eb13faac58a4c41780ce5d9da2038de9e61b1931
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <inttypes.h>
34
35 typedef uint8_t u8;
36 typedef uint16_t u16;
37 typedef uint32_t u32;
38 typedef uint64_t u64;
39 typedef uint64_t mali_ptr;
40
41 /* Applies to tiler_gl_enables */
42
43 #define MALI_OCCLUSION_QUERY (1 << 3)
44 #define MALI_OCCLUSION_PRECISE (1 << 4)
45
46 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
47 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
48 * disagree about how to do viewport flipping, so the blob actually sets this
49 * for GL_CW but then has a negative viewport stride */
50
51 #define MALI_FRONT_CCW_TOP (1 << 5)
52
53 #define MALI_CULL_FACE_FRONT (1 << 6)
54 #define MALI_CULL_FACE_BACK (1 << 7)
55
56 /* Flags apply to unknown2_3? */
57
58 #define MALI_HAS_MSAA (1 << 0)
59
60 /* Execute fragment shader per-sample if set (e.g. to implement gl_SampleID
61 * reads) */
62 #define MALI_PER_SAMPLE (1 << 2)
63 #define MALI_CAN_DISCARD (1 << 5)
64
65 /* Applies on SFBD systems, specifying that programmable blending is in use */
66 #define MALI_HAS_BLEND_SHADER (1 << 6)
67
68 /* func is mali_func */
69 #define MALI_DEPTH_FUNC(func) (func << 8)
70 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
71 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
72
73 #define MALI_DEPTH_WRITEMASK (1 << 11)
74
75 #define MALI_DEPTH_CLIP_NEAR (1 << 12)
76 #define MALI_DEPTH_CLIP_FAR (1 << 13)
77
78 /* Next flags to unknown2_4 */
79 #define MALI_STENCIL_TEST (1 << 0)
80
81 #define MALI_ALPHA_TO_COVERAGE (1 << 1)
82
83 #define MALI_NO_DITHER (1 << 9)
84 #define MALI_DEPTH_RANGE_A (1 << 12)
85 #define MALI_DEPTH_RANGE_B (1 << 13)
86 #define MALI_NO_MSAA (1 << 14)
87
88 #define MALI_MASK_R (1 << 0)
89 #define MALI_MASK_G (1 << 1)
90 #define MALI_MASK_B (1 << 2)
91 #define MALI_MASK_A (1 << 3)
92
93 enum mali_nondominant_mode {
94 MALI_BLEND_NON_MIRROR = 0,
95 MALI_BLEND_NON_ZERO = 1
96 };
97
98 enum mali_dominant_blend {
99 MALI_BLEND_DOM_SOURCE = 0,
100 MALI_BLEND_DOM_DESTINATION = 1
101 };
102
103 enum mali_dominant_factor {
104 MALI_DOMINANT_UNK0 = 0,
105 MALI_DOMINANT_ZERO = 1,
106 MALI_DOMINANT_SRC_COLOR = 2,
107 MALI_DOMINANT_DST_COLOR = 3,
108 MALI_DOMINANT_UNK4 = 4,
109 MALI_DOMINANT_SRC_ALPHA = 5,
110 MALI_DOMINANT_DST_ALPHA = 6,
111 MALI_DOMINANT_CONSTANT = 7,
112 };
113
114 enum mali_blend_modifier {
115 MALI_BLEND_MOD_UNK0 = 0,
116 MALI_BLEND_MOD_NORMAL = 1,
117 MALI_BLEND_MOD_SOURCE_ONE = 2,
118 MALI_BLEND_MOD_DEST_ONE = 3,
119 };
120
121 struct mali_blend_mode {
122 enum mali_blend_modifier clip_modifier : 2;
123 unsigned unused_0 : 1;
124 unsigned negate_source : 1;
125
126 enum mali_dominant_blend dominant : 1;
127
128 enum mali_nondominant_mode nondominant_mode : 1;
129
130 unsigned unused_1 : 1;
131
132 unsigned negate_dest : 1;
133
134 enum mali_dominant_factor dominant_factor : 3;
135 unsigned complement_dominant : 1;
136 } __attribute__((packed));
137
138 struct mali_blend_equation {
139 /* Of type mali_blend_mode */
140 unsigned rgb_mode : 12;
141 unsigned alpha_mode : 12;
142
143 unsigned zero1 : 4;
144
145 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
146
147 unsigned color_mask : 4;
148 } __attribute__((packed));
149
150 /* Compressed per-pixel formats. Each of these formats expands to one to four
151 * floating-point or integer numbers, as defined by the OpenGL specification.
152 * There are various places in OpenGL where the user can specify a compressed
153 * format in memory, which all use the same 8-bit enum in the various
154 * descriptors, although different hardware units support different formats.
