panfrost: add some missing fallthrough comments
[mesa.git] / src / panfrost / bifrost / disassemble.c
1 /*
2 * Copyright (C) 2019 Connor Abbott <cwabbott0@gmail.com>
3 * Copyright (C) 2019 Lyude Paul <thatslyude@gmail.com>
4 * Copyright (C) 2019 Ryan Houdek <Sonicadvance1@gmail.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 */
25
26 #include <stdbool.h>
27 #include <stdio.h>
28 #include <stdint.h>
29 #include <assert.h>
30 #include <inttypes.h>
31 #include <string.h>
32
33 #include "bifrost.h"
34 #include "disassemble.h"
35 #include "bi_print.h"
36 #include "util/macros.h"
37
38 // return bits (high, lo]
39 static uint64_t bits(uint32_t word, unsigned lo, unsigned high)
40 {
41 if (high == 32)
42 return word >> lo;
43 return (word & ((1 << high) - 1)) >> lo;
44 }
45
46 // each of these structs represents an instruction that's dispatched in one
47 // cycle. Note that these instructions are packed in funny ways within the
48 // clause, hence the need for a separate struct.
49 struct bifrost_alu_inst {
50 uint32_t fma_bits;
51 uint32_t add_bits;
52 uint64_t reg_bits;
53 };
54
55 static unsigned get_reg0(struct bifrost_regs regs)
56 {
57 if (regs.ctrl == 0)
58 return regs.reg0 | ((regs.reg1 & 0x1) << 5);
59
60 return regs.reg0 <= regs.reg1 ? regs.reg0 : 63 - regs.reg0;
61 }
62
63 static unsigned get_reg1(struct bifrost_regs regs)
64 {
65 return regs.reg0 <= regs.reg1 ? regs.reg1 : 63 - regs.reg1;
66 }
67
68 // this represents the decoded version of the ctrl register field.
69 struct bifrost_reg_ctrl {
70 bool read_reg0;
71 bool read_reg1;
72 bool read_reg3;
73 enum bifrost_reg_write_unit fma_write_unit;
74 enum bifrost_reg_write_unit add_write_unit;
75 bool clause_start;
76 };
77
78 enum fma_src_type {
79 FMA_ONE_SRC,
80 FMA_TWO_SRC,
81 FMA_FADD,
82 FMA_FMINMAX,
83 FMA_FADD16,
84 FMA_FMINMAX16,
85 FMA_FCMP,
86 FMA_FCMP16,
87 FMA_THREE_SRC,
88 FMA_SHIFT,
89 FMA_FMA,
90 FMA_FMA16,
91 FMA_CSEL4,
92 FMA_FMA_MSCALE,
93 FMA_SHIFT_ADD64,
94 };
95
96 struct fma_op_info {
97 bool extended;
98 unsigned op;
99 char name[30];
100 enum fma_src_type src_type;
101 };
102
103 enum add_src_type {
104 ADD_ONE_SRC,
105 ADD_TWO_SRC,
106 ADD_FADD,
107 ADD_FMINMAX,
108 ADD_FADD16,
109 ADD_FMINMAX16,
110 ADD_THREE_SRC,
111 ADD_SHIFT,
112 ADD_FADDMscale,
113 ADD_FCMP,
114 ADD_FCMP16,
115 ADD_TEX_COMPACT, // texture instruction with embedded sampler
116 ADD_TEX, // texture instruction with sampler/etc. in uniform port
117 ADD_VARYING_INTERP,
118 ADD_BLENDING,
119 ADD_LOAD_ATTR,
120 ADD_VARYING_ADDRESS,
121 ADD_BRANCH,
122 };
123
124 struct add_op_info {
125 unsigned op;
126 char name[30];
127 enum add_src_type src_type;
128 bool has_data_reg;
129 };
130
131 void dump_header(FILE *fp, struct bifrost_header header, bool verbose);
132 void dump_instr(FILE *fp, const struct bifrost_alu_inst *instr,
133 struct bifrost_regs next_regs, uint64_t *consts,
134 unsigned data_reg, unsigned offset, bool verbose);
135 bool dump_clause(FILE *fp, uint32_t *words, unsigned *size, unsigned offset, bool verbose);
136
137 void dump_header(FILE *fp, struct bifrost_header header, bool verbose)
138 {
139 fprintf(fp, "id(%du) ", header.scoreboard_index);
140
141 if (header.clause_type != 0) {
142 const char *name = bi_clause_type_name(header.clause_type);
143
144 if (name[0] == '?')
145 fprintf(fp, "unk%u ", header.clause_type);
146 else
147 fprintf(fp, "%s ", name);
148 }
149
150 if (header.scoreboard_deps != 0) {
151 fprintf(fp, "next-wait(");
152 bool first = true;
153 for (unsigned i = 0; i < 8; i++) {
154 if (header.scoreboard_deps & (1 << i)) {
155 if (!first) {
156 fprintf(fp, ", ");
157 }
158 fprintf(fp, "%d", i);
159 first = false;
160 }
161 }
162 fprintf(fp, ") ");
163 }
164
165 if (header.datareg_writebarrier)
166 fprintf(fp, "data-reg-barrier ");
167
168 if (!header.no_end_of_shader)
169 fprintf(fp, "eos ");
170
171 if (!header.back_to_back) {
172 fprintf(fp, "nbb ");
173 if (header.branch_cond)
174 fprintf(fp, "branch-cond ");
175 else
176 fprintf(fp, "branch-uncond ");
177 }
178
179 if (header.elide_writes)
180 fprintf(fp, "we ");
181
182 if (header.suppress_inf)
183 fprintf(fp, "suppress-inf ");
184 if (header.suppress_nan)
185 fprintf(fp, "suppress-nan ");
186
187 if (header.unk0)
188 fprintf(fp, "unk0 ");
189 if (header.unk1)
190 fprintf(fp, "unk1 ");
191 if (header.unk2)
192 fprintf(fp, "unk2 ");
193 if (header.unk3)
194 fprintf(fp, "unk3 ");
195 if (header.unk4)
196 fprintf(fp, "unk4 ");
197
198 fprintf(fp, "\n");
199
200 if (verbose) {
201 fprintf(fp, "# clause type %d, next clause type %d\n",
202 header.clause_type, header.next_clause_type);
203 }
204 }
205
206 static struct bifrost_reg_ctrl DecodeRegCtrl(FILE *fp, struct bifrost_regs regs)
207 {
208 struct bifrost_reg_ctrl decoded = {};
209 unsigned ctrl;
210 if (regs.ctrl == 0) {
211 ctrl = regs.reg1 >> 2;
212 decoded.read_reg0 = !(regs.reg1 & 0x2);
213 decoded.read_reg1 = false;
214 } else {
215 ctrl = regs.ctrl;
216 decoded.read_reg0 = decoded.read_reg1 = true;
217 }
218 switch (ctrl) {
219 case 1:
220 decoded.fma_write_unit = REG_WRITE_TWO;
221 break;
222 case 2:
223 case 3:
224 decoded.fma_write_unit = REG_WRITE_TWO;
225 decoded.read_reg3 = true;
226 break;
227 case 4:
228 decoded.read_reg3 = true;
229 break;
230 case 5:
231 decoded.add_write_unit = REG_WRITE_TWO;
232 break;
233 case 6:
234 decoded.add_write_unit = REG_WRITE_TWO;
235 decoded.read_reg3 = true;
236 break;
237 case 8:
238 decoded.clause_start = true;
239 break;
240 case 9:
241 decoded.fma_write_unit = REG_WRITE_TWO;
242 decoded.clause_start = true;
243 break;
244 case 11:
245 break;
246 case 12:
247 decoded.read_reg3 = true;
248 decoded.clause_start = true;
249 break;
250 case 13:
251 decoded.add_write_unit = REG_WRITE_TWO;
252 decoded.clause_start = true;
253 break;
254
255 case 7:
256 case 15:
257 decoded.fma_write_unit = REG_WRITE_THREE;
258 decoded.add_write_unit = REG_WRITE_TWO;
259 break;
260 default:
261 fprintf(fp, "# unknown reg ctrl %d\n", ctrl);
262 }
263
264 return decoded;
265 }
266
267 // Pass in the add_write_unit or fma_write_unit, and this returns which register
268 // the ADD/FMA units are writing to
269 static unsigned GetRegToWrite(enum bifrost_reg_write_unit unit, struct bifrost_regs regs)
270 {
271 switch (unit) {
272 case REG_WRITE_TWO:
273 return regs.reg2;
274 case REG_WRITE_THREE:
275 return regs.reg3;
276 default: /* REG_WRITE_NONE */
277 assert(0);
278 return 0;
279 }
280 }
281
282 static void dump_regs(FILE *fp, struct bifrost_regs srcs)
283 {
284 struct bifrost_reg_ctrl ctrl = DecodeRegCtrl(fp, srcs);
285 fprintf(fp, "# ");
286 if (ctrl.read_reg0)
287 fprintf(fp, "port 0: R%d ", get_reg0(srcs));
288 if (ctrl.read_reg1)
289 fprintf(fp, "port 1: R%d ", get_reg1(srcs));
290
291 if (ctrl.fma_write_unit == REG_WRITE_TWO)
292 fprintf(fp, "port 2: R%d (write FMA) ", srcs.reg2);
293 else if (ctrl.add_write_unit == REG_WRITE_TWO)
294 fprintf(fp, "port 2: R%d (write ADD) ", srcs.reg2);
295
296 if (ctrl.fma_write_unit == REG_WRITE_THREE)
297 fprintf(fp, "port 3: R%d (write FMA) ", srcs.reg3);
298 else if (ctrl.add_write_unit == REG_WRITE_THREE)
299 fprintf(fp, "port 3: R%d (write ADD) ", srcs.reg3);
300 else if (ctrl.read_reg3)
301 fprintf(fp, "port 3: R%d (read) ", srcs.reg3);
302
303 if (srcs.uniform_const) {
304 if (srcs.uniform_const & 0x80) {
305 fprintf(fp, "uniform: U%d", (srcs.uniform_const & 0x7f) * 2);
306 }
307 }
308
309 fprintf(fp, "\n");
310 }
311 static void dump_const_imm(FILE *fp, uint32_t imm)
312 {
313 union {
314 float f;
315 uint32_t i;
316 } fi;
317 fi.i = imm;
318 fprintf(fp, "0x%08x /* %f */", imm, fi.f);
319 }
320
321 static uint64_t get_const(uint64_t *consts, struct bifrost_regs srcs)
322 {
323 unsigned low_bits = srcs.uniform_const & 0xf;
324 uint64_t imm;
