bifrost: Add support for nir_op_ishl
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_IMATH,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_REDUCE_FMA,
72 BI_SELECT,
73 BI_STORE,
74 BI_STORE_VAR,
75 BI_SPECIAL, /* _FAST on supported GPUs */
76 BI_TABLE,
77 BI_TEX,
78 BI_ROUND,
79 BI_NUM_CLASSES
80 };
81
82 /* Properties of a class... */
83 extern unsigned bi_class_props[BI_NUM_CLASSES];
84
85 /* abs/neg/outmod valid for a float op */
86 #define BI_MODS (1 << 0)
87
88 /* Accepts a bi_cond */
89 #define BI_CONDITIONAL (1 << 1)
90
91 /* Accepts a bifrost_roundmode */
92 #define BI_ROUNDMODE (1 << 2)
93
94 /* Can be scheduled to FMA */
95 #define BI_SCHED_FMA (1 << 3)
96
97 /* Can be scheduled to ADD */
98 #define BI_SCHED_ADD (1 << 4)
99
100 /* Most ALU ops can do either, actually */
101 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
102
103 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
104 * nopped out. Used for _FAST operations. */
105 #define BI_SCHED_SLOW (1 << 5)
106
107 /* Swizzling allowed for the 8/16-bit source */
108 #define BI_SWIZZLABLE (1 << 6)
109
110 /* For scheduling purposes this is a high latency instruction and must be at
111 * the end of a clause. Implies ADD */
112 #define BI_SCHED_HI_LATENCY (1 << 7)
113
114 /* Intrinsic is vectorized and acts with `vector_channels` components */
115 #define BI_VECTOR (1 << 8)
116
117 /* Use a data register for src0/dest respectively, bypassing the usual
118 * register accessor. Mutually exclusive. */
119 #define BI_DATA_REG_SRC (1 << 9)
120 #define BI_DATA_REG_DEST (1 << 10)
121
122 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
123 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
124
125 /* It can't get any worse than csel4... can it? */
126 #define BIR_SRC_COUNT 4
127
128 /* BI_LD_VARY */
129 struct bi_load_vary {
130 enum bifrost_interp_mode interp_mode;
131 bool reuse;
132 bool flat;
133 };
134
135 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
136 * the target. We forward declare bi_block since this is mildly circular (not
137 * strictly, but this order of the file makes more sense I think)
138 *
139 * We define our own enum of conditions since the conditions in the hardware
140 * packed in crazy ways that would make manipulation unweildly (meaning changes
141 * based on port swapping, etc), so we defer dealing with that until emit time.
142 * Likewise, we expose NIR types instead of the crazy branch types, although
143 * the restrictions do eventually apply of course. */
144
145 struct bi_block;
146
147 enum bi_cond {
148 BI_COND_ALWAYS,
149 BI_COND_LT,
150 BI_COND_LE,
151 BI_COND_GE,
152 BI_COND_GT,
153 BI_COND_EQ,
154 BI_COND_NE,
155 };
156
157 /* Opcodes within a class */
158 enum bi_minmax_op {
159 BI_MINMAX_MIN,
160 BI_MINMAX_MAX
161 };
162
163 enum bi_bitwise_op {
164 BI_BITWISE_AND,
165 BI_BITWISE_OR,
166 BI_BITWISE_XOR
167 };
168
169 enum bi_imath_op {
170 BI_IMATH_ADD,
171 BI_IMATH_SUB,
172 };
173
174 enum bi_table_op {
175 /* fp32 log2() with low precision, suitable for GL or half_log2() in
176 * CL. In the first argument, takes x. Letting u be such that x =
177 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
178 * log2(u) / (u - 1). */
179
180 BI_TABLE_LOG2_U_OVER_U_1_LOW,
181 };
182
183 enum bi_reduce_op {
184 /* Takes two fp32 arguments and returns x + frexp(y). Used in
185 * low-precision log2 argument reduction on newer models. */
186
187 BI_REDUCE_ADD_FREXPM,
188 };
189
190 enum bi_frexp_op {
191 BI_FREXPE_LOG,
192 };
193
194 enum bi_special_op {
195 BI_SPECIAL_FRCP,
196 BI_SPECIAL_FRSQ,
197
198 /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
199 * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
200 * the second, it takes x itself. */
201 BI_SPECIAL_EXP2_LOW,