155 */
156
157 /* The top 3 bits specify how the bits of each component are interpreted. */
158
159 /* e.g. ETC2_RGB8 */
160 #define MALI_FORMAT_COMPRESSED (0 << 5)
161
162 /* e.g. R11F_G11F_B10F */
163 #define MALI_FORMAT_SPECIAL (2 << 5)
164
165 /* signed normalized, e.g. RGBA8_SNORM */
166 #define MALI_FORMAT_SNORM (3 << 5)
167
168 /* e.g. RGBA8UI */
169 #define MALI_FORMAT_UINT (4 << 5)
170
171 /* e.g. RGBA8 and RGBA32F */
172 #define MALI_FORMAT_UNORM (5 << 5)
173
174 /* e.g. RGBA8I and RGBA16F */
175 #define MALI_FORMAT_SINT (6 << 5)
176
177 /* These formats seem to largely duplicate the others. They're used at least
178 * for Bifrost framebuffer output.
179 */
180 #define MALI_FORMAT_SPECIAL2 (7 << 5)
181 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
182
183 /* If the high 3 bits are 3 to 6 these two bits say how many components
184 * there are.
185 */
186 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
187 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
188
189 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
190 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
191 * bits mean.
192 */
193
194 #define MALI_CHANNEL_4 2
195
196 #define MALI_CHANNEL_8 3
197
198 #define MALI_CHANNEL_16 4
199
200 #define MALI_CHANNEL_32 5
201
202 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
203 * MALI_FORMAT_UNORM, it means a 32-bit float.
204 */
205 #define MALI_CHANNEL_FLOAT 7
206 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
207
208 /* Applies to midgard1.flags_lo */
209
210 /* Should be set when the fragment shader updates the depth value. */
211 #define MALI_WRITES_Z (1 << 4)
212
213 /* Should the hardware perform early-Z testing? Set if the shader does not use
214 * discard, alpha-to-coverage, shader depth writes, and if the shader has no
215 * side effects (writes to global memory or images) unless early-z testing is
216 * forced in the shader.
217 */
218
219 #define MALI_EARLY_Z (1 << 6)
220
221 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
222 * fragment shader that uses texturing or derivative functions */
223
224 #define MALI_HELPER_INVOCATIONS (1 << 7)
225
226 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
227 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
228 * it might read depth/stencil in particular, also set MALI_READS_ZS */
229
230 #define MALI_READS_ZS (1 << 8)
231
232 /* The shader might write to global memory (via OpenCL, SSBOs, or images).
233 * Reading is okay, as are ordinary writes to the tilebuffer/varyings. Setting
234 * incurs a performance penalty. On a fragment shader, this bit implies there
235 * are side effects, hence it interacts with early-z. */
236 #define MALI_WRITES_GLOBAL (1 << 9)
237
238 #define MALI_READS_TILEBUFFER (1 << 10)
239
240 /* Applies to midgard1.flags_hi */
241
242 /* Should be set when the fragment shader updates the stencil value. */
243 #define MALI_WRITES_S (1 << 2)
244
245 /* Mode to suppress generation of Infinity and NaN values by clamping inf
246 * (-inf) to MAX_FLOAT (-MIN_FLOAT) and flushing NaN to 0.0
247 *
248 * Compare suppress_inf/suppress_nan flags on the Bifrost clause header for the
249 * same functionality.
250 *
251 * This is not conformant on GLES3 or OpenCL, but is optional on GLES2, where
252 * it works around app bugs (e.g. in glmark2-es2 -bterrain with FP16).
253 */
254 #define MALI_SUPPRESS_INF_NAN (1 << 3)
255
256 /* Flags for bifrost1.unk1 */
257
258 /* Shader uses less than 32 registers, partitioned as [R0, R15] U [R48, R63],
259 * allowing for full thread count. If clear, the full [R0, R63] register set is
260 * available at half thread count */
261 #define MALI_BIFROST_FULL_THREAD (1 << 9)
262
263 /* Enable early-z testing (presumably). This flag may not be set if the shader:
264 *
265 * - Uses blending
266 * - Uses discard
267 * - Writes gl_FragDepth
268 *
269 * This differs from Midgard which sets the MALI_EARLY_Z flag even with
270 * blending, although I've begun to suspect that flag does not in fact enable
271 * EARLY_Z alone. */
272 #define MALI_BIFROST_EARLY_Z (1 << 15)
273
274 /* First clause type is ATEST */
275 #define MALI_BIFROST_FIRST_ATEST (1 << 26)
276
277 /* The raw Midgard blend payload can either be an equation or a shader
278 * address, depending on the context */
279
280 union midgard_blend {
281 mali_ptr shader;
282
283 struct {
284 struct mali_blend_equation equation;
285 float constant;
286 };
287 };
288
289 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
290 * ZERO) */
291
292 #define MALI_BLEND_LOAD_TIB (0x1)
293
294 /* A blend shader is used to blend this render target */
295 #define MALI_BLEND_MRT_SHADER (0x2)
296
297 /* On MRT Midgard systems (using an MFBD), each render target gets its own
298 * blend descriptor */
299
300 #define MALI_BLEND_SRGB (0x400)
301
302 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
303 #define MALI_BLEND_NO_DITHER (0x800)
304
305 struct midgard_blend_rt {
306 /* Flags base value of 0x200 to enable the render target.
307 * OR with 0x1 for blending (anything other than REPLACE).