325 switch (srcs.uniform_const >> 4) {
326 case 4:
327 imm = consts[0];
328 break;
329 case 5:
330 imm = consts[1];
331 break;
332 case 6:
333 imm = consts[2];
334 break;
335 case 7:
336 imm = consts[3];
337 break;
338 case 2:
339 imm = consts[4];
340 break;
341 case 3:
342 imm = consts[5];
343 break;
344 default:
345 assert(0);
346 break;
347 }
348 return imm | low_bits;
349 }
350
351 static void dump_uniform_const_src(FILE *fp, struct bifrost_regs srcs, uint64_t *consts, bool high32)
352 {
353 if (srcs.uniform_const & 0x80) {
354 unsigned uniform = (srcs.uniform_const & 0x7f) * 2;
355 fprintf(fp, "U%d", uniform + (high32 ? 1 : 0));
356 } else if (srcs.uniform_const >= 0x20) {
357 uint64_t imm = get_const(consts, srcs);
358 if (high32)
359 dump_const_imm(fp, imm >> 32);
360 else
361 dump_const_imm(fp, imm);
362 } else {
363 switch (srcs.uniform_const) {
364 case 0:
365 fprintf(fp, "0");
366 break;
367 case 5:
368 fprintf(fp, "atest-data");
369 break;
370 case 6:
371 fprintf(fp, "sample-ptr");
372 break;
373 case 8:
374 case 9:
375 case 10:
376 case 11:
377 case 12:
378 case 13:
379 case 14:
380 case 15:
381 fprintf(fp, "blend-descriptor%u", (unsigned) srcs.uniform_const - 8);
382 break;
383 default:
384 fprintf(fp, "unkConst%u", (unsigned) srcs.uniform_const);
385 break;
386 }
387
388 if (high32)
389 fprintf(fp, ".y");
390 else
391 fprintf(fp, ".x");
392 }
393 }
394
395 static void dump_src(FILE *fp, unsigned src, struct bifrost_regs srcs, uint64_t *consts, bool isFMA)
396 {
397 switch (src) {
398 case 0:
399 fprintf(fp, "R%d", get_reg0(srcs));
400 break;
401 case 1:
402 fprintf(fp, "R%d", get_reg1(srcs));
403 break;
404 case 2:
405 fprintf(fp, "R%d", srcs.reg3);
406 break;
407 case 3:
408 if (isFMA)
409 fprintf(fp, "0");
410 else
411 fprintf(fp, "T"); // i.e. the output of FMA this cycle
412 break;
413 case 4:
414 dump_uniform_const_src(fp, srcs, consts, false);
415 break;
416 case 5:
417 dump_uniform_const_src(fp, srcs, consts, true);
418 break;
419 case 6:
420 fprintf(fp, "T0");
421 break;
422 case 7:
423 fprintf(fp, "T1");
424 break;
425 }
426 }
427
428 static const struct fma_op_info FMAOpInfos[] = {
429 { false, 0x00000, "FMA.f32", FMA_FMA },
430 { false, 0x40000, "MAX.f32", FMA_FMINMAX },
431 { false, 0x44000, "MIN.f32", FMA_FMINMAX },
432 { false, 0x48000, "FCMP.GL", FMA_FCMP },
433 { false, 0x4c000, "FCMP.D3D", FMA_FCMP },
434 { false, 0x4ff98, "ADD.i32", FMA_TWO_SRC },
435 { false, 0x4ffd8, "SUB.i32", FMA_TWO_SRC },
436 { false, 0x4fff0, "SUBB.i32", FMA_TWO_SRC },
437 { false, 0x50000, "FMA_MSCALE", FMA_FMA_MSCALE },
438 { false, 0x58000, "ADD.f32", FMA_FADD },
439 { false, 0x5c000, "CSEL4", FMA_CSEL4 },
440 { false, 0x5d8d0, "ICMP.D3D.GT.v2i16", FMA_TWO_SRC },
441 { false, 0x5d9d0, "UCMP.D3D.GT.v2i16", FMA_TWO_SRC },
442 { false, 0x5dad0, "ICMP.D3D.GE.v2i16", FMA_TWO_SRC },
443 { false, 0x5dbd0, "UCMP.D3D.GE.v2i16", FMA_TWO_SRC },
444 { false, 0x5dcd0, "ICMP.D3D.EQ.v2i16", FMA_TWO_SRC },
445 { false, 0x5de40, "ICMP.GL.GT.i32", FMA_TWO_SRC }, // src0 > src1 ? 1 : 0
446 { false, 0x5de48, "ICMP.GL.GE.i32", FMA_TWO_SRC },
447 { false, 0x5de50, "UCMP.GL.GT.i32", FMA_TWO_SRC },
448 { false, 0x5de58, "UCMP.GL.GE.i32", FMA_TWO_SRC },
449 { false, 0x5de60, "ICMP.GL.EQ.i32", FMA_TWO_SRC },
450 { false, 0x5dec0, "ICMP.D3D.GT.i32", FMA_TWO_SRC }, // src0 > src1 ? ~0 : 0
451 { false, 0x5dec8, "ICMP.D3D.GE.i32", FMA_TWO_SRC },
452 { false, 0x5ded0, "UCMP.D3D.GT.i32", FMA_TWO_SRC },
453 { false, 0x5ded8, "UCMP.D3D.GE.i32", FMA_TWO_SRC },
454 { false, 0x5dee0, "ICMP.D3D.EQ.i32", FMA_TWO_SRC },
455 { false, 0x60000, "RSHIFT_NAND", FMA_SHIFT },
456 { false, 0x61000, "RSHIFT_AND", FMA_SHIFT },
457 { false, 0x62000, "LSHIFT_NAND", FMA_SHIFT },
458 { false, 0x63000, "LSHIFT_AND", FMA_SHIFT }, // (src0 << src2) & src1
459 { false, 0x64000, "RSHIFT_XOR", FMA_SHIFT },
460 { false, 0x65200, "LSHIFT_ADD.i32", FMA_THREE_SRC },
461 { false, 0x65600, "LSHIFT_SUB.i32", FMA_THREE_SRC }, // (src0 << src2) - src1
462 { false, 0x65a00, "LSHIFT_RSUB.i32", FMA_THREE_SRC }, // src1 - (src0 << src2)
463 { false, 0x65e00, "RSHIFT_ADD.i32", FMA_THREE_SRC },
464 { false, 0x66200, "RSHIFT_SUB.i32", FMA_THREE_SRC },
465 { false, 0x66600, "RSHIFT_RSUB.i32", FMA_THREE_SRC },
466 { false, 0x66a00, "ARSHIFT_ADD.i32", FMA_THREE_SRC },
467 { false, 0x66e00, "ARSHIFT_SUB.i32", FMA_THREE_SRC },
468 { false, 0x67200, "ARSHIFT_RSUB.i32", FMA_THREE_SRC },
469 { false, 0x80000, "FMA.v2f16", FMA_FMA16 },
470 { false, 0xc0000, "MAX.v2f16", FMA_FMINMAX16 },
471 { false, 0xc4000, "MIN.v2f16", FMA_FMINMAX16 },
472 { false, 0xc8000, "FCMP.GL", FMA_FCMP16 },
473 { false, 0xcc000, "FCMP.D3D", FMA_FCMP16 },
474 { false, 0xcf900, "ADD.v2i16", FMA_TWO_SRC },
475 { false, 0xcfc10, "ADDC.i32", FMA_TWO_SRC },
476 { false, 0xcfd80, "ADD.i32.i16.X", FMA_TWO_SRC },
477 { false, 0xcfd90, "ADD.i32.u16.X", FMA_TWO_SRC },
478 { false, 0xcfdc0, "ADD.i32.i16.Y", FMA_TWO_SRC },
479 { false, 0xcfdd0, "ADD.i32.u16.Y", FMA_TWO_SRC },
480 { false, 0xd8000, "ADD.v2f16", FMA_FADD16 },
481 { false, 0xdc000, "CSEL4.v16", FMA_CSEL4 },
482 { false, 0xdd000, "F32_TO_F16", FMA_TWO_SRC },
483
484 /* TODO: Combine to bifrost_fma_f2i_i2f16 */
485 { true, 0x00046, "F16_TO_I16.XX", FMA_ONE_SRC },
486 { true, 0x00047, "F16_TO_U16.XX", FMA_ONE_SRC },
487 { true, 0x0004e, "F16_TO_I16.YX", FMA_ONE_SRC },
488 { true, 0x0004f, "F16_TO_U16.YX", FMA_ONE_SRC },
489 { true, 0x00056, "F16_TO_I16.XY", FMA_ONE_SRC },
490 { true, 0x00057, "F16_TO_U16.XY", FMA_ONE_SRC },
491 { true, 0x0005e, "F16_TO_I16.YY", FMA_ONE_SRC },
492 { true, 0x0005f, "F16_TO_U16.YY", FMA_ONE_SRC },
493 { true, 0x000c0, "I16_TO_F16.XX", FMA_ONE_SRC },
494 { true, 0x000c1, "U16_TO_F16.XX", FMA_ONE_SRC },
495 { true, 0x000c8, "I16_TO_F16.YX", FMA_ONE_SRC },
496 { true, 0x000c9, "U16_TO_F16.YX", FMA_ONE_SRC },
497 { true, 0x000d0, "I16_TO_F16.XY", FMA_ONE_SRC },
498 { true, 0x000d1, "U16_TO_F16.XY", FMA_ONE_SRC },
499 { true, 0x000d8, "I16_TO_F16.YY", FMA_ONE_SRC },
500 { true, 0x000d9, "U16_TO_F16.YY", FMA_ONE_SRC },
501
502 { true, 0x00136, "F32_TO_I32", FMA_ONE_SRC },
503 { true, 0x00137, "F32_TO_U32", FMA_ONE_SRC },
504 { true, 0x00178, "I32_TO_F32", FMA_ONE_SRC },
505 { true, 0x00179, "U32_TO_F32", FMA_ONE_SRC },
506
507 /* TODO: cleanup to use bifrost_fma_int16_to_32 */
508 { true, 0x00198, "I16_TO_I32.X", FMA_ONE_SRC },
509 { true, 0x00199, "U16_TO_U32.X", FMA_ONE_SRC },
510 { true, 0x0019a, "I16_TO_I32.Y", FMA_ONE_SRC },
511 { true, 0x0019b, "U16_TO_U32.Y", FMA_ONE_SRC },
512 { true, 0x0019c, "I16_TO_F32.X", FMA_ONE_SRC },
513 { true, 0x0019d, "U16_TO_F32.X", FMA_ONE_SRC },
514 { true, 0x0019e, "I16_TO_F32.Y", FMA_ONE_SRC },
515 { true, 0x0019f, "U16_TO_F32.Y", FMA_ONE_SRC },
516
517 { true, 0x001a2, "F16_TO_F32.X", FMA_ONE_SRC },
518 { true, 0x001a3, "F16_TO_F32.Y", FMA_ONE_SRC },
519
520 { true, 0x0032c, "NOP", FMA_ONE_SRC },
521 { true, 0x0032d, "MOV", FMA_ONE_SRC },
522 { true, 0x0032f, "SWZ.YY.v2i16", FMA_ONE_SRC },
523 { true, 0x00345, "LOG_FREXPM", FMA_ONE_SRC },
524 { true, 0x00365, "FRCP_FREXPM", FMA_ONE_SRC },
525 { true, 0x00375, "FSQRT_FREXPM", FMA_ONE_SRC },
526 { true, 0x0038d, "FRCP_FREXPE", FMA_ONE_SRC },
527 { true, 0x003a5, "FSQRT_FREXPE", FMA_ONE_SRC },
528 { true, 0x003ad, "FRSQ_FREXPE", FMA_ONE_SRC },
529 { true, 0x003c5, "LOG_FREXPE", FMA_ONE_SRC },
530 { true, 0x003fa, "CLZ", FMA_ONE_SRC },
531 { true, 0x00b80, "IMAX3", FMA_THREE_SRC },
532 { true, 0x00bc0, "UMAX3", FMA_THREE_SRC },
533 { true, 0x00c00, "IMIN3", FMA_THREE_SRC },
534 { true, 0x00c40, "UMIN3", FMA_THREE_SRC },
535 { true, 0x00ec2, "ROUND.v2f16", FMA_ONE_SRC },
536 { true, 0x00ec5, "ROUND.f32", FMA_ONE_SRC },
537 { true, 0x00f40, "CSEL", FMA_THREE_SRC }, // src2 != 0 ? src1 : src0
538 { true, 0x00fc0, "MUX.i32", FMA_THREE_SRC }, // see ADD comment
