;
423 case nir_op_mov:
424 return BI_MOV;
425
426 case nir_op_fround_even:
427 case nir_op_fceil:
428 case nir_op_ffloor:
429 case nir_op_ftrunc:
430 return BI_ROUND;
431
432 case nir_op_frcp:
433 case nir_op_frsq:
434 return BI_SPECIAL;
435
436 default:
437 unreachable("Unknown ALU op");
438 }
439 }
440
441 /* Gets a bi_cond for a given NIR comparison opcode. In soft mode, it will
442 * return BI_COND_ALWAYS as a sentinel if it fails to do so (when used for
443 * optimizations). Otherwise it will bail (when used for primary code
444 * generation). */
445
446 static enum bi_cond
447 bi_cond_for_nir(nir_op op, bool soft)
448 {
449 switch (op) {
450 BI_CASE_CMP(nir_op_flt)
451 BI_CASE_CMP(nir_op_ilt)
452 return BI_COND_LT;
453
454 BI_CASE_CMP(nir_op_fge)
455 BI_CASE_CMP(nir_op_ige)
456 return BI_COND_GE;
457
458 BI_CASE_CMP(nir_op_feq)
459 BI_CASE_CMP(nir_op_ieq)
460 return BI_COND_EQ;
461
462 BI_CASE_CMP(nir_op_fne)
463 BI_CASE_CMP(nir_op_ine)
464 return BI_COND_NE;
465 default:
466 if (soft)
467 return BI_COND_ALWAYS;
468 else
469 unreachable("Invalid compare");
470 }
471 }
472
473 static void
474 bi_copy_src(bi_instruction *alu, nir_alu_instr *instr, unsigned i, unsigned to,
475 unsigned *constants_left, unsigned *constant_shift, unsigned comps)
476 {
477 unsigned bits = nir_src_bit_size(instr->src[i].src);
478 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
479
480 alu->src_types[to] = nir_op_infos[instr->op].input_types[i]
481 | bits;
482
483 /* Try to inline a constant */
484 if (nir_src_is_const(instr->src[i].src) && *constants_left && (dest_bits == bits)) {
485 uint64_t mask = (1ull << dest_bits) - 1;
486 uint64_t cons = nir_src_as_uint(instr->src[i].src);
487
488 /* Try to reuse a constant */
489 for (unsigned i = 0; i < (*constant_shift); i += dest_bits) {
490 if (((alu->constant.u64 >> i) & mask) == cons) {
491 alu->src[to] = BIR_INDEX_CONSTANT | i;
492 return;
493 }
494 }
495
496 alu->constant.u64 |= cons << *constant_shift;
497 alu->src[to] = BIR_INDEX_CONSTANT | (*constant_shift);
498 --(*constants_left);
499 (*constant_shift) += MAX2(dest_bits, 32); /* lo/hi */
500 return;
501 }
502
503 alu->src[to] = bir_src_index(&instr->src[i].src);
504
505 /* Copy swizzle for all vectored components, replicating last component
506 * to fill undersized */
507
508 unsigned vec = alu->type == BI_COMBINE ? 1 :
509 MAX2(1, 32 / dest_bits);
510
511 for (unsigned j = 0; j < vec; ++j)
512 alu->swizzle[to][j] = instr->src[i].swizzle[MIN2(j, comps - 1)];
513 }
514
515 static void
516 bi_fuse_csel_cond(bi_instruction *csel, nir_alu_src cond,
517 unsigned *constants_left, unsigned *constant_shift, unsigned comps)
518 {
519 /* Bail for vector weirdness */
520 if (cond.swizzle[0] != 0)
521 return;
522
523 if (!cond.src.is_ssa)
524 return;
525
526 nir_ssa_def *def = cond.src.ssa;
527 nir_instr *parent = def->parent_instr;
528
529 if (parent->type != nir_instr_type_alu)
530 return;
531
532 nir_alu_instr *alu = nir_instr_as_alu(parent);
533
534 /* Try to match a condition */
535 enum bi_cond bcond = bi_cond_for_nir(alu->op, true);
536
537 if (bcond == BI_COND_ALWAYS)
538 return;
539
540 /* We found one, let's fuse it in */
541 csel->cond = bcond;
542 bi_copy_src(csel, alu, 0, 0, constants_left, constant_shift, comps);
543 bi_copy_src(csel, alu, 1, 1, constants_left, constant_shift, comps);
544 }
545
546 static void
547 emit_alu(bi_context *ctx, nir_alu_instr *instr)
548 {
549 /* Try some special functions */
550 switch (instr->op) {
551 case nir_op_fexp2:
552 bi_emit_fexp2(ctx, instr);
553 return;
554 case nir_op_flog2:
555 bi_emit_flog2(ctx, instr);
556 return;
557 default:
558 break;
559 }
560
561 /* Otherwise, assume it's something we can handle normally */
562 bi_instruction alu = {
563 .type = bi_class_for_nir_alu(instr->op),