308 * OR with 0x2 for programmable blending
309 * OR with MALI_BLEND_SRGB for implicit sRGB
310 */
311
312 u64 flags;
313 union midgard_blend blend;
314 } __attribute__((packed));
315
316 /* On Bifrost systems (all MRT), each render target gets one of these
317 * descriptors */
318
319 enum bifrost_shader_type {
320 BIFROST_BLEND_F16 = 0,
321 BIFROST_BLEND_F32 = 1,
322 BIFROST_BLEND_I32 = 2,
323 BIFROST_BLEND_U32 = 3,
324 BIFROST_BLEND_I16 = 4,
325 BIFROST_BLEND_U16 = 5,
326 };
327
328 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
329
330 struct bifrost_blend_rt {
331 /* This is likely an analogue of the flags on
332 * midgard_blend_rt */
333
334 u16 flags; // = 0x200
335
336 /* Single-channel blend constants are encoded in a sort of
337 * fixed-point. Basically, the float is mapped to a byte, becoming
338 * a high byte, and then the lower-byte is added for precision.
339 * For the original float f:
340 *
341 * f = (constant_hi / 255) + (constant_lo / 65535)
342 *
343 * constant_hi = int(f / 255)
344 * constant_lo = 65535*f - (65535/255) * constant_hi
345 */
346 u16 constant;
347
348 struct mali_blend_equation equation;
349
350 /*
351 * - 0x19 normally
352 * - 0x3 when this slot is unused (everything else is 0 except the index)
353 * - 0x11 when this is the fourth slot (and it's used)
354 * - 0 when there is a blend shader
355 */
356 u16 unk2;
357
358 /* increments from 0 to 3 */
359 u16 index;
360
361 union {
362 struct {
363 /* So far, I've only seen:
364 * - R001 for 1-component formats
365 * - RG01 for 2-component formats
366 * - RGB1 for 3-component formats
367 * - RGBA for 4-component formats
368 */
369 u32 swizzle : 12;
370 enum mali_format format : 8;
371
372 /* Type of the shader output variable. Note, this can
373 * be different from the format.
374 * enum bifrost_shader_type
375 */
376 u32 zero1 : 4;
377 u32 shader_type : 3;
378 u32 zero2 : 5;
379 };
380
381 /* Only the low 32 bits of the blend shader are stored, the
382 * high 32 bits are implicitly the same as the original shader.
383 * According to the kernel driver, the program counter for
384 * shaders is actually only 24 bits, so shaders cannot cross
385 * the 2^24-byte boundary, and neither can the blend shader.
386 * The blob handles this by allocating a 2^24 byte pool for
387 * shaders, and making sure that any blend shaders are stored
388 * in the same pool as the original shader. The kernel will
389 * make sure this allocation is aligned to 2^24 bytes.
390 */
391 u32 shader;
392 };
393 } __attribute__((packed));
394
395 /* Descriptor for the shader. Following this is at least one, up to four blend
396 * descriptors for each active render target */
397
398 struct mali_shader_meta {
399 mali_ptr shader;
400 u16 sampler_count;
401 u16 texture_count;
402 u16 attribute_count;
403 u16 varying_count;
404
405 union {
406 struct {
407 u32 uniform_buffer_count : 4;
408 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
409 } bifrost1;
410 struct {
411 unsigned uniform_buffer_count : 4;
412 unsigned flags_lo : 12;
413
414 /* vec4 units */
415 unsigned work_count : 5;
416 unsigned uniform_count : 5;
417 unsigned flags_hi : 6;
418 } midgard1;
419 };
420
421 /* Same as glPolygoOffset() arguments */
422 float depth_units;
423 float depth_factor;
424
425 u32 unknown2_2;
426
427 /* Generated from SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT. See
428 * 13.8.3 ("Multisample Fragment Operations") in the OpenGL ES 3.2
429 * specification. Only matters when multisampling is enabled. */
430 u16 coverage_mask;
431
432 u16 unknown2_3;
433
434 u8 stencil_mask_front;
435 u8 stencil_mask_back;
436 u16 unknown2_4;
437
438 struct mali_stencil_packed stencil_front;
439 struct mali_stencil_packed stencil_back;
440
441 union {
442 struct {
443 u32 unk3 : 7;
444 /* On Bifrost, some system values are preloaded in
445 * registers R55-R62 by the thread dispatcher prior to
446 * the start of shader execution. This is a bitfield
447 * with one entry for each register saying which
448 * registers need to be preloaded. Right now, the known
449 * values are:
450 *
451 * Vertex/compute:
452 * - R55 : gl_LocalInvocationID.xy
453 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
454 * - R57 : gl_WorkGroupID.x
455 * - R58 : gl_WorkGroupID.y
456 * - R59 : gl_WorkGroupID.z
457 * - R60 : gl_GlobalInvocationID.x
458 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
459 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
460 *
461 * Fragment:
462 * - R55 : unknown, never seen (but the bit for this is
463 * always set?)
464 * - R56 : unknown (bit always unset)
465 * - R57 : gl_PrimitiveID
466 * - R58 : gl_FrontFacing in low bit, potentially other stuff
467 * - R59 : u16 fragment coordinates (used to compute
468 * gl_FragCoord.xy, together with sample positions)
469 * - R60 : gl_SampleMask (used in epilog, so pretty
470 * much always used, but the bit is always 0 -- is
471 * this just always pushed?)