539 { true, 0x01802, "ROUNDEVEN.v2f16", FMA_ONE_SRC },
540 { true, 0x01805, "ROUNDEVEN.f32", FMA_ONE_SRC },
541 { true, 0x01842, "CEIL.v2f16", FMA_ONE_SRC },
542 { true, 0x01845, "CEIL.f32", FMA_ONE_SRC },
543 { true, 0x01882, "FLOOR.v2f16", FMA_ONE_SRC },
544 { true, 0x01885, "FLOOR.f32", FMA_ONE_SRC },
545 { true, 0x018c2, "TRUNC.v2f16", FMA_ONE_SRC },
546 { true, 0x018c5, "TRUNC.f32", FMA_ONE_SRC },
547 { true, 0x019b0, "ATAN_LDEXP.Y.f32", FMA_TWO_SRC },
548 { true, 0x019b8, "ATAN_LDEXP.X.f32", FMA_TWO_SRC },
549 { true, 0x01c80, "LSHIFT_ADD_LOW32.u32", FMA_SHIFT_ADD64 },
550 { true, 0x01cc0, "LSHIFT_ADD_LOW32.i64", FMA_SHIFT_ADD64 },
551 { true, 0x01d80, "LSHIFT_ADD_LOW32.i32", FMA_SHIFT_ADD64 },
552 { true, 0x01e00, "SEL.XX.i16", FMA_TWO_SRC },
553 { true, 0x01e08, "SEL.YX.i16", FMA_TWO_SRC },
554 { true, 0x01e10, "SEL.XY.i16", FMA_TWO_SRC },
555 { true, 0x01e18, "SEL.YY.i16", FMA_TWO_SRC },
556 { true, 0x01e80, "ADD_FREXPM.f32", FMA_TWO_SRC },
557 { true, 0x02000, "SWZ.XXXX.v4i8", FMA_ONE_SRC },
558 { true, 0x03e00, "SWZ.ZZZZ.v4i8", FMA_ONE_SRC },
559 { true, 0x00800, "IMAD", FMA_THREE_SRC },
560 { true, 0x07818, "MUL.i32", FMA_TWO_SRC },
561 { true, 0x078db, "POPCNT", FMA_ONE_SRC },
562 };
563
564 static struct fma_op_info find_fma_op_info(unsigned op, bool extended)
565 {
566 for (unsigned i = 0; i < ARRAY_SIZE(FMAOpInfos); i++) {
567 unsigned opCmp = ~0;
568
569 if (FMAOpInfos[i].extended != extended)
570 continue;
571
572 if (extended)
573 op &= ~0xe0000;
574
575 switch (FMAOpInfos[i].src_type) {
576 case FMA_ONE_SRC:
577 opCmp = op;
578 break;
579 case FMA_TWO_SRC:
580 opCmp = op & ~0x7;
581 break;
582 case FMA_FCMP:
583 case FMA_FCMP16:
584 opCmp = op & ~0x1fff;
585 break;
586 case FMA_THREE_SRC:
587 case FMA_SHIFT_ADD64:
588 opCmp = op & ~0x3f;
589 break;
590 case FMA_FADD:
591 case FMA_FMINMAX:
592 case FMA_FADD16:
593 case FMA_FMINMAX16:
594 opCmp = op & ~0x3fff;
595 break;
596 case FMA_FMA:
597 case FMA_FMA16:
598 opCmp = op & ~0x3ffff;
599 break;
600 case FMA_CSEL4:
601 case FMA_SHIFT:
602 opCmp = op & ~0xfff;
603 break;
604 case FMA_FMA_MSCALE:
605 opCmp = op & ~0x7fff;
606 break;
607 default:
608 opCmp = ~0;
609 break;
610 }
611 if (FMAOpInfos[i].op == opCmp)
612 return FMAOpInfos[i];
613 }
614
615 struct fma_op_info info;
616 snprintf(info.name, sizeof(info.name), "op%04x", op);
617 info.extended = extended;
618 info.op = op;
619 info.src_type = FMA_THREE_SRC;
620 return info;
621 }
622
623 static void dump_fcmp(FILE *fp, unsigned op)
624 {
625 switch (op) {
626 case 0:
627 fprintf(fp, ".OEQ");
628 break;
629 case 1:
630 fprintf(fp, ".OGT");
631 break;
632 case 2:
633 fprintf(fp, ".OGE");
634 break;
635 case 3:
636 fprintf(fp, ".UNE");
637 break;
638 case 4:
639 fprintf(fp, ".OLT");
640 break;
641 case 5:
642 fprintf(fp, ".OLE");
643 break;
644 default:
645 fprintf(fp, ".unk%d", op);
646 break;
647 }
648 }
649
650 static void dump_16swizzle(FILE *fp, unsigned swiz)
651 {
652 if (swiz == 2)
653 return;
654 fprintf(fp, ".%c%c", "xy"[swiz & 1], "xy"[(swiz >> 1) & 1]);
655 }
656
657 static void dump_fma_expand_src0(FILE *fp, unsigned ctrl)
658 {
659 switch (ctrl) {
660 case 3:
661 case 4:
662 case 6:
663 fprintf(fp, ".x");
664 break;
665 case 5:
666 case 7:
667 fprintf(fp, ".y");
668 break;
669 case 0:
670 case 1:
671 case 2:
672 break;
673 default:
674 fprintf(fp, ".unk");
675 break;
676 }
677 }
678
679 static void dump_fma_expand_src1(FILE *fp, unsigned ctrl)
680 {
681 switch (ctrl) {
682 case 1:
683 case 3:
684 fprintf(fp, ".x");
685 break;
686 case 2:
687 case 4:
688 case 5:
689 fprintf(fp, ".y");
690 break;
691 case 0:
692 case 6:
693 case 7:
694 break;
695 default:
696 fprintf(fp, ".unk");
697 break;
698 }
699 }
700
701 static void dump_fma(FILE *fp, uint64_t word, struct bifrost_regs regs, struct bifrost_regs next_regs, uint64_t *consts, bool verbose)
702 {
703 if (verbose) {
704 fprintf(fp, "# FMA: %016" PRIx64 "\n", word);
705 }
706 struct bifrost_fma_inst FMA;
707 memcpy((char *) &FMA, (char *) &word, sizeof(struct bifrost_fma_inst));
708 struct fma_op_info info = find_fma_op_info(FMA.op, (FMA.op & 0xe0000) == 0xe0000);
709
710 fprintf(fp, "%s", info.name);
711 if (info.src_type == FMA_FADD ||
712 info.src_type == FMA_FMINMAX ||
713 info.src_type == FMA_FMA ||
714 info.src_type == FMA_FADD16 ||
715 info.src_type == FMA_FMINMAX16 ||
716 info.src_type == FMA_FMA16) {
717 fprintf(fp, "%s", bi_output_mod_name(bits(FMA.op, 12, 14)));
718 switch (info.src_type) {
719 case FMA_FADD:
720 case FMA_FMA:
721 case FMA_FADD16:
722 case FMA_FMA16:
723 fprintf(fp, "%s", bi_round_mode_name(bits(FMA.op, 10, 12)));
724 break;
725 case FMA_FMINMAX:
726 case FMA_FMINMAX16:
727 fprintf(fp, "%s", bi_minmax_mode_name(bits(FMA.op, 10, 12)));
728 break;
729 default:
730 assert(0);
731 }
732 } else if (info.src_type == FMA_FCMP || info.src_type == FMA_FCMP16) {
733 dump_fcmp(fp, bits(FMA.op, 10, 13));
734 if (info.src_type == FMA_FCMP)
735 fprintf(fp, ".f32");
736 else
737 fprintf(fp, ".v2f16");
738 } else if (info.src_type == FMA_FMA_MSCALE) {
739 if (FMA.op & (1 << 11)) {
740 switch ((FMA.op >> 9) & 0x3) {
741 case 0:
742 /* This mode seems to do a few things:
743 * - Makes 0 * infinity (and incidentally 0 * nan) return 0,
744 * since generating a nan would poison the result of
745 * 1/infinity and 1/0.
746 * - Fiddles with which nan is returned in nan * nan,
747 * presumably to make sure that the same exact nan is
748 * returned for 1/nan.
749 */
750 fprintf(fp, ".rcp_mode");
751 break;
752 case 3:
753 /* Similar to the above, but src0 always wins when multiplying
754 * 0 by infinity.
755 */
756 fprintf(fp, ".sqrt_mode");
757 break;
758 default:
759 fprintf(fp, ".unk%d_mode", (int) (FMA.op >> 9) & 0x3);
760 }
761 } else {
762 fprintf(fp, "%s", bi_output_mod_name(bits(FMA.op, 9, 11)));
763 }
764 } else if (info.src_type == FMA_SHIFT) {
765 struct bifrost_shift_fma shift;
766 memcpy(&shift, &FMA, sizeof(shift));
767
768 if (shift.half == 0x7)
769 fprintf(fp, ".v2i16");
770 else if (shift.half == 0)
771 fprintf(fp, ".i32");
772 else if (shift.half == 0x4)
773 fprintf(fp, ".v4i8");
774 else
775 fprintf(fp, ".unk%u", shift.half);
776
777 if (!shift.unk)
778 fprintf(fp, ".no_unk");
779
780 if (shift.invert_1)
781 fprintf(fp, ".invert_1");
782
783 if (shift.invert_2)
784 fprintf(fp, ".invert_2");
785 }
786
787 fprintf(fp, " ");
788
789 struct bifrost_reg_ctrl next_ctrl = DecodeRegCtrl(fp, next_regs);
790 if (next_ctrl.fma_write_unit != REG_WRITE_NONE) {
791 fprintf(fp, "{R%d, T0}, ", GetRegToWrite(next_ctrl.fma_write_unit, next_regs));
792 } else {
793 fprintf(fp, "T0, ");
794 }
795
796 switch (info.src_type) {
797 case FMA_ONE_SRC:
798 dump_src(fp, FMA.src0, regs, consts, true);
799 break;
800 case FMA_TWO_SRC:
801 dump_src(fp, FMA.src0, regs, consts, true);
802 fprintf(fp, ", ");
803 dump_src(fp, FMA.op & 0x7, regs, consts, true);
804 break;
805 case FMA_FADD:
806 case FMA_FMINMAX:
807 if (FMA.op & 0x10)
808 fprintf(fp, "-");
809 if (FMA.op & 0x200)
810 fprintf(fp, "abs(");
811 dump_src(fp, FMA.src0, regs, consts, true);
812 dump_fma_expand_src0(fp, (FMA.op >> 6) & 0x7);
813 if (FMA.op & 0x200)
814 fprintf(fp, ")");
815 fprintf(fp, ", ");
816 if (FMA.op & 0x20)
817 fprintf(fp, "-");
818 if (FMA.op & 0x8)
819 fprintf(fp, "abs(");
820 dump_src(fp, FMA.op & 0x7, regs, consts, true);
821 dump_fma_expand_src1(fp, (FMA.op >> 6) & 0x7);
822 if (FMA.op & 0x8)
823 fprintf(fp, ")");
824 break;
825 case FMA_FADD16:
826 case FMA_FMINMAX16: {
827 bool abs1 = FMA.op & 0x8;
828 bool abs2 = (FMA.op & 0x7) < FMA.src0;
829 if (FMA.op & 0x10)
830 fprintf(fp, "-");
831 if (abs1 || abs2)
832 fprintf(fp, "abs(");
833 dump_src(fp, FMA.src0, regs, consts, true);
834 dump_16swizzle(fp, (FMA.op >> 6) & 0x3);
835 if (abs1 || abs2)