564 .dest = bir_dest_index(&instr->dest.dest),
565 .dest_type = nir_op_infos[instr->op].output_type
566 | nir_dest_bit_size(instr->dest.dest),
567 };
568
569 /* TODO: Implement lowering of special functions for older Bifrost */
570 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
571
572 unsigned comps = nir_dest_num_components(instr->dest.dest);
573
574 if (alu.type != BI_COMBINE)
575 assert(comps <= MAX2(1, 32 / comps));
576
577 if (!instr->dest.dest.is_ssa) {
578 for (unsigned i = 0; i < comps; ++i)
579 assert(instr->dest.write_mask);
580 }
581
582 /* We inline constants as we go. This tracks how many constants have
583 * been inlined, since we're limited to 64-bits of constants per
584 * instruction */
585
586 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
587 unsigned constants_left = (64 / dest_bits);
588 unsigned constant_shift = 0;
589
590 if (alu.type == BI_COMBINE)
591 constants_left = 0;
592
593 /* Copy sources */
594
595 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
596 assert(num_inputs <= ARRAY_SIZE(alu.src));
597
598 for (unsigned i = 0; i < num_inputs; ++i) {
599 unsigned f = 0;
600
601 if (i && alu.type == BI_CSEL)
602 f++;
603
604 bi_copy_src(&alu, instr, i, i + f, &constants_left, &constant_shift, comps);
605 }
606
607 /* Op-specific fixup */
608 switch (instr->op) {
609 case nir_op_fmul:
610 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
611 alu.src_types[2] = alu.src_types[1];
612 break;
613 case nir_op_fsat:
614 alu.outmod = BIFROST_SAT; /* FMOV */
615 break;
616 case nir_op_fneg:
617 alu.src_neg[0] = true; /* FMOV */
618 break;
619 case nir_op_fabs:
620 alu.src_abs[0] = true; /* FMOV */
621 break;
622 case nir_op_fsub:
623 alu.src_neg[1] = true; /* FADD */
624 break;
625 case nir_op_fmax:
626 case nir_op_imax:
627 case nir_op_umax:
628 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
629 break;
630 case nir_op_frcp:
631 alu.op.special = BI_SPECIAL_FRCP;
632 break;
633 case nir_op_frsq:
634 alu.op.special = BI_SPECIAL_FRSQ;
635 break;
636 BI_CASE_CMP(nir_op_flt)
637 BI_CASE_CMP(nir_op_ilt)
638 BI_CASE_CMP(nir_op_fge)
639 BI_CASE_CMP(nir_op_ige)
640 BI_CASE_CMP(nir_op_feq)
641 BI_CASE_CMP(nir_op_ieq)
642 BI_CASE_CMP(nir_op_fne)
643 BI_CASE_CMP(nir_op_ine)
644 alu.cond = bi_cond_for_nir(instr->op, false);
645 break;
646 case nir_op_fround_even:
647 alu.roundmode = BIFROST_RTE;
648 break;
649 case nir_op_fceil:
650 alu.roundmode = BIFROST_RTP;
651 break;
652 case nir_op_ffloor:
653 alu.roundmode = BIFROST_RTN;
654 break;
655 case nir_op_ftrunc:
656 alu.roundmode = BIFROST_RTZ;
657 break;
658 case nir_op_iand:
659 alu.op.bitwise = BI_BITWISE_AND;
660 break;
661 case nir_op_ior:
662 alu.op.bitwise = BI_BITWISE_OR;
663 break;
664 case nir_op_ixor:
665 alu.op.bitwise = BI_BITWISE_XOR;
666 break;
667 default:
668 break;
669 }
670
671 if (alu.type == BI_CSEL) {
672 /* Default to csel3 */
673 alu.cond = BI_COND_NE;
674 alu.src[1] = BIR_INDEX_ZERO;
675 alu.src_types[1] = alu.src_types[0];
676
677 bi_fuse_csel_cond(&alu, instr->src[0],
678 &constants_left, &constant_shift, comps);
679 } else if (alu.type == BI_BITWISE) {
680 /* Implicit shift argument... at some point we should fold */
681 alu.src[2] = BIR_INDEX_ZERO;
682 alu.src_types[2] = alu.src_types[1];
683 }
684
685 bi_emit(ctx, alu);
686 }
687
688 /* TEX_COMPACT instructions assume normal 2D f32 operation but are more
689 * space-efficient and with simpler RA/scheduling requirements*/
690
691 static void
692 emit_tex_compact(bi_context *ctx, nir_tex_instr *instr)
693 {
694 /* TODO: Pipe through indices */
695 assert(instr->texture_index == 0);
696 assert(instr->sampler_index == 0);
697
698 bi_instruction tex = {
699 .type = BI_TEX,
700 .op = { .texture = BI_TEX_COMPACT },
701 .dest = bir_dest_index(&instr->dest),
702 .dest_type = instr->dest_type,