472 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
473 * varying interpolation.
474 * - R62 : unknown (bit always unset).
475 *
476 * Later GPUs (starting with Mali-G52?) support
477 * preloading float varyings into r0-r7. This is
478 * indicated by setting 0x40. There is no distinction
479 * here between 1 varying and 2.
480 */
481 u32 preload_regs : 8;
482 /* In units of 8 bytes or 64 bits, since the
483 * uniform/const port loads 64 bits at a time.
484 */
485 u32 uniform_count : 7;
486 u32 unk4 : 10; // = 2
487 } bifrost2;
488 struct {
489 u32 unknown2_7;
490 } midgard2;
491 };
492
493 u32 padding;
494
495 /* Blending information for the older non-MRT Midgard HW. Check for
496 * MALI_HAS_BLEND_SHADER to decide how to interpret.
497 */
498
499 union midgard_blend blend;
500 } __attribute__((packed));
501
502 /* This only concerns hardware jobs */
503
504 /* Possible values for job_descriptor_size */
505
506 #define MALI_JOB_32 0
507 #define MALI_JOB_64 1
508
509 struct mali_job_descriptor_header {
510 u32 exception_status;
511 u32 first_incomplete_task;
512 u64 fault_pointer;
513 u8 job_descriptor_size : 1;
514 enum mali_job_type job_type : 7;
515 u8 job_barrier : 1;
516 u8 unknown_flags : 7;
517 u16 job_index;
518 u16 job_dependency_index_1;
519 u16 job_dependency_index_2;
520 u64 next_job;
521 } __attribute__((packed));
522
523 /* Details about write_value from panfrost igt tests which use it as a generic
524 * dword write primitive */
525
526 #define MALI_WRITE_VALUE_ZERO 3
527
528 struct mali_payload_write_value {
529 u64 address;
530 u32 value_descriptor;
531 u32 reserved;
532 u64 immediate;
533 } __attribute__((packed));
534
535 /*
536 * Mali Attributes
537 *
538 * This structure lets the attribute unit compute the address of an attribute
539 * given the vertex and instance ID. Unfortunately, the way this works is
540 * rather complicated when instancing is enabled.
541 *
542 * To explain this, first we need to explain how compute and vertex threads are
543 * dispatched. This is a guess (although a pretty firm guess!) since the
544 * details are mostly hidden from the driver, except for attribute instancing.
545 * When a quad is dispatched, it receives a single, linear index. However, we
546 * need to translate that index into a (vertex id, instance id) pair, or a
547 * (local id x, local id y, local id z) triple for compute shaders (although
548 * vertex shaders and compute shaders are handled almost identically).
549 * Focusing on vertex shaders, one option would be to do:
550 *
551 * vertex_id = linear_id % num_vertices
552 * instance_id = linear_id / num_vertices
553 *
554 * but this involves a costly division and modulus by an arbitrary number.
555 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
556 * num_instances threads instead of num_vertices * num_instances, which results
557 * in some "extra" threads with vertex_id >= num_vertices, which we have to
558 * discard. The more we pad num_vertices, the more "wasted" threads we
559 * dispatch, but the division is potentially easier.
560 *
561 * One straightforward choice is to pad num_vertices to the next power of two,
562 * which means that the division and modulus are just simple bit shifts and
563 * masking. But the actual algorithm is a bit more complicated. The thread
564 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
565 * to dividing by a power of two. This is possibly using the technique
566 * described in patent US20170010862A1. As a result, padded_num_vertices can be
567 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
568 * since we need less padding.
569 *
570 * padded_num_vertices is picked by the hardware. The driver just specifies the
571 * actual number of vertices. At least for Mali G71, the first few cases are
572 * given by:
573 *
574 * num_vertices | padded_num_vertices
575 * 3 | 4
576 * 4-7 | 8
577 * 8-11 | 12 (3 * 4)
578 * 12-15 | 16
579 * 16-19 | 20 (5 * 4)
580 *
581 * Note that padded_num_vertices is a multiple of four (presumably because
582 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
583 * at least one more than num_vertices, which seems like a quirk of the
584 * hardware. For larger num_vertices, the hardware uses the following
585 * algorithm: using the binary representation of num_vertices, we look at the
586 * most significant set bit as well as the following 3 bits. Let n be the
587 * number of bits after those 4 bits. Then we set padded_num_vertices according
588 * to the following table:
589 *
590 * high bits | padded_num_vertices
591 * 1000 | 9 * 2^n
592 * 1001 | 5 * 2^(n+1)
593 * 101x | 3 * 2^(n+2)
594 * 110x | 7 * 2^(n+1)
595 * 111x | 2^(n+4)
596 *
597 * For example, if num_vertices = 70 is passed to glDraw(), its binary
598 * representation is 1000110, so n = 3 and the high bits are 1000, and
599 * therefore padded_num_vertices = 9 * 2^3 = 72.