836 fprintf(fp, ")");
837 fprintf(fp, ", ");
838 if (FMA.op & 0x20)
839 fprintf(fp, "-");
840 if (abs1 && abs2)
841 fprintf(fp, "abs(");
842 dump_src(fp, FMA.op & 0x7, regs, consts, true);
843 dump_16swizzle(fp, (FMA.op >> 8) & 0x3);
844 if (abs1 && abs2)
845 fprintf(fp, ")");
846 break;
847 }
848 case FMA_FCMP:
849 if (FMA.op & 0x200)
850 fprintf(fp, "abs(");
851 dump_src(fp, FMA.src0, regs, consts, true);
852 dump_fma_expand_src0(fp, (FMA.op >> 6) & 0x7);
853 if (FMA.op & 0x200)
854 fprintf(fp, ")");
855 fprintf(fp, ", ");
856 if (FMA.op & 0x20)
857 fprintf(fp, "-");
858 if (FMA.op & 0x8)
859 fprintf(fp, "abs(");
860 dump_src(fp, FMA.op & 0x7, regs, consts, true);
861 dump_fma_expand_src1(fp, (FMA.op >> 6) & 0x7);
862 if (FMA.op & 0x8)
863 fprintf(fp, ")");
864 break;
865 case FMA_FCMP16:
866 dump_src(fp, FMA.src0, regs, consts, true);
867 // Note: this is kinda a guess, I haven't seen the blob set this to
868 // anything other than the identity, but it matches FMA_TWO_SRCFmod16
869 dump_16swizzle(fp, (FMA.op >> 6) & 0x3);
870 fprintf(fp, ", ");
871 dump_src(fp, FMA.op & 0x7, regs, consts, true);
872 dump_16swizzle(fp, (FMA.op >> 8) & 0x3);
873 break;
874 case FMA_SHIFT_ADD64:
875 dump_src(fp, FMA.src0, regs, consts, true);
876 fprintf(fp, ", ");
877 dump_src(fp, FMA.op & 0x7, regs, consts, true);
878 fprintf(fp, ", ");
879 fprintf(fp, "shift:%u", (FMA.op >> 3) & 0x7);
880 break;
881 case FMA_THREE_SRC:
882 dump_src(fp, FMA.src0, regs, consts, true);
883 fprintf(fp, ", ");
884 dump_src(fp, FMA.op & 0x7, regs, consts, true);
885 fprintf(fp, ", ");
886 dump_src(fp, (FMA.op >> 3) & 0x7, regs, consts, true);
887 break;
888 case FMA_SHIFT: {
889 struct bifrost_shift_fma shift;
890 memcpy(&shift, &FMA, sizeof(shift));
891
892 dump_src(fp, shift.src0, regs, consts, true);
893 fprintf(fp, ", ");
894 dump_src(fp, shift.src1, regs, consts, true);
895 fprintf(fp, ", ");
896 dump_src(fp, shift.src2, regs, consts, true);
897 break;
898 }
899 case FMA_FMA:
900 if (FMA.op & (1 << 14))
901 fprintf(fp, "-");
902 if (FMA.op & (1 << 9))
903 fprintf(fp, "abs(");
904 dump_src(fp, FMA.src0, regs, consts, true);
905 dump_fma_expand_src0(fp, (FMA.op >> 6) & 0x7);
906 if (FMA.op & (1 << 9))
907 fprintf(fp, ")");
908 fprintf(fp, ", ");
909 if (FMA.op & (1 << 16))
910 fprintf(fp, "abs(");
911 dump_src(fp, FMA.op & 0x7, regs, consts, true);
912 dump_fma_expand_src1(fp, (FMA.op >> 6) & 0x7);
913 if (FMA.op & (1 << 16))
914 fprintf(fp, ")");
915 fprintf(fp, ", ");
916 if (FMA.op & (1 << 15))
917 fprintf(fp, "-");
918 if (FMA.op & (1 << 17))
919 fprintf(fp, "abs(");
920 dump_src(fp, (FMA.op >> 3) & 0x7, regs, consts, true);
921 if (FMA.op & (1 << 17))
922 fprintf(fp, ")");
923 break;
924 case FMA_FMA16:
925 if (FMA.op & (1 << 14))
926 fprintf(fp, "-");
927 dump_src(fp, FMA.src0, regs, consts, true);
928 dump_16swizzle(fp, (FMA.op >> 6) & 0x3);
929 fprintf(fp, ", ");
930 dump_src(fp, FMA.op & 0x7, regs, consts, true);
931 dump_16swizzle(fp, (FMA.op >> 8) & 0x3);
932 fprintf(fp, ", ");
933 if (FMA.op & (1 << 15))
934 fprintf(fp, "-");
935 dump_src(fp, (FMA.op >> 3) & 0x7, regs, consts, true);
936 dump_16swizzle(fp, (FMA.op >> 16) & 0x3);
937 break;
938 case FMA_CSEL4: {
939 struct bifrost_csel4 csel;
940 memcpy(&csel, &FMA, sizeof(csel));
941 fprintf(fp, ".%s ", bi_csel_cond_name(csel.cond));
942
943 dump_src(fp, csel.src0, regs, consts, true);
944 fprintf(fp, ", ");
945 dump_src(fp, csel.src1, regs, consts, true);
946 fprintf(fp, ", ");
947 dump_src(fp, csel.src2, regs, consts, true);
948 fprintf(fp, ", ");
949 dump_src(fp, csel.src3, regs, consts, true);
950 break;
951 }
952 case FMA_FMA_MSCALE:
953 if (FMA.op & (1 << 12))
954 fprintf(fp, "abs(");
955 dump_src(fp, FMA.src0, regs, consts, true);
956 if (FMA.op & (1 << 12))
957 fprintf(fp, ")");
958 fprintf(fp, ", ");
959 if (FMA.op & (1 << 13))
960 fprintf(fp, "-");
961 dump_src(fp, FMA.op & 0x7, regs, consts, true);
962 fprintf(fp, ", ");
963 if (FMA.op & (1 << 14))
964 fprintf(fp, "-");
965 dump_src(fp, (FMA.op >> 3) & 0x7, regs, consts, true);
966 fprintf(fp, ", ");
967 dump_src(fp, (FMA.op >> 6) & 0x7, regs, consts, true);
968 break;
969 }
970 fprintf(fp, "\n");
971 }
972
973 static const struct add_op_info add_op_infos[] = {
974 { 0x00000, "MAX.f32", ADD_FMINMAX },
975 { 0x02000, "MIN.f32", ADD_FMINMAX },
976 { 0x04000, "ADD.f32", ADD_FADD },
977 { 0x06000, "FCMP.GL", ADD_FCMP },
978 { 0x07000, "FCMP.D3D", ADD_FCMP },
979 { 0x07856, "F16_TO_I16", ADD_ONE_SRC },
980 { 0x07857, "F16_TO_U16", ADD_ONE_SRC },
981 { 0x078c0, "I16_TO_F16.XX", ADD_ONE_SRC },
982 { 0x078c1, "U16_TO_F16.XX", ADD_ONE_SRC },
983 { 0x078c8, "I16_TO_F16.YX", ADD_ONE_SRC },
984 { 0x078c9, "U16_TO_F16.YX", ADD_ONE_SRC },
985 { 0x078d0, "I16_TO_F16.XY", ADD_ONE_SRC },
986 { 0x078d1, "U16_TO_F16.XY", ADD_ONE_SRC },
987 { 0x078d8, "I16_TO_F16.YY", ADD_ONE_SRC },
988 { 0x078d9, "U16_TO_F16.YY", ADD_ONE_SRC },
989 { 0x07909, "B1_TO_F16", ADD_ONE_SRC },
990 { 0x07936, "F32_TO_I32", ADD_ONE_SRC },
991 { 0x07937, "F32_TO_U32", ADD_ONE_SRC },
992 { 0x07971, "B1_TO_F32", ADD_ONE_SRC },
993 { 0x07978, "I32_TO_F32", ADD_ONE_SRC },
994 { 0x07979, "U32_TO_F32", ADD_ONE_SRC },
995 { 0x07998, "I16_TO_I32.X", ADD_ONE_SRC },
996 { 0x07999, "U16_TO_U32.X", ADD_ONE_SRC },
997 { 0x0799a, "I16_TO_I32.Y", ADD_ONE_SRC },
998 { 0x0799b, "U16_TO_U32.Y", ADD_ONE_SRC },
999 { 0x0799c, "I16_TO_F32.X", ADD_ONE_SRC },
1000 { 0x0799d, "U16_TO_F32.X", ADD_ONE_SRC },
1001 { 0x0799e, "I16_TO_F32.Y", ADD_ONE_SRC },
1002 { 0x0799f, "U16_TO_F32.Y", ADD_ONE_SRC },
1003 { 0x079a2, "F16_TO_F32.X", ADD_ONE_SRC },
1004 { 0x079a3, "F16_TO_F32.Y", ADD_ONE_SRC },
1005 { 0x07b2b, "SWZ.YX.v2i16", ADD_ONE_SRC },
1006 { 0x07b2c, "NOP", ADD_ONE_SRC },
1007 { 0x07b29, "SWZ.XX.v2i16", ADD_ONE_SRC },
1008 { 0x07b2d, "MOV", ADD_ONE_SRC },
1009 { 0x07b2f, "SWZ.YY.v2i16", ADD_ONE_SRC },
1010 { 0x07b65, "FRCP_FREXPM", ADD_ONE_SRC },
1011 { 0x07b75, "FSQRT_FREXPM", ADD_ONE_SRC },
1012 { 0x07b8d, "FRCP_FREXPE", ADD_ONE_SRC },
1013 { 0x07ba5, "FSQRT_FREXPE", ADD_ONE_SRC },
1014 { 0x07bad, "FRSQ_FREXPE", ADD_ONE_SRC },
1015 { 0x07bc5, "FLOG_FREXPE", ADD_ONE_SRC },
1016 { 0x07d42, "CEIL.v2f16", ADD_ONE_SRC },
1017 { 0x07d45, "CEIL.f32", ADD_ONE_SRC },
1018 { 0x07d82, "FLOOR.v2f16", ADD_ONE_SRC },
1019 { 0x07d85, "FLOOR.f32", ADD_ONE_SRC },
1020 { 0x07dc2, "TRUNC.v2f16", ADD_ONE_SRC },
1021 { 0x07dc5, "TRUNC.f32", ADD_ONE_SRC },
1022 { 0x07f18, "LSHIFT_ADD_HIGH32.i32", ADD_TWO_SRC },
1023 { 0x08000, "LD_ATTR", ADD_LOAD_ATTR, true },
1024 { 0x0a000, "LD_VAR.32", ADD_VARYING_INTERP, true },
1025 { 0x0b000, "TEXC", ADD_TEX_COMPACT, true },
1026 { 0x0b400, "TEXC.vtx", ADD_TEX_COMPACT, true },
1027 { 0x0c188, "LOAD.i32", ADD_TWO_SRC, true },
1028 { 0x0c1a0, "LD_UBO.i32", ADD_TWO_SRC, true },
1029 { 0x0c1b8, "LD_SCRATCH.v2i32", ADD_TWO_SRC, true },
1030 { 0x0c1c8, "LOAD.v2i32", ADD_TWO_SRC, true },
1031 { 0x0c1e0, "LD_UBO.v2i32", ADD_TWO_SRC, true },
1032 { 0x0c1f8, "LD_SCRATCH.v2i32", ADD_TWO_SRC, true },
1033 { 0x0c208, "LOAD.v4i32", ADD_TWO_SRC, true },
1034 { 0x0c220, "LD_UBO.v4i32", ADD_TWO_SRC, true },
1035 { 0x0c238, "LD_SCRATCH.v4i32", ADD_TWO_SRC, true },
1036 { 0x0c248, "STORE.v4i32", ADD_TWO_SRC, true },
1037 { 0x0c278, "ST_SCRATCH.v4i32", ADD_TWO_SRC, true },
1038 { 0x0c588, "STORE.i32", ADD_TWO_SRC, true },
1039 { 0x0c5b8, "ST_SCRATCH.i32", ADD_TWO_SRC, true },
1040 { 0x0c5c8, "STORE.v2i32", ADD_TWO_SRC, true },
1041 { 0x0c5f8, "ST_SCRATCH.v2i32", ADD_TWO_SRC, true },
1042 { 0x0c648, "LOAD.u16", ADD_TWO_SRC, true }, // zero-extends
1043 { 0x0ca88, "LOAD.v3i32", ADD_TWO_SRC, true },
1044 { 0x0caa0, "LD_UBO.v3i32", ADD_TWO_SRC, true },
1045 { 0x0cab8, "LD_SCRATCH.v3i32", ADD_TWO_SRC, true },
1046 { 0x0cb88, "STORE.v3i32", ADD_TWO_SRC, true },
1047 { 0x0cbb8, "ST_SCRATCH.v3i32", ADD_TWO_SRC, true },