202 };
203
204 enum bi_tex_op {
205 BI_TEX_NORMAL,
206 BI_TEX_COMPACT,
207 BI_TEX_DUAL
208 };
209
210 struct bi_bitwise {
211 bool src_invert[2];
212 bool rshift; /* false for lshift */
213 };
214
215 struct bi_texture {
216 /* Constant indices. Indirect would need to be in src[..] like normal,
217 * we can reserve some sentinels there for that for future. */
218 unsigned texture_index, sampler_index;
219 };
220
221 typedef struct {
222 struct list_head link; /* Must be first */
223 enum bi_class type;
224
225 /* Indices, see pan_ssa_index etc. Note zero is special cased
226 * to "no argument" */
227 unsigned dest;
228 unsigned src[BIR_SRC_COUNT];
229
230 /* 32-bit word offset for destination, added to the register number in
231 * RA when lowering combines */
232 unsigned dest_offset;
233
234 /* If one of the sources has BIR_INDEX_CONSTANT */
235 union {
236 uint64_t u64;
237 uint32_t u32;
238 uint16_t u16[2];
239 uint8_t u8[4];
240 } constant;
241
242 /* Floating-point modifiers, type/class permitting. If not
243 * allowed for the type/class, these are ignored. */
244 enum bifrost_outmod outmod;
245 bool src_abs[BIR_SRC_COUNT];
246 bool src_neg[BIR_SRC_COUNT];
247
248 /* Round mode (requires BI_ROUNDMODE) */
249 enum bifrost_roundmode roundmode;
250
251 /* Destination type. Usually the type of the instruction
252 * itself, but if sources and destination have different
253 * types, the type of the destination wins (so f2i would be
254 * int). Zero if there is no destination. Bitsize included */
255 nir_alu_type dest_type;
256
257 /* Source types if required by the class */
258 nir_alu_type src_types[BIR_SRC_COUNT];
259
260 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
261 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
262 * sense. On non-SIMD instructions, it can be used for component
263 * selection, so we don't have to special case extraction. */
264 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
265
266 /* For VECTOR ops, how many channels are written? */
267 unsigned vector_channels;
268
269 /* The comparison op. BI_COND_ALWAYS may not be valid. */
270 enum bi_cond cond;
271
272 /* A class-specific op from which the actual opcode can be derived
273 * (along with the above information) */
274
275 union {
276 enum bi_minmax_op minmax;
277 enum bi_bitwise_op bitwise;
278 enum bi_special_op special;
279 enum bi_reduce_op reduce;
280 enum bi_table_op table;
281 enum bi_frexp_op frexp;
282 enum bi_tex_op texture;
283 enum bi_imath_op imath;
284
285 /* For FMA/ADD, should we add a biased exponent? */
286 bool mscale;
287 } op;
288
289 /* Union for class-specific information */
290 union {
291 enum bifrost_minmax_mode minmax;
292 struct bi_load_vary load_vary;
293 struct bi_block *branch_target;
294
295 /* For BLEND -- the location 0-7 */
296 unsigned blend_location;
297
298 struct bi_bitwise bitwise;
299 struct bi_texture texture;
300 };
301 } bi_instruction;
302
303 /* Represents the assignment of ports for a given bi_bundle */
304
305 typedef struct {
306 /* Register to assign to each port */
307 unsigned port[4];
308
309 /* Read ports can be disabled */
310 bool enabled[2];
311
312 /* Should we write FMA? what about ADD? If only a single port is
313 * enabled it is in port 2, else ADD/FMA is 2/3 respectively */
314 bool write_fma, write_add;
315
316 /* Should we read with port 3? */
317 bool read_port3;
318
319 /* Packed uniform/constant */
320 uint8_t uniform_constant;
321
322 /* Whether writes are actually for the last instruction */
323 bool first_instruction;
324 } bi_registers;
325
326 /* A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
327 * leave it NULL; the emitter will fill in a nop. Instructions reference
328 * registers via ports which are assigned per bundle.