703 .src_types = { nir_type_float32, nir_type_float32 },
704 .vector_channels = 4
705 };
706
707 for (unsigned i = 0; i < instr->num_srcs; ++i) {
708 int index = bir_src_index(&instr->src[i].src);
709 assert (instr->src[i].src_type == nir_tex_src_coord);
710
711 tex.src[0] = index;
712 tex.src[1] = index;
713 tex.swizzle[0][0] = 0;
714 tex.swizzle[1][0] = 1;
715 }
716
717 bi_emit(ctx, tex);
718 }
719
720 static void
721 emit_tex_full(bi_context *ctx, nir_tex_instr *instr)
722 {
723 unreachable("stub");
724 }
725
726 static void
727 emit_tex(bi_context *ctx, nir_tex_instr *instr)
728 {
729 nir_alu_type base = nir_alu_type_get_base_type(instr->dest_type);
730 unsigned sz = nir_dest_bit_size(instr->dest);
731 instr->dest_type = base | sz;
732
733 bool is_normal = instr->op == nir_texop_tex;
734 bool is_2d = instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
735 instr->sampler_dim == GLSL_SAMPLER_DIM_EXTERNAL;
736 bool is_f = base == nir_type_float && (sz == 16 || sz == 32);
737
738 bool is_compact = is_normal && is_2d && is_f && !instr->is_shadow;
739
740 if (is_compact)
741 emit_tex_compact(ctx, instr);
742 else
743 emit_tex_full(ctx, instr);
744 }
745
746 static void
747 emit_instr(bi_context *ctx, struct nir_instr *instr)
748 {
749 switch (instr->type) {
750 case nir_instr_type_load_const:
751 emit_load_const(ctx, nir_instr_as_load_const(instr));
752 break;
753
754 case nir_instr_type_intrinsic:
755 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
756 break;
757
758 case nir_instr_type_alu:
759 emit_alu(ctx, nir_instr_as_alu(instr));
760 break;
761
762 case nir_instr_type_tex:
763 emit_tex(ctx, nir_instr_as_tex(instr));
764 break;
765
766 case nir_instr_type_jump:
767 emit_jump(ctx, nir_instr_as_jump(instr));
768 break;
769
770 case nir_instr_type_ssa_undef:
771 /* Spurious */
772 break;
773
774 default:
775 unreachable("Unhandled instruction type");
776 break;
777 }
778 }
779
780
781
782 static bi_block *
783 create_empty_block(bi_context *ctx)
784 {
785 bi_block *blk = rzalloc(ctx, bi_block);
786
787 blk->base.predecessors = _mesa_set_create(blk,
788 _mesa_hash_pointer,
789 _mesa_key_pointer_equal);
790
791 blk->base.name = ctx->block_name_count++;
792
793 return blk;
794 }
795
796 static void
797 bi_schedule_barrier(bi_context *ctx)
798 {
799 bi_block *temp = ctx->after_block;
800 ctx->after_block = create_empty_block(ctx);
801 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
802 list_inithead(&ctx->after_block->base.instructions);
803 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
804 ctx->current_block = ctx->after_block;
805 ctx->after_block = temp;
806 }
807
808 static bi_block *
809 emit_block(bi_context *ctx, nir_block *block)
810 {
811 if (ctx->after_block) {
812 ctx->current_block = ctx->after_block;
813 ctx->after_block = NULL;
814 } else {
815 ctx->current_block = create_empty_block(ctx);
816 }
817
818 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
819 list_inithead(&ctx->current_block->base.instructions);
820
821 nir_foreach_instr(instr, block) {
822 emit_instr(ctx, instr);
823 ++ctx->instruction_count;
824 }
825
826 return ctx->current_block;
827 }
828
829 /* Emits an unconditional branch to the end of the current block, returning a
830 * pointer so the user can fill in details */
831
832 static bi_instruction *
833 bi_emit_branch(bi_context *ctx)
834 {
835 bi_instruction branch = {
836 .type = BI_BRANCH,
837 .branch = {
838 .cond = BI_COND_ALWAYS
839 }
840 };
841
842 return bi_emit(ctx, branch);
843 }
844
845 /* Sets a condition for a branch by examing the NIR condition. If we're
846 * familiar with the condition, we unwrap it to fold it into the branch
847 * instruction. Otherwise, we consume the condition directly. We
848 * generally use 1-bit booleans which allows us to use small types for
849 * the conditions.