1048 { 0x0cc00, "FRCP_FAST.f32", ADD_ONE_SRC },
1049 { 0x0cc20, "FRSQ_FAST.f32", ADD_ONE_SRC },
1050 { 0x0cc68, "FLOG2_U.f32", ADD_ONE_SRC },
1051 { 0x0cd58, "FEXP2_FAST.f32", ADD_ONE_SRC },
1052 { 0x0ce00, "FRCP_TABLE", ADD_ONE_SRC },
1053 { 0x0ce10, "FRCP_FAST.f16.X", ADD_ONE_SRC },
1054 { 0x0ce20, "FRSQ_TABLE", ADD_ONE_SRC },
1055 { 0x0ce30, "FRCP_FAST.f16.Y", ADD_ONE_SRC },
1056 { 0x0ce50, "FRSQ_FAST.f16.X", ADD_ONE_SRC },
1057 { 0x0ce60, "FRCP_APPROX", ADD_ONE_SRC },
1058 { 0x0ce70, "FRSQ_FAST.f16.Y", ADD_ONE_SRC },
1059 { 0x0cf40, "ATAN_ASSIST", ADD_TWO_SRC },
1060 { 0x0cf48, "ATAN_TABLE", ADD_TWO_SRC },
1061 { 0x0cf50, "SIN_TABLE", ADD_ONE_SRC },
1062 { 0x0cf51, "COS_TABLE", ADD_ONE_SRC },
1063 { 0x0cf58, "EXP_TABLE", ADD_ONE_SRC },
1064 { 0x0cf60, "FLOG2_TABLE", ADD_ONE_SRC },
1065 { 0x0cf64, "FLOGE_TABLE", ADD_ONE_SRC },
1066 { 0x0d000, "BRANCH", ADD_BRANCH },
1067 { 0x0e8c0, "MUX", ADD_THREE_SRC },
1068 { 0x0e9b0, "ATAN_LDEXP.Y.f32", ADD_TWO_SRC },
1069 { 0x0e9b8, "ATAN_LDEXP.X.f32", ADD_TWO_SRC },
1070 { 0x0ea60, "SEL.XX.i16", ADD_TWO_SRC },
1071 { 0x0ea70, "SEL.XY.i16", ADD_TWO_SRC },
1072 { 0x0ea68, "SEL.YX.i16", ADD_TWO_SRC },
1073 { 0x0ea78, "SEL.YY.i16", ADD_TWO_SRC },
1074 { 0x0ec00, "F32_TO_F16", ADD_TWO_SRC },
1075 { 0x0e840, "CSEL.64", ADD_THREE_SRC }, // u2u32(src2) ? src0 : src1
1076 { 0x0e940, "CSEL.8", ADD_THREE_SRC }, // (src2 != 0) ? src0 : src1
1077 { 0x0f640, "ICMP.GL.GT", ADD_TWO_SRC }, // src0 > src1 ? 1 : 0
1078 { 0x0f648, "ICMP.GL.GE", ADD_TWO_SRC },
1079 { 0x0f650, "UCMP.GL.GT", ADD_TWO_SRC },
1080 { 0x0f658, "UCMP.GL.GE", ADD_TWO_SRC },
1081 { 0x0f660, "ICMP.GL.EQ", ADD_TWO_SRC },
1082 { 0x0f669, "ICMP.GL.NEQ", ADD_TWO_SRC },
1083 { 0x0f690, "UCMP.8.GT", ADD_TWO_SRC },
1084 { 0x0f698, "UCMP.8.GE", ADD_TWO_SRC },
1085 { 0x0f6a8, "ICMP.8.NE", ADD_TWO_SRC },
1086 { 0x0f6c0, "ICMP.D3D.GT", ADD_TWO_SRC }, // src0 > src1 ? ~0 : 0
1087 { 0x0f6c8, "ICMP.D3D.GE", ADD_TWO_SRC },
1088 { 0x0f6d0, "UCMP.D3D.GT", ADD_TWO_SRC },
1089 { 0x0f6d8, "UCMP.D3D.GE", ADD_TWO_SRC },
1090 { 0x0f6e0, "ICMP.D3D.EQ", ADD_TWO_SRC },
1091 { 0x0f700, "ICMP.64.GT.PT1", ADD_TWO_SRC },
1092 { 0x0f708, "ICMP.64.GE.PT1", ADD_TWO_SRC },
1093 { 0x0f710, "UCMP.64.GT.PT1", ADD_TWO_SRC },
1094 { 0x0f718, "UCMP.64.GE.PT1", ADD_TWO_SRC },
1095 { 0x0f720, "ICMP.64.EQ.PT1", ADD_TWO_SRC },
1096 { 0x0f728, "ICMP.64.NE.PT1", ADD_TWO_SRC },
1097 { 0x0f7c0, "ICMP.64.PT2", ADD_THREE_SRC }, // src3 = result of PT1
1098 { 0x10000, "MAX.v2f16", ADD_FMINMAX16 },
1099 { 0x11000, "ADD_MSCALE.f32", ADD_FADDMscale },
1100 { 0x12000, "MIN.v2f16", ADD_FMINMAX16 },
1101 { 0x14000, "ADD.v2f16", ADD_FADD16 },
1102 { 0x16000, "FCMP.GL", ADD_FCMP16 },
1103 { 0x17000, "FCMP.D3D", ADD_FCMP16 },
1104 { 0x17880, "ADD.v4i8", ADD_TWO_SRC },
1105 { 0x178c0, "ADD.i32", ADD_TWO_SRC },
1106 { 0x17900, "ADD.v2i16", ADD_TWO_SRC },
1107 { 0x17a80, "SUB.v4i8", ADD_TWO_SRC },
1108 { 0x17ac0, "SUB.i32", ADD_TWO_SRC },
1109 { 0x17b00, "SUB.v2i16", ADD_TWO_SRC },
1110 { 0x17c10, "ADDC.i32", ADD_TWO_SRC }, // adds src0 to the bottom bit of src1
1111 { 0x17d80, "ADD.i32.i16.X", ADD_TWO_SRC },
1112 { 0x17d90, "ADD.i32.u16.X", ADD_TWO_SRC },
1113 { 0x17dc0, "ADD.i32.i16.Y", ADD_TWO_SRC },
1114 { 0x17dd0, "ADD.i32.u16.Y", ADD_TWO_SRC },
1115 { 0x18000, "LD_VAR_ADDR", ADD_VARYING_ADDRESS, false },
1116 { 0x19100, "DISCARD.FEQ.f16", ADD_TWO_SRC, false },
1117 { 0x19108, "DISCARD.FNE.f16", ADD_TWO_SRC, false },
1118 { 0x19110, "DISCARD.FLE.f16", ADD_TWO_SRC, false },
1119 { 0x19118, "DISCARD.FLT.f16", ADD_TWO_SRC, false },
1120 { 0x19180, "DISCARD.FEQ.f32", ADD_TWO_SRC, false },
1121 { 0x19188, "DISCARD.FNE.f32", ADD_TWO_SRC, false },
1122 { 0x19190, "DISCARD.FLE.f32", ADD_TWO_SRC, false },
1123 { 0x19198, "DISCARD.FLT.f32", ADD_TWO_SRC, false },
1124 { 0x191e8, "ATEST.f32", ADD_TWO_SRC, true },
1125 { 0x191f0, "ATEST.X.f16", ADD_TWO_SRC, true },
1126 { 0x191f8, "ATEST.Y.f16", ADD_TWO_SRC, true },
1127 { 0x19300, "ST_VAR.v1", ADD_THREE_SRC, true },
1128 { 0x19340, "ST_VAR.v2", ADD_THREE_SRC, true },
1129 { 0x19380, "ST_VAR.v3", ADD_THREE_SRC, true },
1130 { 0x193c0, "ST_VAR.v4", ADD_THREE_SRC, true },
1131 { 0x1952c, "BLEND", ADD_BLENDING, true },
1132 { 0x1a000, "LD_VAR.16", ADD_VARYING_INTERP, true },
1133 { 0x1ae20, "TEX.vtx", ADD_TEX, true },
1134 { 0x1ae60, "TEX", ADD_TEX, true },
1135 { 0x1b000, "TEXC.f16", ADD_TEX_COMPACT, true },
1136 { 0x1b400, "TEXC.vtx.f16", ADD_TEX_COMPACT, true },
1137 { 0x1c000, "RSHIFT_NAND.i32", ADD_SHIFT },
1138 { 0x1c400, "RSHIFT_AND.i32", ADD_SHIFT },
1139 { 0x1c800, "LSHIFT_NAND.i32", ADD_SHIFT },
1140 { 0x1cc00, "LSHIFT_AND.i32", ADD_SHIFT },
1141 { 0x1d000, "RSHIFT_XOR.i32", ADD_SHIFT },
1142 { 0x1d400, "LSHIFT_ADD.i32", ADD_SHIFT },
1143 { 0x1d800, "RSHIFT_SUB.i32", ADD_SHIFT },
1144 { 0x1dd18, "OR.i32", ADD_TWO_SRC },
1145 { 0x1dd20, "AND.i32", ADD_TWO_SRC },
1146 { 0x1dd60, "LSHIFT.i32", ADD_TWO_SRC },
1147 { 0x1dd50, "XOR.i32", ADD_TWO_SRC },
1148 { 0x1dd80, "RSHIFT.i32", ADD_TWO_SRC },
1149 { 0x1dda0, "ARSHIFT.i32", ADD_TWO_SRC },
1150 };
1151
1152 static struct add_op_info find_add_op_info(unsigned op)
1153 {
1154 for (unsigned i = 0; i < ARRAY_SIZE(add_op_infos); i++) {
1155 unsigned opCmp = ~0;
1156 switch (add_op_infos[i].src_type) {
1157 case ADD_ONE_SRC:
1158 case ADD_BLENDING:
1159 opCmp = op;
1160 break;
1161 case ADD_TWO_SRC:
1162 opCmp = op & ~0x7;
1163 break;
1164 case ADD_THREE_SRC:
1165 opCmp = op & ~0x3f;
1166 break;
1167 case ADD_SHIFT:
1168 opCmp = op & ~0x3ff;
1169 break;
1170 case ADD_TEX:
1171 opCmp = op & ~0xf;
1172 break;
1173 case ADD_FADD:
1174 case ADD_FMINMAX:
1175 case ADD_FADD16:
1176 opCmp = op & ~0x1fff;
1177 break;
1178 case ADD_FMINMAX16:
1179 case ADD_FADDMscale:
1180 opCmp = op & ~0xfff;
1181 break;
1182 case ADD_FCMP:
1183 case ADD_FCMP16:
1184 opCmp = op & ~0x7ff;
1185 break;
1186 case ADD_TEX_COMPACT:
1187 opCmp = op & ~0x3ff;
1188 break;
1189 case ADD_VARYING_INTERP:
1190 opCmp = op & ~0x7ff;
1191 break;
1192 case ADD_VARYING_ADDRESS:
1193 opCmp = op & ~0xfff;
1194 break;
1195 case ADD_LOAD_ATTR:
1196 case ADD_BRANCH:
1197 opCmp = op & ~0xfff;
1198 break;
1199 default:
1200 opCmp = ~0;
1201 break;
1202 }
1203 if (add_op_infos[i].op == opCmp)
1204 return add_op_infos[i];
1205 }
1206
1207 struct add_op_info info;
1208 snprintf(info.name, sizeof(info.name), "op%04x", op);
1209 info.op = op;
1210 info.src_type = ADD_TWO_SRC;
1211 info.has_data_reg = true;
1212 return info;
1213 }
1214
1215 static void dump_add(FILE *fp, uint64_t word, struct bifrost_regs regs,
1216 struct bifrost_regs next_regs, uint64_t *consts,
1217 unsigned data_reg, unsigned offset, bool verbose)
1218 {
1219 if (verbose) {
1220 fprintf(fp, "# ADD: %016" PRIx64 "\n", word);
1221 }
1222 struct bifrost_add_inst ADD;
1223 memcpy((char *) &ADD, (char *) &word, sizeof(ADD));
1224 struct add_op_info info = find_add_op_info(ADD.op);
1225
1226 fprintf(fp, "%s", info.name);
1227
1228 // float16 seems like it doesn't support output modifiers
1229 if (info.src_type == ADD_FADD || info.src_type == ADD_FMINMAX) {
1230 // output modifiers
1231 fprintf(fp, "%s", bi_output_mod_name(bits(ADD.op, 8, 10)));
1232 if (info.src_type == ADD_FADD)
1233 fprintf(fp, "%s", bi_round_mode_name(bits(ADD.op, 10, 12)));
1234 else
1235 fprintf(fp, "%s", bi_minmax_mode_name(bits(ADD.op, 10, 12)));
1236 } else if (info.src_type == ADD_FCMP || info.src_type == ADD_FCMP16) {
1237 dump_fcmp(fp, bits(ADD.op, 3, 6));
1238 if (info.src_type == ADD_FCMP)
1239 fprintf(fp, ".f32");
1240 else
1241 fprintf(fp, ".v2f16");
1242 } else if (info.src_type == ADD_FADDMscale) {
1243 switch ((ADD.op >> 6) & 0x7) {
1244 case 0:
1245 break;
1246 // causes GPU hangs on G71
1247 case 1:
1248 fprintf(fp, ".invalid");
1249 break;
1250 // Same as usual outmod value.