600 *
601 * The attribute unit works in terms of the original linear_id. if
602 * num_instances = 1, then they are the same, and everything is simple.
603 * However, with instancing things get more complicated. There are four
604 * possible modes, two of them we can group together:
605 *
606 * 1. Use the linear_id directly. Only used when there is no instancing.
607 *
608 * 2. Use the linear_id modulo a constant. This is used for per-vertex
609 * attributes with instancing enabled by making the constant equal
610 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
611 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
612 * The shift field specifies the power of two, while the extra_flags field
613 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
614 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
615 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
616 * shift = 3. Note that we must exactly follow the hardware algorithm used to
617 * get padded_num_vertices in order to correctly implement per-vertex
618 * attributes.
619 *
620 * 3. Divide the linear_id by a constant. In order to correctly implement
621 * instance divisors, we have to divide linear_id by padded_num_vertices times
622 * to user-specified divisor. So first we compute padded_num_vertices, again
623 * following the exact same algorithm that the hardware uses, then multiply it
624 * by the GL-level divisor to get the hardware-level divisor. This case is
625 * further divided into two more cases. If the hardware-level divisor is a
626 * power of two, then we just need to shift. The shift amount is specified by
627 * the shift field, so that the hardware-level divisor is just 2^shift.
628 *
629 * If it isn't a power of two, then we have to divide by an arbitrary integer.
630 * For that, we use the well-known technique of multiplying by an approximation
631 * of the inverse. The driver must compute the magic multiplier and shift
632 * amount, and then the hardware does the multiplication and shift. The
633 * hardware and driver also use the "round-down" optimization as described in
634 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
635 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
636 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
637 * presumably this simplifies the hardware multiplier a little. The hardware
638 * first multiplies linear_id by the multiplier and takes the high 32 bits,
639 * then applies the round-down correction if extra_flags = 1, then finally
640 * shifts right by the shift field.
641 *
642 * There are some differences between ridiculousfish's algorithm and the Mali
643 * hardware algorithm, which means that the reference code from ridiculousfish
644 * doesn't always produce the right constants. Mali does not use the pre-shift
645 * optimization, since that would make a hardware implementation slower (it
646 * would have to always do the pre-shift, multiply, and post-shift operations).
647 * It also forces the multplier to be at least 2^31, which means that the
648 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
649 * given the divisor d, the algorithm the driver must follow is:
650 *
651 * 1. Set shift = floor(log2(d)).
652 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
653 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
654 * magic_divisor = m - 1 and extra_flags = 1.
655 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
656 *
657 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
658 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
659 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
660 * (*NOT the row stride*). Size is set to the size of the image itself.
661 *
662 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
663 * use particular fixed addresses with modified structures.
664 */
665
666 enum mali_attr_mode {
667 MALI_ATTR_UNUSED = 0,
668 MALI_ATTR_LINEAR = 1,
669 MALI_ATTR_POT_DIVIDE = 2,
670 MALI_ATTR_MODULO = 3,
671 MALI_ATTR_NPOT_DIVIDE = 4,
672 MALI_ATTR_IMAGE = 5,
673 };
674
675 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
676
677 #define MALI_ATTR_VERTEXID (0x22)
678 #define MALI_ATTR_INSTANCEID (0x24)
679 #define MALI_VARYING_FRAG_COORD (0x25)
680 #define MALI_VARYING_FRONT_FACING (0x26)
681
682 /* This magic "pseudo-address" is used as `elements` to implement
683 * gl_PointCoord. When read from a fragment shader, it generates a point
684 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
685 * require an affine transformation in the shader. */
686
687 #define MALI_VARYING_POINT_COORD (0x61)
688
689 /* Used for comparison to check if an address is special. Mostly a guess, but
690 * it doesn't really matter. */
691
692 #define MALI_RECORD_SPECIAL (0x100)
693
694 union mali_attr {
695 /* This is used for actual attributes. */
696 struct {
697 /* The bottom 3 bits are the mode */
698 mali_ptr elements : 64 - 8;
699 u32 shift : 5;
700 u32 extra_flags : 3;
701 u32 stride;
702 u32 size;
703 };
704 /* The entry after an NPOT_DIVIDE entry has this format. It stores
705 * extra information that wouldn't fit in a normal entry.
706 */
707 struct {
708 u32 unk; /* = 0x20 */
709 u32 magic_divisor;
710 u32 zero;
711 /* This is the original, GL-level divisor. */
712 u32 divisor;
713 };
714 } __attribute__((packed));
715
716 #define FBD_MASK (~0x3f)
717
718 /* MFBD, rather than SFBD */
719 #define MALI_MFBD (0x1)
720
721 /* ORed into an MFBD address to specify the fbx section is included */
722 #define MALI_MFBD_TAG_EXTRA (0x2)
723
724 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
725 * They also seem to be the same between Bifrost and Midgard. They're shared in
726 * fused payloads.