850 */
851
852 static void
853 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
854 {
855 /* TODO: Try to unwrap instead of always bailing */
856 branch->src[0] = bir_src_index(cond);
857 branch->src[1] = BIR_INDEX_ZERO;
858 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
859 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
860 }
861
862 static void
863 emit_if(bi_context *ctx, nir_if *nif)
864 {
865 bi_block *before_block = ctx->current_block;
866
867 /* Speculatively emit the branch, but we can't fill it in until later */
868 bi_instruction *then_branch = bi_emit_branch(ctx);
869 bi_set_branch_cond(then_branch, &nif->condition, true);
870
871 /* Emit the two subblocks. */
872 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
873 bi_block *end_then_block = ctx->current_block;
874
875 /* Emit a jump from the end of the then block to the end of the else */
876 bi_instruction *then_exit = bi_emit_branch(ctx);
877
878 /* Emit second block, and check if it's empty */
879
880 int count_in = ctx->instruction_count;
881 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
882 bi_block *end_else_block = ctx->current_block;
883 ctx->after_block = create_empty_block(ctx);
884
885 /* Now that we have the subblocks emitted, fix up the branches */
886
887 assert(then_block);
888 assert(else_block);
889
890 if (ctx->instruction_count == count_in) {
891 /* The else block is empty, so don't emit an exit jump */
892 bi_remove_instruction(then_exit);
893 then_branch->branch.target = ctx->after_block;
894 } else {
895 then_branch->branch.target = else_block;
896 then_exit->branch.target = ctx->after_block;
897 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
898 }
899
900 /* Wire up the successors */
901
902 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
903
904 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
905 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
906 }
907
908 static void
909 emit_loop(bi_context *ctx, nir_loop *nloop)
910 {
911 /* Remember where we are */
912 bi_block *start_block = ctx->current_block;
913
914 bi_block *saved_break = ctx->break_block;
915 bi_block *saved_continue = ctx->continue_block;
916
917 ctx->continue_block = create_empty_block(ctx);
918 ctx->break_block = create_empty_block(ctx);
919 ctx->after_block = ctx->continue_block;
920
921 /* Emit the body itself */
922 emit_cf_list(ctx, &nloop->body);
923
924 /* Branch back to loop back */
925 bi_instruction *br_back = bi_emit_branch(ctx);
926 br_back->branch.target = ctx->continue_block;
927 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
928 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
929
930 ctx->after_block = ctx->break_block;
931
932 /* Pop off */
933 ctx->break_block = saved_break;
934 ctx->continue_block = saved_continue;
935 ++ctx->loop_count;
936 }
937
938 static bi_block *
939 emit_cf_list(bi_context *ctx, struct exec_list *list)
940 {
941 bi_block *start_block = NULL;
942
943 foreach_list_typed(nir_cf_node, node, node, list) {
944 switch (node->type) {
945 case nir_cf_node_block: {
946 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
947
948 if (!start_block)
949 start_block = block;
950
951 break;
952 }
953
954 case nir_cf_node_if:
955 emit_if(ctx, nir_cf_node_as_if(node));
956 break;
957
958 case nir_cf_node_loop:
959 emit_loop(ctx, nir_cf_node_as_loop(node));
960 break;
961
962 default:
963 unreachable("Unknown control flow");
964 }
965 }
966
967 return start_block;
968 }
969
970 static int
971 glsl_type_size(const struct glsl_type *type, bool bindless)
972 {
973 return glsl_count_attribute_slots(type, false);
974 }
975
976 static void
977 bi_optimize_nir(nir_shader *nir)
978 {
979 bool progress;
980 unsigned lower_flrp = 16 | 32 | 64;
981
982 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
983 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
984
985 nir_lower_tex_options lower_tex_options = {
986 .lower_txs_lod = true,
987 .lower_txp = ~0,
988 .lower_tex_without_implicit_lod = true,
989 .lower_txd = true,
990 };
991