1251 case 2:
1252 fprintf(fp, ".clamp_0_1");
1253 break;
1254 // If src0 is infinite or NaN, flush it to zero so that the other
1255 // source is passed through unmodified.
1256 case 3:
1257 fprintf(fp, ".flush_src0_inf_nan");
1258 break;
1259 // Vice versa.
1260 case 4:
1261 fprintf(fp, ".flush_src1_inf_nan");
1262 break;
1263 // Every other case seems to behave the same as the above?
1264 default:
1265 fprintf(fp, ".unk%d", (ADD.op >> 6) & 0x7);
1266 break;
1267 }
1268 } else if (info.src_type == ADD_VARYING_INTERP) {
1269 if (ADD.op & 0x200)
1270 fprintf(fp, ".reuse");
1271 if (ADD.op & 0x400)
1272 fprintf(fp, ".flat");
1273 fprintf(fp, "%s", bi_interp_mode_name((ADD.op >> 7) & 0x3));
1274 fprintf(fp, ".v%d", ((ADD.op >> 5) & 0x3) + 1);
1275 } else if (info.src_type == ADD_BRANCH) {
1276 enum bifrost_branch_code branchCode = (enum bifrost_branch_code) ((ADD.op >> 6) & 0x3f);
1277 if (branchCode == BR_ALWAYS) {
1278 // unconditional branch
1279 } else {
1280 enum bifrost_branch_cond cond = (enum bifrost_branch_cond) ((ADD.op >> 6) & 0x7);
1281 enum branch_bit_size size = (enum branch_bit_size) ((ADD.op >> 9) & 0x7);
1282 bool portSwapped = (ADD.op & 0x7) < ADD.src0;
1283 // See the comment in branch_bit_size
1284 if (size == BR_SIZE_16YX0)
1285 portSwapped = true;
1286 if (size == BR_SIZE_16YX1)
1287 portSwapped = false;
1288 // These sizes are only for floating point comparisons, so the
1289 // non-floating-point comparisons are reused to encode the flipped
1290 // versions.
1291 if (size == BR_SIZE_32_AND_16X || size == BR_SIZE_32_AND_16Y)
1292 portSwapped = false;
1293 // There's only one argument, so we reuse the extra argument to
1294 // encode this.
1295 if (size == BR_SIZE_ZERO)
1296 portSwapped = !(ADD.op & 1);
1297
1298 switch (cond) {
1299 case BR_COND_LT:
1300 if (portSwapped)
1301 fprintf(fp, ".LT.u");
1302 else
1303 fprintf(fp, ".LT.i");
1304 break;
1305 case BR_COND_LE:
1306 if (size == BR_SIZE_32_AND_16X || size == BR_SIZE_32_AND_16Y) {
1307 fprintf(fp, ".UNE.f");
1308 } else {
1309 if (portSwapped)
1310 fprintf(fp, ".LE.u");
1311 else
1312 fprintf(fp, ".LE.i");
1313 }
1314 break;
1315 case BR_COND_GT:
1316 if (portSwapped)
1317 fprintf(fp, ".GT.u");
1318 else
1319 fprintf(fp, ".GT.i");
1320 break;
1321 case BR_COND_GE:
1322 if (portSwapped)
1323 fprintf(fp, ".GE.u");
1324 else
1325 fprintf(fp, ".GE.i");
1326 break;
1327 case BR_COND_EQ:
1328 if (portSwapped)
1329 fprintf(fp, ".NE.i");
1330 else
1331 fprintf(fp, ".EQ.i");
1332 break;
1333 case BR_COND_OEQ:
1334 if (portSwapped)
1335 fprintf(fp, ".UNE.f");
1336 else
1337 fprintf(fp, ".OEQ.f");
1338 break;
1339 case BR_COND_OGT:
1340 if (portSwapped)
1341 fprintf(fp, ".OGT.unk.f");
1342 else
1343 fprintf(fp, ".OGT.f");
1344 break;
1345 case BR_COND_OLT:
1346 if (portSwapped)
1347 fprintf(fp, ".OLT.unk.f");
1348 else
1349 fprintf(fp, ".OLT.f");
1350 break;
1351 }
1352 switch (size) {
1353 case BR_SIZE_32:
1354 case BR_SIZE_32_AND_16X:
1355 case BR_SIZE_32_AND_16Y:
1356 fprintf(fp, "32");
1357 break;
1358 case BR_SIZE_16XX:
1359 case BR_SIZE_16YY:
1360 case BR_SIZE_16YX0:
1361 case BR_SIZE_16YX1:
1362 fprintf(fp, "16");
1363 break;
1364 case BR_SIZE_ZERO: {
1365 unsigned ctrl = (ADD.op >> 1) & 0x3;
1366 if (ctrl == 0)
1367 fprintf(fp, "32.Z");
1368 else
1369 fprintf(fp, "16.Z");
1370 break;
1371 }
1372 }
1373 }
1374 } else if (info.src_type == ADD_SHIFT) {
1375 struct bifrost_shift_add shift;
1376 memcpy(&shift, &ADD, sizeof(ADD));
1377
1378 if (shift.invert_1)
1379 fprintf(fp, ".invert_1");
1380
1381 if (shift.invert_2)
1382 fprintf(fp, ".invert_2");
1383
1384 if (shift.zero)
1385 fprintf(fp, ".unk%u", shift.zero);
1386 } else if (info.src_type == ADD_VARYING_ADDRESS) {
1387 struct bifrost_ld_var_addr ld;
1388 memcpy(&ld, &ADD, sizeof(ADD));
1389 fprintf(fp, ".%s", bi_ldst_type_name(ld.type));
1390 } else if (info.src_type == ADD_LOAD_ATTR) {
1391 struct bifrost_ld_attr ld;
1392 memcpy(&ld, &ADD, sizeof(ADD));
1393
1394 if (ld.channels)
1395 fprintf(fp, ".v%d%s", ld.channels + 1, bi_ldst_type_name(ld.type));
1396 else
1397 fprintf(fp, ".%s", bi_ldst_type_name(ld.type));
1398 }
1399
1400 fprintf(fp, " ");
1401
1402 struct bifrost_reg_ctrl next_ctrl = DecodeRegCtrl(fp, next_regs);
1403 if (next_ctrl.add_write_unit != REG_WRITE_NONE) {
1404 fprintf(fp, "{R%d, T1}, ", GetRegToWrite(next_ctrl.add_write_unit, next_regs));
1405 } else {
1406 fprintf(fp, "T1, ");
1407 }
1408
1409 switch (info.src_type) {
1410 case ADD_BLENDING:
1411 // Note: in this case, regs.uniform_const == location | 0x8
1412 // This probably means we can't load uniforms or immediates in the
1413 // same instruction. This re-uses the encoding that normally means
1414 // "disabled", where the low 4 bits are ignored. Perhaps the extra
1415 // 0x8 or'd in indicates this is happening.