727 */
728
729 /* Applies to unknown_draw */
730
731 #define MALI_DRAW_INDEXED_UINT8 (0x10)
732 #define MALI_DRAW_INDEXED_UINT16 (0x20)
733 #define MALI_DRAW_INDEXED_UINT32 (0x30)
734 #define MALI_DRAW_INDEXED_SIZE (0x30)
735 #define MALI_DRAW_INDEXED_SHIFT (4)
736
737 #define MALI_DRAW_VARYING_SIZE (0x100)
738
739 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
740 * use the last vertex. This is the default in DX and VK, but not in GL. */
741
742 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
743
744 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
745
746 struct mali_vertex_tiler_prefix {
747 /* This is a dynamic bitfield containing the following things in this order:
748 *
749 * - gl_WorkGroupSize.x
750 * - gl_WorkGroupSize.y
751 * - gl_WorkGroupSize.z
752 * - gl_NumWorkGroups.x
753 * - gl_NumWorkGroups.y
754 * - gl_NumWorkGroups.z
755 *
756 * The number of bits allocated for each number is based on the *_shift
757 * fields below. For example, workgroups_y_shift gives the bit that
758 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
759 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
760 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
761 * value is one more than the stored value, since if any of the values
762 * are zero, then there would be no invocations (and hence no job). If
763 * there were 0 bits allocated to a given field, then it must be zero,
764 * and hence the real value is one.
765 *
766 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
767 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
768 * where vertex count is the number of vertices.
769 */
770 u32 invocation_count;
771
772 /* Bitfield for shifts:
773 *
774 * size_y_shift : 5
775 * size_z_shift : 5
776 * workgroups_x_shift : 6
777 * workgroups_y_shift : 6
778 * workgroups_z_shift : 6
779 * workgroups_x_shift_2 : 4
780 */
781 u32 invocation_shifts;
782
783 u32 draw_mode : 4;
784 u32 unknown_draw : 22;
785
786 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
787 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
788 * something to do with how many quads get put in the same execution
789 * engine, which is a balance (you don't want to starve the engine, but
790 * you also want to distribute work evenly).
791 */
792 u32 workgroups_x_shift_3 : 6;
793
794
795 /* Negative of min_index. This is used to compute
796 * the unbiased index in tiler/fragment shader runs.
797 *
798 * The hardware adds offset_bias_correction in each run,
799 * so that absent an index bias, the first vertex processed is
800 * genuinely the first vertex (0). But with an index bias,
801 * the first vertex process is numbered the same as the bias.
802 *
803 * To represent this more conviniently:
804 * unbiased_index = lower_bound_index +
805 * index_bias +
806 * offset_bias_correction
807 *
808 * This is done since the hardware doesn't accept a index_bias
809 * and this allows it to recover the unbiased index.
810 */
811 int32_t offset_bias_correction;
812 u32 zero1;
813
814 /* Like many other strictly nonzero quantities, index_count is
815 * subtracted by one. For an indexed cube, this is equal to 35 = 6
816 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
817 * for an indexed draw, index_count is the number of actual vertices
818 * rendered whereas invocation_count is the number of unique vertices
819 * rendered (the number of times the vertex shader must be invoked).
820 * For non-indexed draws, this is just equal to invocation_count. */
821
822 u32 index_count;
823
824 /* No hidden structure; literally just a pointer to an array of uint
825 * indices (width depends on flags). Thanks, guys, for not making my
826 * life insane for once! NULL for non-indexed draws. */
827
828 u64 indices;
829 } __attribute__((packed));
830
831 /* Point size / line width can either be specified as a 32-bit float (for
832 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
833 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
834 * payload, the contents of varying_pointer will be intepreted as an array of
835 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
836 * creating a special MALI_R16F varying writing to varying_pointer. */
837
838 union midgard_primitive_size {
839 float constant;
840 u64 pointer;
841 };
842
843 struct bifrost_tiler_heap_meta {
844 u32 zero;
845 u32 heap_size;
846 /* note: these are just guesses! */
847 mali_ptr tiler_heap_start;
848 mali_ptr tiler_heap_free;
849 mali_ptr tiler_heap_end;
850
851 /* hierarchy weights? but they're still 0 after the job has run... */
852 u32 zeros[10];
853 u32 unk1;
854 u32 unk7e007e;
855 } __attribute__((packed));
856
857 struct bifrost_tiler_meta {
858 u32 tiler_heap_next_start; /* To be written by the GPU */
859 u32 used_hierarchy_mask; /* To be written by the GPU */
860 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
861 u16 flags;
862 u16 width;
863 u16 height;
864 u64 zero0;
865 mali_ptr tiler_heap_meta;
866 /* TODO what is this used for? */
867 u64 zeros[20];
868 } __attribute__((packed));
869
870 struct bifrost_tiler_only {
871 /* 0x20 */
872 union midgard_primitive_size primitive_size;
873
874 mali_ptr tiler_meta;
875
876 u64 zero1, zero2, zero3, zero4, zero5, zero6;
877 } __attribute__((packed));
878
879 struct mali_vertex_tiler_postfix {
880 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
881
882 /* Both zero for non-instanced draws. For instanced draws, a
883 * decomposition of padded_num_vertices. See the comments about the
884 * corresponding fields in mali_attr for context. */
885
886 unsigned instance_shift : 5;
887 unsigned instance_odd : 3;
888
889 u8 zero4;
890
891 /* Offset for first vertex in buffer */
892 u32 offset_start;
893
894 u64 zero5;
895
896 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
897 * output from the vertex shader for tiler jobs.