992 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
993 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
994 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
995
996 do {
997 progress = false;
998
999 NIR_PASS(progress, nir, nir_lower_var_copies);
1000 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
1001
1002 NIR_PASS(progress, nir, nir_copy_prop);
1003 NIR_PASS(progress, nir, nir_opt_remove_phis);
1004 NIR_PASS(progress, nir, nir_opt_dce);
1005 NIR_PASS(progress, nir, nir_opt_dead_cf);
1006 NIR_PASS(progress, nir, nir_opt_cse);
1007 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
1008 NIR_PASS(progress, nir, nir_opt_algebraic);
1009 NIR_PASS(progress, nir, nir_opt_constant_folding);
1010
1011 if (lower_flrp != 0) {
1012 bool lower_flrp_progress = false;
1013 NIR_PASS(lower_flrp_progress,
1014 nir,
1015 nir_lower_flrp,
1016 lower_flrp,
1017 false /* always_precise */,
1018 nir->options->lower_ffma);
1019 if (lower_flrp_progress) {
1020 NIR_PASS(progress, nir,
1021 nir_opt_constant_folding);
1022 progress = true;
1023 }
1024
1025 /* Nothing should rematerialize any flrps, so we only
1026 * need to do this lowering once.
1027 */
1028 lower_flrp = 0;
1029 }
1030
1031 NIR_PASS(progress, nir, nir_opt_undef);
1032 NIR_PASS(progress, nir, nir_opt_loop_unroll,
1033 nir_var_shader_in |
1034 nir_var_shader_out |
1035 nir_var_function_temp);
1036 } while (progress);
1037
1038 NIR_PASS(progress, nir, nir_opt_algebraic_late);
1039 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
1040 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
1041 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
1042 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
1043
1044 /* Take us out of SSA */
1045 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
1046 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
1047 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
1048 }
1049
1050 void
1051 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
1052 {
1053 bi_context *ctx = rzalloc(NULL, bi_context);
1054 ctx->nir = nir;
1055 ctx->stage = nir->info.stage;
1056 ctx->quirks = bifrost_get_quirks(product_id);
1057 list_inithead(&ctx->blocks);
1058
1059 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
1060 * (so we don't accidentally duplicate the epilogue since mesa/st has
1061 * messed with our I/O quite a bit already) */
1062
1063 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
1064
1065 if (ctx->stage == MESA_SHADER_VERTEX) {
1066 NIR_PASS_V(nir, nir_lower_viewport_transform);
1067 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
1068 }
1069
1070 NIR_PASS_V(nir, nir_split_var_copies);
1071 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
1072 NIR_PASS_V(nir, nir_lower_var_copies);
1073 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
1074 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
1075 NIR_PASS_V(nir, nir_lower_ssbo);
1076
1077 bi_optimize_nir(nir);
1078 nir_print_shader(nir, stdout);
1079
1080 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
1081 program->sysval_count = ctx->sysvals.sysval_count;
1082 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
1083 ctx->blend_types = program->blend_types;
1084
1085 nir_foreach_function(func, nir) {
1086 if (!func->impl)
1087 continue;
1088
1089 ctx->impl = func->impl;
1090 emit_cf_list(ctx, &func->impl->body);
1091 break; /* TODO: Multi-function shaders */
1092 }
1093
1094 bi_foreach_block(ctx, _block) {
1095 bi_block *block = (bi_block *) _block;
1096 bi_lower_combine(ctx, block);
1097 }
1098
1099 bool progress = false;
1100
1101 do {
1102 progress = false;
1103
1104 bi_foreach_block(ctx, _block) {
1105 bi_block *block = (bi_block *) _block;
1106 progress |= bi_opt_dead_code_eliminate(ctx, block);
1107 }
1108 } while(progress);
1109
1110 bi_print_shader(ctx, stdout);
1111 bi_schedule(ctx);
1112 bi_register_allocate(ctx);
1113 bi_print_shader(ctx, stdout);
1114 bi_pack(ctx, &program->compiled);
1115 disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
1116
1117 ralloc_free(ctx);
1118 }