1416 fprintf(fp, "location:%d, ", regs.uniform_const & 0x7);
1417 // fallthrough
1418 case ADD_ONE_SRC:
1419 dump_src(fp, ADD.src0, regs, consts, false);
1420 break;
1421 case ADD_TEX:
1422 case ADD_TEX_COMPACT: {
1423 int tex_index;
1424 int sampler_index;
1425 bool dualTex = false;
1426
1427 fprintf(fp, "coords <");
1428 dump_src(fp, ADD.src0, regs, consts, false);
1429 fprintf(fp, ", ");
1430 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1431 fprintf(fp, ">, ");
1432
1433 if (info.src_type == ADD_TEX_COMPACT) {
1434 tex_index = (ADD.op >> 3) & 0x7;
1435 sampler_index = (ADD.op >> 7) & 0x7;
1436 bool compute_lod = (ADD.op & 0x40);
1437 if (!compute_lod)
1438 fprintf(fp, "vtx lod 0 ");
1439 } else {
1440 uint64_t constVal = get_const(consts, regs);
1441 uint32_t controlBits = (ADD.op & 0x8) ? (constVal >> 32) : constVal;
1442 struct bifrost_tex_ctrl ctrl;
1443 memcpy((char *) &ctrl, (char *) &controlBits, sizeof(ctrl));
1444
1445 /* Dual-tex triggered for adjacent texturing
1446 * instructions with the same coordinates to different
1447 * textures/samplers. Observed for the compact
1448 * (2D/normal) case. */
1449
1450 if ((ctrl.result_type & 7) == 1) {
1451 bool f32 = ctrl.result_type & 8;
1452
1453 struct bifrost_dual_tex_ctrl dualCtrl;
1454 memcpy((char *) &dualCtrl, (char *) &controlBits, sizeof(ctrl));
1455 fprintf(fp, "(dualtex) tex0:%d samp0:%d tex1:%d samp1:%d %s",
1456 dualCtrl.tex_index0, dualCtrl.sampler_index0,
1457 dualCtrl.tex_index1, dualCtrl.sampler_index1,
1458 f32 ? "f32" : "f16");
1459 if (dualCtrl.unk0 != 3)
1460 fprintf(fp, "unk:%d ", dualCtrl.unk0);
1461 dualTex = true;
1462 } else {
1463 if (ctrl.no_merge_index) {
1464 tex_index = ctrl.tex_index;
1465 sampler_index = ctrl.sampler_index;
1466 } else {
1467 tex_index = sampler_index = ctrl.tex_index;
1468 unsigned unk = ctrl.sampler_index >> 2;
1469 if (unk != 3)
1470 fprintf(fp, "unk:%d ", unk);
1471 if (ctrl.sampler_index & 1)
1472 tex_index = -1;
1473 if (ctrl.sampler_index & 2)
1474 sampler_index = -1;
1475 }
1476
1477 if (ctrl.unk0 != 3)
1478 fprintf(fp, "unk0:%d ", ctrl.unk0);
1479 if (ctrl.unk1)
1480 fprintf(fp, "unk1 ");
1481 if (ctrl.unk2 != 0xf)
1482 fprintf(fp, "unk2:%x ", ctrl.unk2);
1483
1484 switch (ctrl.result_type) {
1485 case 0x4:
1486 fprintf(fp, "f32 ");
1487 break;
1488 case 0xe:
1489 fprintf(fp, "i32 ");
1490 break;
1491 case 0xf:
1492 fprintf(fp, "u32 ");
1493 break;
1494 default:
1495 fprintf(fp, "unktype(%x) ", ctrl.result_type);
1496 }
1497
1498 switch (ctrl.tex_type) {
1499 case 0:
1500 fprintf(fp, "cube ");
1501 break;
1502 case 1:
1503 fprintf(fp, "buffer ");
1504 break;
1505 case 2:
1506 fprintf(fp, "2D ");
1507 break;
1508 case 3:
1509 fprintf(fp, "3D ");
1510 break;
1511 }
1512
1513 if (ctrl.is_shadow)
1514 fprintf(fp, "shadow ");
1515 if (ctrl.is_array)
1516 fprintf(fp, "array ");
1517
1518 if (!ctrl.filter) {
1519 if (ctrl.calc_gradients) {
1520 int comp = (controlBits >> 20) & 0x3;
1521 fprintf(fp, "txg comp:%d ", comp);
1522 } else {
1523 fprintf(fp, "txf ");
1524 }
1525 } else {
1526 if (!ctrl.not_supply_lod) {
1527 if (ctrl.compute_lod)
1528 fprintf(fp, "lod_bias ");
1529 else
1530 fprintf(fp, "lod ");
1531 }
1532
1533 if (!ctrl.calc_gradients)
1534 fprintf(fp, "grad ");
1535 }
1536
1537 if (ctrl.texel_offset)
1538 fprintf(fp, "offset ");
1539 }
1540 }
1541
1542 if (!dualTex) {
1543 if (tex_index == -1)
1544 fprintf(fp, "tex:indirect ");
1545 else
1546 fprintf(fp, "tex:%d ", tex_index);
1547
1548 if (sampler_index == -1)
1549 fprintf(fp, "samp:indirect ");
1550 else
1551 fprintf(fp, "samp:%d ", sampler_index);
1552 }
1553 break;
1554 }
1555 case ADD_VARYING_INTERP: {
1556 unsigned addr = ADD.op & 0x1f;
1557 if (addr < 0b10100) {
1558 // direct addr
1559 fprintf(fp, "%d", addr);
1560 } else if (addr < 0b11000) {
1561 if (addr == 20)
1562 fprintf(fp, "pointcoord");
1563 else if (addr == 22)
1564 fprintf(fp, "fragw");
1565 else if (addr == 23)
1566 fprintf(fp, "fragz");
1567 else
1568 fprintf(fp, "unk%d", addr);
1569 } else {
1570 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1571 }
1572 fprintf(fp, ", ");
1573 dump_src(fp, ADD.src0, regs, consts, false);
1574 break;
1575 }
1576 case ADD_VARYING_ADDRESS: {
1577 dump_src(fp, ADD.src0, regs, consts, false);
1578 fprintf(fp, ", ");
1579 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1580 fprintf(fp, ", ");
1581 unsigned location = (ADD.op >> 3) & 0x1f;
1582 if (location < 16) {
1583 fprintf(fp, "location:%d", location);
1584 } else if (location == 20) {
1585 fprintf(fp, "location:%u", (uint32_t) get_const(consts, regs));
1586 } else if (location == 21) {
1587 fprintf(fp, "location:%u", (uint32_t) (get_const(consts, regs) >> 32));
1588 } else {
1589 fprintf(fp, "location:%d(unk)", location);
1590 }
1591 break;
1592 }
1593 case ADD_LOAD_ATTR:
1594 fprintf(fp, "location:%d, ", (ADD.op >> 3) & 0x1f);
1595 /* fallthrough */
1596 case ADD_TWO_SRC:
1597 dump_src(fp, ADD.src0, regs, consts, false);
1598 fprintf(fp, ", ");
1599 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1600 break;
1601 case ADD_THREE_SRC:
1602 dump_src(fp, ADD.src0, regs, consts, false);
1603 fprintf(fp, ", ");
1604 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1605 fprintf(fp, ", ");
1606 dump_src(fp, (ADD.op >> 3) & 0x7, regs, consts, false);
1607 break;
1608 case ADD_SHIFT: {
1609 struct bifrost_shift_add shift;
1610 memcpy(&shift, &ADD, sizeof(ADD));
1611 dump_src(fp, shift.src0, regs, consts, false);
1612 fprintf(fp, ", ");
1613 dump_src(fp, shift.src1, regs, consts, false);
1614 fprintf(fp, ", ");
1615 dump_src(fp, shift.src2, regs, consts, false);
1616 break;
1617 }
1618 case ADD_FADD:
1619 case ADD_FMINMAX:
1620 if (ADD.op & 0x10)
1621 fprintf(fp, "-");
1622 if (ADD.op & 0x1000)
1623 fprintf(fp, "abs(");
1624 dump_src(fp, ADD.src0, regs, consts, false);
1625 switch ((ADD.op >> 6) & 0x3) {
1626 case 3:
1627 fprintf(fp, ".x");
1628 break;
1629 default:
1630 break;
1631 }
1632 if (ADD.op & 0x1000)
1633 fprintf(fp, ")");
1634 fprintf(fp, ", ");
1635 if (ADD.op & 0x20)
1636 fprintf(fp, "-");
1637 if (ADD.op & 0x8)
1638 fprintf(fp, "abs(");
1639 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1640 switch ((ADD.op >> 6) & 0x3) {
1641 case 1:
1642 case 3:
1643 fprintf(fp, ".x");
1644 break;
1645 case 2:
1646 fprintf(fp, ".y");
1647 break;
1648 case 0:
1649 break;
1650 default:
1651 fprintf(fp, ".unk");
1652 break;
1653 }
1654 if (ADD.op & 0x8)
1655 fprintf(fp, ")");
1656 break;
1657 case ADD_FADD16:
1658 if (ADD.op & 0x10)
1659 fprintf(fp, "-");
1660 if (ADD.op & 0x1000)
1661 fprintf(fp, "abs(");
1662 dump_src(fp, ADD.src0, regs, consts, false);
1663 if (ADD.op & 0x1000)
1664 fprintf(fp, ")");
1665 dump_16swizzle(fp, (ADD.op >> 6) & 0x3);
1666 fprintf(fp, ", ");
1667 if (ADD.op & 0x20)
1668 fprintf(fp, "-");
1669 if (ADD.op & 0x8)
1670 fprintf(fp, "abs(");
1671 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1672 dump_16swizzle(fp, (ADD.op >> 8) & 0x3);
1673 if (ADD.op & 0x8)
1674 fprintf(fp, ")");
1675 break;
1676 case ADD_FMINMAX16: {
1677 bool abs1 = ADD.op & 0x8;
1678 bool abs2 = (ADD.op & 0x7) < ADD.src0;
1679 if (ADD.op & 0x10)
1680 fprintf(fp, "-");
1681 if (abs1 || abs2)
1682 fprintf(fp, "abs(");
1683 dump_src(fp, ADD.src0, regs, consts, false);
1684 dump_16swizzle(fp, (ADD.op >> 6) & 0x3);
1685 if (abs1 || abs2)
1686 fprintf(fp, ")");
1687 fprintf(fp, ", ");
1688 if (ADD.op & 0x20)
1689 fprintf(fp, "-");
1690 if (abs1 && abs2)
1691 fprintf(fp, "abs(");
1692 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1693 dump_16swizzle(fp, (ADD.op >> 8) & 0x3);
1694 if (abs1 && abs2)
1695 fprintf(fp, ")");
1696 fprintf(fp, "/* %X */\n", (ADD.op >> 10) & 0x3); /* mode */
1697 break;
1698 }
1699 case ADD_FADDMscale: {
1700 if (ADD.op & 0x400)
1701 fprintf(fp, "-");
1702 if (ADD.op & 0x200)
1703 fprintf(fp, "abs(");
1704 dump_src(fp, ADD.src0, regs, consts, false);
1705 if (ADD.op & 0x200)
1706 fprintf(fp, ")");
1707
1708 fprintf(fp, ", ");
1709
1710 if (ADD.op & 0x800)
1711 fprintf(fp, "-");
1712 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1713
1714 fprintf(fp, ", ");
1715
1716 dump_src(fp, (ADD.op >> 3) & 0x7, regs, consts, false);
1717 break;
1718 }
1719 case ADD_FCMP:
1720 if (ADD.op & 0x400) {
1721 fprintf(fp, "-");
1722 }
1723 if (ADD.op & 0x100) {
1724 fprintf(fp, "abs(");
1725 }
1726 dump_src(fp, ADD.src0, regs, consts, false);
1727 switch ((ADD.op >> 6) & 0x3) {
1728 case 3:
1729 fprintf(fp, ".x");
1730 break;
1731 default:
1732 break;
1733 }
1734 if (ADD.op & 0x100) {
1735 fprintf(fp, ")");
1736 }
1737 fprintf(fp, ", ");
1738 if (ADD.op & 0x200) {
1739 fprintf(fp, "abs(");
1740 }
1741 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1742 switch ((ADD.op >> 6) & 0x3) {
1743 case 1:
1744 case 3:
1745 fprintf(fp, ".x");
1746 break;
1747 case 2:
1748 fprintf(fp, ".y");
1749 break;
1750 case 0:
1751 break;
1752 default:
1753 fprintf(fp, ".unk");
1754 break;
1755 }
1756 if (ADD.op & 0x200) {
1757 fprintf(fp, ")");
1758 }
1759 break;
1760 case ADD_FCMP16:
1761 dump_src(fp, ADD.src0, regs, consts, false);
1762 dump_16swizzle(fp, (ADD.op >> 6) & 0x3);
1763 fprintf(fp, ", ");
1764 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1765 dump_16swizzle(fp, (ADD.op >> 8) & 0x3);
1766 break;
1767 case ADD_BRANCH: {
1768 enum bifrost_branch_code code = (enum bifrost_branch_code) ((ADD.op >> 6) & 0x3f);
1769 enum branch_bit_size size = (enum branch_bit_size) ((ADD.op >> 9) & 0x7);
1770 if (code != BR_ALWAYS) {
1771 dump_src(fp, ADD.src0, regs, consts, false);
1772 switch (size) {
1773 case BR_SIZE_16XX:
1774 fprintf(fp, ".x");
1775 break;
1776 case BR_SIZE_16YY:
1777 case BR_SIZE_16YX0:
1778 case BR_SIZE_16YX1:
1779 fprintf(fp, ".y");
1780 break;
1781 case BR_SIZE_ZERO: {
1782 unsigned ctrl = (ADD.op >> 1) & 0x3;
1783 switch (ctrl) {
1784 case 1:
1785 fprintf(fp, ".y");
1786 break;
1787 case 2:
1788 fprintf(fp, ".x");
1789 break;
1790 default:
1791 break;
1792 }
1793 }
1794 default:
1795 break;
1796 }
1797 fprintf(fp, ", ");
1798 }
1799 if (code != BR_ALWAYS && size != BR_SIZE_ZERO) {
1800 dump_src(fp, ADD.op & 0x7, regs, consts, false);
1801 switch (size) {
1802 case BR_SIZE_16XX:
1803 case BR_SIZE_16YX0:
1804 case BR_SIZE_16YX1:
1805 case BR_SIZE_32_AND_16X:
1806 fprintf(fp, ".x");
1807 break;
1808 case BR_SIZE_16YY:
1809 case BR_SIZE_32_AND_16Y:
1810 fprintf(fp, ".y");
1811 break;
1812 default:
1813 break;
1814 }
1815 fprintf(fp, ", ");
1816 }
1817 // I haven't had the chance to test if this actually specifies the
1818 // branch offset, since I couldn't get it to produce values other
1819 // than 5 (uniform/const high), but these three bits are always
1820 // consistent across branch instructions, so it makes sense...