329 */
330
331 typedef struct {
332 bi_registers regs;
333 bi_instruction *fma;
334 bi_instruction *add;
335 } bi_bundle;
336
337 struct bi_block;
338
339 typedef struct {
340 struct list_head link;
341
342 /* Link back up for branch calculations */
343 struct bi_block *block;
344
345 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
346 * can be 8 bundles. */
347
348 unsigned bundle_count;
349 bi_bundle bundles[8];
350
351 /* For scoreboarding -- the clause ID (this is not globally unique!)
352 * and its dependencies in terms of other clauses, computed during
353 * scheduling and used when emitting code. Dependencies expressed as a
354 * bitfield matching the hardware, except shifted by a clause (the
355 * shift back to the ISA's off-by-one encoding is worked out when
356 * emitting clauses) */
357 unsigned scoreboard_id;
358 uint8_t dependencies;
359
360 /* Back-to-back corresponds directly to the back-to-back bit. Branch
361 * conditional corresponds to the branch conditional bit except that in
362 * the emitted code it's always set if back-to-bit is, whereas we use
363 * the actual value (without back-to-back so to speak) internally */
364 bool back_to_back;
365 bool branch_conditional;
366
367 /* Assigned data register */
368 unsigned data_register;
369
370 /* Corresponds to the usual bit but shifted by a clause */
371 bool data_register_write_barrier;
372
373 /* Constants read by this clause. ISA limit. Must satisfy:
374 *
375 * constant_count + bundle_count <= 13
376 *
377 * Also implicitly constant_count <= bundle_count since a bundle only
378 * reads a single constant.
379 */
380 uint64_t constants[8];
381 unsigned constant_count;
382
383 /* Branches encode a constant offset relative to the program counter
384 * with some magic flags. By convention, if there is a branch, its
385 * constant will be last. Set this flag to indicate this is required.
386 */
387 bool branch_constant;
388
389 /* What type of high latency instruction is here, basically */
390 unsigned clause_type;
391 } bi_clause;
392
393 typedef struct bi_block {
394 pan_block base; /* must be first */
395
396 /* If true, uses clauses; if false, uses instructions */
397 bool scheduled;
398 struct list_head clauses; /* list of bi_clause */
399 } bi_block;
400
401 typedef struct {
402 nir_shader *nir;
403 gl_shader_stage stage;
404 struct list_head blocks; /* list of bi_block */
405 struct panfrost_sysvals sysvals;
406 uint32_t quirks;
407
408 /* During NIR->BIR */
409 nir_function_impl *impl;
410 bi_block *current_block;
411 bi_block *after_block;
412 bi_block *break_block;
413 bi_block *continue_block;
414 bool emitted_atest;
415 nir_alu_type *blend_types;
416
417 /* For creating temporaries */
418 unsigned temp_alloc;
419
420 /* Analysis results */
421 bool has_liveness;
422
423 /* Stats for shader-db */
424 unsigned instruction_count;
425 unsigned loop_count;
426 } bi_context;
427
428 static inline bi_instruction *
429 bi_emit(bi_context *ctx, bi_instruction ins)
430 {
431 bi_instruction *u = rzalloc(ctx, bi_instruction);
432 memcpy(u, &ins, sizeof(ins));
433 list_addtail(&u->link, &ctx->current_block->base.instructions);
434 return u;
435 }
436
437 static inline bi_instruction *
438 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
439 {
440 bi_instruction *u = rzalloc(ctx, bi_instruction);
441 memcpy(u, &ins, sizeof(ins));
442 list_addtail(&u->link, &tag->link);
443 return u;
444 }
445
446 static inline void
447 bi_remove_instruction(bi_instruction *ins)
448 {
449 list_del(&ins->link);
450 }
451
452 /* If high bits are set, instead of SSA/registers, we have specials indexed by
453 * the low bits if necessary.
454 *
455 * Fixed register: do not allocate register, do not collect $200.
456 * Uniform: access a uniform register given by low bits.