898 */
899
900 u64 position_varying;
901
902 /* An array of mali_uniform_buffer_meta's. The size is given by the
903 * shader_meta.
904 */
905 u64 uniform_buffers;
906
907 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
908 * On Midgard, this is a pointer to an array of pointers to the texture
909 * descriptors, number of pointers bounded by number of textures. The
910 * indirection is needed to accomodate varying numbers and sizes of
911 * texture descriptors */
912 u64 textures;
913
914 /* For OpenGL, from what I've seen, this is intimately connected to
915 * texture_meta. cwabbott says this is not the case under Vulkan, hence
916 * why this field is seperate (Midgard is Vulkan capable). Pointer to
917 * array of sampler descriptors (which are uniform in size) */
918 u64 sampler_descriptor;
919
920 u64 uniforms;
921 u64 shader;
922 u64 attributes; /* struct attribute_buffer[] */
923 u64 attribute_meta; /* attribute_meta[] */
924 u64 varyings; /* struct attr */
925 u64 varying_meta; /* pointer */
926 u64 viewport;
927 u64 occlusion_counter; /* A single bit as far as I can tell */
928
929 /* On Bifrost, this points directly to a mali_shared_memory structure.
930 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
931 * tagged), which embeds a mali_shared_memory structure */
932 mali_ptr shared_memory;
933 } __attribute__((packed));
934
935 struct midgard_payload_vertex_tiler {
936 struct mali_vertex_tiler_prefix prefix;
937 struct mali_vertex_tiler_postfix postfix;
938
939 union midgard_primitive_size primitive_size;
940 } __attribute__((packed));
941
942 struct bifrost_payload_vertex {
943 struct mali_vertex_tiler_prefix prefix;
944 struct mali_vertex_tiler_postfix postfix;
945 } __attribute__((packed));
946
947 struct bifrost_payload_tiler {
948 struct mali_vertex_tiler_prefix prefix;
949 struct bifrost_tiler_only tiler;
950 struct mali_vertex_tiler_postfix postfix;
951 } __attribute__((packed));
952
953 struct bifrost_payload_fused {
954 struct mali_vertex_tiler_prefix prefix;
955 struct bifrost_tiler_only tiler;
956 struct mali_vertex_tiler_postfix tiler_postfix;
957 u64 padding; /* zero */
958 struct mali_vertex_tiler_postfix vertex_postfix;
959 } __attribute__((packed));
960
961 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
962 * texture is stored as (63, 63) in these fields. This adjusts for that.
963 * There's an identical pattern in the framebuffer descriptor. Even vertex
964 * count fields work this way, hence the generic name -- integral fields that
965 * are strictly positive generally need this adjustment. */
966
967 #define MALI_POSITIVE(dim) (dim - 1)
968
969 /* 8192x8192 */
970 #define MAX_MIP_LEVELS (13)
971
972 /* Cubemap bloats everything up */
973 #define MAX_CUBE_FACES (6)
974
975 /* For each pointer, there is an address and optionally also a stride */
976 #define MAX_ELEMENTS (2)
977
978 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
979 * be cleaned up a lot. */
980
981 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
982
983 static inline int16_t
984 FIXED_16(float x, bool allow_negative)
985 {
986 /* Clamp inputs, accounting for float error */
987 float max_lod = (32.0 - (1.0 / 512.0));
988 float min_lod = allow_negative ? -max_lod : 0.0;
989
990 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
991
992 return (int) (x * 256.0);
993 }
994
995 /* From presentations, 16x16 tiles externally. Use shift for fast computation
996 * of tile numbers. */
997
998 #define MALI_TILE_SHIFT 4
999 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1000
1001 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1002 * each component. Notice that this provides a theoretical upper bound of (1 <<
1003 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1004 * 65536x65536. Multiplying that together, times another four given that Mali
1005 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1006 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1007 * alone rendering in real-time to such a buffer.