1821 int offsetSrc = (ADD.op >> 3) & 0x7;
1822 if (offsetSrc == 4 || offsetSrc == 5) {
1823 // If the offset is known/constant, we can decode it
1824 uint32_t raw_offset;
1825 if (offsetSrc == 4)
1826 raw_offset = get_const(consts, regs);
1827 else
1828 raw_offset = get_const(consts, regs) >> 32;
1829 // The high 4 bits are flags, while the rest is the
1830 // twos-complement offset in bytes (here we convert to
1831 // clauses).
1832 int32_t branch_offset = ((int32_t) raw_offset << 4) >> 8;
1833
1834 // If high4 is the high 4 bits of the last 64-bit constant,
1835 // this is calculated as (high4 + 4) & 0xf, or 0 if the branch
1836 // offset itself is the last constant. Not sure if this is
1837 // actually used, or just garbage in unused bits, but in any
1838 // case, we can just ignore it here since it's redundant. Note
1839 // that if there is any padding, this will be 4 since the
1840 // padding counts as the last constant.
1841 unsigned flags = raw_offset >> 28;
1842 (void) flags;
1843
1844 // Note: the offset is in bytes, relative to the beginning of the
1845 // current clause, so a zero offset would be a loop back to the
1846 // same clause (annoyingly different from Midgard).
1847 fprintf(fp, "clause_%d", offset + branch_offset);
1848 } else {
1849 dump_src(fp, offsetSrc, regs, consts, false);
1850 }
1851 }
1852 }
1853 if (info.has_data_reg) {
1854 fprintf(fp, ", R%d", data_reg);
1855 }
1856 fprintf(fp, "\n");
1857 }
1858
1859 void dump_instr(FILE *fp, const struct bifrost_alu_inst *instr,
1860 struct bifrost_regs next_regs, uint64_t *consts,
1861 unsigned data_reg, unsigned offset, bool verbose)
1862 {
1863 struct bifrost_regs regs;
1864 memcpy((char *) &regs, (char *) &instr->reg_bits, sizeof(regs));
1865
1866 if (verbose) {
1867 fprintf(fp, "# regs: %016" PRIx64 "\n", instr->reg_bits);
1868 dump_regs(fp, regs);
1869 }
1870 dump_fma(fp, instr->fma_bits, regs, next_regs, consts, verbose);
1871 dump_add(fp, instr->add_bits, regs, next_regs, consts, data_reg, offset, verbose);
1872 }
1873
1874 bool dump_clause(FILE *fp, uint32_t *words, unsigned *size, unsigned offset, bool verbose)
1875 {
1876 // State for a decoded clause
1877 struct bifrost_alu_inst instrs[8] = {};
1878 uint64_t consts[6] = {};
1879 unsigned num_instrs = 0;
1880 unsigned num_consts = 0;
1881 uint64_t header_bits = 0;
1882 bool stopbit = false;
1883
1884 unsigned i;
1885 for (i = 0; ; i++, words += 4) {
1886 if (verbose) {
1887 fprintf(fp, "# ");
1888 for (int j = 0; j < 4; j++)
1889 fprintf(fp, "%08x ", words[3 - j]); // low bit on the right
1890 fprintf(fp, "\n");
1891 }
1892 unsigned tag = bits(words[0], 0, 8);
1893
1894 // speculatively decode some things that are common between many formats, so we can share some code
1895 struct bifrost_alu_inst main_instr = {};
1896 // 20 bits
1897 main_instr.add_bits = bits(words[2], 2, 32 - 13);
1898 // 23 bits
1899 main_instr.fma_bits = bits(words[1], 11, 32) | bits(words[2], 0, 2) << (32 - 11);
1900 // 35 bits
1901 main_instr.reg_bits = ((uint64_t) bits(words[1], 0, 11)) << 24 | (uint64_t) bits(words[0], 8, 32);
1902
1903 uint64_t const0 = bits(words[0], 8, 32) << 4 | (uint64_t) words[1] << 28 | bits(words[2], 0, 4) << 60;
1904 uint64_t const1 = bits(words[2], 4, 32) << 4 | (uint64_t) words[3] << 32;
1905
1906 bool stop = tag & 0x40;
1907
1908 if (verbose) {
1909 fprintf(fp, "# tag: 0x%02x\n", tag);
1910 }
1911 if (tag & 0x80) {
1912 unsigned idx = stop ? 5 : 2;
1913 main_instr.add_bits |= ((tag >> 3) & 0x7) << 17;
1914 instrs[idx + 1] = main_instr;
1915 instrs[idx].add_bits = bits(words[3], 0, 17) | ((tag & 0x7) << 17);
1916 instrs[idx].fma_bits |= bits(words[2], 19, 32) << 10;
1917 consts[0] = bits(words[3], 17, 32) << 4;
1918 } else {
1919 bool done = false;
1920 switch ((tag >> 3) & 0x7) {
1921 case 0x0:
1922 switch (tag & 0x7) {
1923 case 0x3:
1924 main_instr.add_bits |= bits(words[3], 29, 32) << 17;
1925 instrs[1] = main_instr;
1926 num_instrs = 2;
1927 done = stop;
1928 break;
1929 case 0x4:
1930 instrs[2].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17;
1931 instrs[2].fma_bits |= bits(words[2], 19, 32) << 10;
1932 consts[0] = const0;
1933 num_instrs = 3;
1934 num_consts = 1;
1935 done = stop;
1936 break;
1937 case 0x1:
1938 case 0x5:
1939 instrs[2].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17;
1940 instrs[2].fma_bits |= bits(words[2], 19, 32) << 10;
1941 main_instr.add_bits |= bits(words[3], 26, 29) << 17;
1942 instrs[3] = main_instr;
1943 if ((tag & 0x7) == 0x5) {
1944 num_instrs = 4;
1945 done = stop;
1946 }
1947 break;
1948 case 0x6:
1949 instrs[5].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17;
1950 instrs[5].fma_bits |= bits(words[2], 19, 32) << 10;
1951 consts[0] = const0;
1952 num_instrs = 6;
1953 num_consts = 1;
1954 done = stop;
1955 break;
1956 case 0x7:
1957 instrs[5].add_bits = bits(words[3], 0, 17) | bits(words[3], 29, 32) << 17;
1958 instrs[5].fma_bits |= bits(words[2], 19, 32) << 10;
1959 main_instr.add_bits |= bits(words[3], 26, 29) << 17;
1960 instrs[6] = main_instr;
1961 num_instrs = 7;
1962 done = stop;
1963 break;
1964 default:
1965 fprintf(fp, "unknown tag bits 0x%02x\n", tag);
1966 }
1967 break;
1968 case 0x2:
1969 case 0x3: {
1970 unsigned idx = ((tag >> 3) & 0x7) == 2 ? 4 : 7;
1971 main_instr.add_bits |= (tag & 0x7) << 17;
1972 instrs[idx] = main_instr;
1973 consts[0] |= (bits(words[2], 19, 32) | ((uint64_t) words[3] << 13)) << 19;
1974 num_consts = 1;
1975 num_instrs = idx + 1;
1976 done = stop;
1977 break;
1978 }
1979 case 0x4: {
1980 unsigned idx = stop ? 4 : 1;
1981 main_instr.add_bits |= (tag & 0x7) << 17;
1982 instrs[idx] = main_instr;
1983 instrs[idx + 1].fma_bits |= bits(words[3], 22, 32);
1984 instrs[idx + 1].reg_bits = bits(words[2], 19, 32) | (bits(words[3], 0, 22) << (32 - 19));
1985 break;
1986 }
1987 case 0x1:
1988 // only constants can come after this
1989 num_instrs = 1;
1990 done = stop;
1991 /* fallthrough */
1992 case 0x5:
1993 header_bits = bits(words[2], 19, 32) | ((uint64_t) words[3] << (32 - 19));
1994 main_instr.add_bits |= (tag & 0x7) << 17;
1995 instrs[0] = main_instr;
1996 break;
1997 case 0x6:
1998 case 0x7: {
1999 unsigned pos = tag & 0xf;
2000 // note that `pos' encodes both the total number of
2001 // instructions and the position in the constant stream,
2002 // presumably because decoded constants and instructions
2003 // share a buffer in the decoder, but we only care about
2004 // the position in the constant stream; the total number of
2005 // instructions is redundant.
2006 unsigned const_idx = 0;
2007 switch (pos) {
2008 case 0:
2009 case 1:
2010 case 2:
2011 case 6:
2012 const_idx = 0;
2013 break;
2014 case 3:
2015 case 4:
2016 case 7:
2017 case 9:
2018 const_idx = 1;
2019 break;
2020 case 5:
2021 case 0xa:
2022 const_idx = 2;
2023 break;
2024 case 8:
2025 case 0xb:
2026 case 0xc:
2027 const_idx = 3;
2028 break;
2029 case 0xd:
2030 const_idx = 4;
2031 break;
2032 case 0xe:
2033 const_idx = 5;
2034 break;
2035 default:
2036 fprintf(fp, "# unknown pos 0x%x\n", pos);
2037 break;
2038 }
2039
2040 if (num_consts < const_idx + 2)
2041 num_consts = const_idx + 2;
2042
2043 consts[const_idx] = const0;
2044 consts[const_idx + 1] = const1;
2045 done = stop;
2046 break;
2047 }
2048 default:
2049 break;
2050 }
2051
2052 if (done)
2053 break;
2054 }
2055 }
2056
2057 *size = i + 1;
2058
2059 if (verbose) {
2060 fprintf(fp, "# header: %012" PRIx64 "\n", header_bits);
2061 }
2062
2063 struct bifrost_header header;
2064 memcpy((char *) &header, (char *) &header_bits, sizeof(struct bifrost_header));
2065 dump_header(fp, header, verbose);
2066 if (!header.no_end_of_shader)
2067 stopbit = true;
2068
2069 fprintf(fp, "{\n");
2070 for (i = 0; i < num_instrs; i++) {
2071 struct bifrost_regs next_regs;
2072 if (i + 1 == num_instrs) {
2073 memcpy((char *) &next_regs, (char *) &instrs[0].reg_bits,
2074 sizeof(next_regs));
2075 } else {
2076 memcpy((char *) &next_regs, (char *) &instrs[i + 1].reg_bits,
2077 sizeof(next_regs));
2078 }
2079
2080 dump_instr(fp, &instrs[i], next_regs, consts, header.datareg, offset, verbose);
2081 }
2082 fprintf(fp, "}\n");
2083
2084 if (verbose) {
2085 for (unsigned i = 0; i < num_consts; i++) {
2086 fprintf(fp, "# const%d: %08" PRIx64 "\n", 2 * i, consts[i] & 0xffffffff);
2087 fprintf(fp, "# const%d: %08" PRIx64 "\n", 2 * i + 1, consts[i] >> 32);
2088 }
2089 }
2090 return stopbit;
2091 }
2092
2093 void disassemble_bifrost(FILE *fp, uint8_t *code, size_t size, bool verbose)
2094 {
2095 uint32_t *words = (uint32_t *) code;
2096 uint32_t *words_end = words + (size / 4);
2097 // used for displaying branch targets
2098 unsigned offset = 0;
2099 while (words != words_end) {
2100 // we don't know what the program-end bit is quite yet, so for now just
2101 // assume that an all-0 quadword is padding
2102 uint32_t zero[4] = {};
2103 if (memcmp(words, zero, 4 * sizeof(uint32_t)) == 0)
2104 break;
2105 fprintf(fp, "clause_%d:\n", offset);
2106 unsigned size;
2107 if (dump_clause(fp, words, &size, offset, verbose) == true) {
2108 break;
2109 }
2110 words += size * 4;
2111 offset += size;
2112 }
2113 }
2114