457 * Constant: access the specified constant (specifies a bit offset / shift)
458 * Zero: special cased to avoid wasting a constant
459 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
460 */
461
462 #define BIR_INDEX_REGISTER (1 << 31)
463 #define BIR_INDEX_UNIFORM (1 << 30)
464 #define BIR_INDEX_CONSTANT (1 << 29)
465 #define BIR_INDEX_ZERO (1 << 28)
466 #define BIR_INDEX_PASS (1 << 27)
467
468 /* Keep me synced please so we can check src & BIR_SPECIAL */
469
470 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
471 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
472
473 static inline unsigned
474 bi_max_temp(bi_context *ctx)
475 {
476 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
477 return ((alloc + 2 + ctx->temp_alloc) << 1);
478 }
479
480 static inline unsigned
481 bi_make_temp(bi_context *ctx)
482 {
483 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
484 }
485
486 static inline unsigned
487 bi_make_temp_reg(bi_context *ctx)
488 {
489 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | PAN_IS_REG;
490 }
491
492 /* Iterators for Bifrost IR */
493
494 #define bi_foreach_block(ctx, v) \
495 list_for_each_entry(pan_block, v, &ctx->blocks, link)
496
497 #define bi_foreach_block_from(ctx, from, v) \
498 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
499
500 #define bi_foreach_block_from_rev(ctx, from, v) \
501 list_for_each_entry_from_rev(pan_block, v, from, &ctx->blocks, link)
502
503 #define bi_foreach_instr_in_block(block, v) \
504 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
505
506 #define bi_foreach_instr_in_block_rev(block, v) \
507 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
508
509 #define bi_foreach_instr_in_block_safe(block, v) \
510 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
511
512 #define bi_foreach_instr_in_block_safe_rev(block, v) \
513 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
514
515 #define bi_foreach_instr_in_block_from(block, v, from) \
516 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
517
518 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
519 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
520
521 #define bi_foreach_clause_in_block(block, v) \
522 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
523
524 #define bi_foreach_clause_in_block_from(block, v, from) \
525 list_for_each_entry_from(bi_clause, v, from, &(block)->clauses, link)
526
527 #define bi_foreach_clause_in_block_from_rev(block, v, from) \
528 list_for_each_entry_from_rev(bi_clause, v, from, &(block)->clauses, link)
529
530 #define bi_foreach_instr_global(ctx, v) \
531 bi_foreach_block(ctx, v_block) \
532 bi_foreach_instr_in_block((bi_block *) v_block, v)
533
534 #define bi_foreach_instr_global_safe(ctx, v) \
535 bi_foreach_block(ctx, v_block) \
536 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
537
538 /* Based on set_foreach, expanded with automatic type casts */
539
540 #define bi_foreach_predecessor(blk, v) \
541 struct set_entry *_entry_##v; \
542 bi_block *v; \
543 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
544 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
545 _entry_##v != NULL; \
546 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
547 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
548
549 #define bi_foreach_src(ins, v) \
550 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
551
552 static inline bi_instruction *
553 bi_prev_op(bi_instruction *ins)
554 {
555 return list_last_entry(&(ins->link), bi_instruction, link);
556 }
557
558 static inline bi_instruction *
559 bi_next_op(bi_instruction *ins)
560 {
561 return list_first_entry(&(ins->link), bi_instruction, link);
562 }
563
564 static inline pan_block *
565 pan_next_block(pan_block *block)
566 {
567 return list_first_entry(&(block->link), pan_block, link);
568 }
569
570 /* Special functions */
571
572 void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
573 void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
574
575 /* BIR manipulation */
576
577 bool bi_has_outmod(bi_instruction *ins);
578 bool bi_has_source_mods(bi_instruction *ins);
579 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
580 bool bi_has_arg(bi_instruction *ins, unsigned arg);
581 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
582 unsigned bi_get_component_count(bi_instruction *ins, signed s);
583 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
584 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
585 bool bi_writes_component(bi_instruction *ins, unsigned comp);
586 unsigned bi_writemask(bi_instruction *ins);
587
588 /* BIR passes */
589
590 void bi_lower_combine(bi_context *ctx, bi_block *block);
591 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
592 void bi_schedule(bi_context *ctx);
593 void bi_register_allocate(bi_context *ctx);
594
595 /* Liveness */
596
597 void bi_compute_liveness(bi_context *ctx);
598 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
599 void bi_invalidate_liveness(bi_context *ctx);
600 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
601
602 /* Layout */
603
604 bool bi_can_insert_bundle(bi_clause *clause, bool constant);
605 unsigned bi_clause_quadwords(bi_clause *clause);
606 signed bi_block_offset(bi_context *ctx, bi_clause *start, bi_block *target);
607
608 /* Code emit */
609
610 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
611
612 #endif