1008 *
1009 * Nice job, guys.*/
1010
1011 /* From mali_kbase_10969_workaround.c */
1012 #define MALI_X_COORD_MASK 0x00000FFF
1013 #define MALI_Y_COORD_MASK 0x0FFF0000
1014
1015 /* Extract parts of a tile coordinate */
1016
1017 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1018 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1019
1020 /* Helpers to generate tile coordinates based on the boundary coordinates in
1021 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1022 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1023 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1024 * problem. */
1025
1026 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1027 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1028 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1029 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1030 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1031
1032 struct mali_payload_fragment {
1033 u32 min_tile_coord;
1034 u32 max_tile_coord;
1035 mali_ptr framebuffer;
1036 } __attribute__((packed));
1037
1038 /* Single Framebuffer Descriptor */
1039
1040 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1041 * configured for 4x. With MSAA_8, it is configured for 8x. */
1042
1043 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1044 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1045 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1046 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1047
1048 /* Fast/slow based on whether all three buffers are cleared at once */
1049
1050 #define MALI_CLEAR_FAST (1 << 18)
1051 #define MALI_CLEAR_SLOW (1 << 28)
1052 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1053
1054 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1055 * within the larget framebuffer descriptor). Analogous to
1056 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1057
1058 /* See pan_tiler.c for derivation */
1059 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1060
1061 /* Flag disabling the tiler for clear-only jobs, with
1062 hierarchical tiling */
1063 #define MALI_TILER_DISABLED (1 << 12)
1064
1065 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1066 * hierarhical tiling. */
1067 #define MALI_TILER_USER 0xFFF
1068
1069 /* Absent any geometry, the minimum size of the polygon list header */
1070 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1071
1072 struct midgard_tiler_descriptor {
1073 /* Size of the entire polygon list; see pan_tiler.c for the
1074 * computation. It's based on hierarchical tiling */
1075
1076 u32 polygon_list_size;
1077
1078 /* Name known from the replay workaround in the kernel. What exactly is
1079 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1080 * specifies a mask of hierarchy weights, which explains some of the
1081 * performance mysteries around setting it. We also see the bottom bit
1082 * of tiler_flags set in the kernel, but no comment why.
1083 *
1084 * hierarchy_mask can have the TILER_DISABLED flag */
1085
1086 u16 hierarchy_mask;
1087 u16 flags;
1088
1089 /* See mali_tiler.c for an explanation */
1090 mali_ptr polygon_list;
1091 mali_ptr polygon_list_body;
1092
1093 /* Names based on we see symmetry with replay jobs which name these
1094 * explicitly */
1095
1096 mali_ptr heap_start; /* tiler heap_free_address */
1097 mali_ptr heap_end;
1098
1099 /* Hierarchy weights. We know these are weights based on the kernel,
1100 * but I've never seen them be anything other than zero */
1101 u32 weights[8];
1102 };
1103
1104 struct mali_sfbd_format {
1105 /* 0x1 */
1106 unsigned unk1 : 6;
1107
1108 /* mali_channel_swizzle */
1109 unsigned swizzle : 12;
1110
1111 /* MALI_POSITIVE */
1112 unsigned nr_channels : 2;
1113
1114 /* 0x4 */
1115 unsigned unk2 : 6;
1116
1117 enum mali_block_format block : 2;
1118
1119 /* 0xb */
1120 unsigned unk3 : 4;
1121 };
1122
1123 /* Shared structure at the start of framebuffer descriptors, or used bare for
1124 * compute jobs, configuring stack and shared memory */
1125
1126 struct mali_shared_memory {
1127 u32 stack_shift : 4;
1128 u32 unk0 : 28;
1129
1130 /* Configuration for shared memory for compute shaders.
1131 * shared_workgroup_count is logarithmic and may be computed for a
1132 * compute shader using shared memory as:
1133 *
1134 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1135 *
1136 * For compute shaders that don't use shared memory, or non-compute
1137 * shaders, this is set to ~0
1138 */
1139
1140 u32 shared_workgroup_count : 5;
1141 u32 shared_unk1 : 3;
1142 u32 shared_shift : 4;
1143 u32 shared_zero : 20;
1144
1145 mali_ptr scratchpad;
1146
1147 /* For compute shaders, the RAM backing of workgroup-shared memory. For
1148 * fragment shaders on Bifrost, apparently multisampling locations */
1149
1150 mali_ptr shared_memory;
1151 mali_ptr unknown1;
1152 } __attribute__((packed));
1153
1154 /* Configures multisampling on Bifrost fragment jobs */
1155
1156 struct bifrost_multisampling {
1157 u64 zero1;
1158 u64 zero2;
1159 mali_ptr sample_locations;
1160 u64 zero4;
1161 } __attribute__((packed));
1162
1163 struct mali_single_framebuffer {
1164 struct mali_shared_memory shared_memory;
1165 struct mali_sfbd_format format;
1166
1167 u32 clear_flags;
1168 u32 zero2;
1169
1170 /* Purposeful off-by-one in these fields should be accounted for by the
1171 * MALI_DIMENSION macro */
1172
1173 u16 width;
1174 u16 height;
1175
1176 u32 zero3[4];
1177 mali_ptr checksum;
1178 u32 checksum_stride;
1179 u32 zero5;
1180
1181 /* By default, the framebuffer is upside down from OpenGL's
1182 * perspective. Set framebuffer to the end and negate the stride to
1183 * flip in the Y direction */
1184
1185 mali_ptr framebuffer;
1186 int32_t stride;
1187
1188 u32 zero4;
1189
1190 /* Depth and stencil buffers are interleaved, it appears, as they are
1191 * set to the same address in captures. Both fields set to zero if the
1192 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1193 * get a zero enable despite the buffer being present; that still is
1194 * disabled. */
1195
1196 mali_ptr depth_buffer; // not SAME_VA
1197 u32 depth_stride_zero : 4;
1198 u32 depth_stride : 28;
1199 u32 zero7;
1200
1201 mali_ptr stencil_buffer; // not SAME_VA
1202 u32 stencil_stride_zero : 4;
1203 u32 stencil_stride : 28;
1204 u32 zero8;
1205
1206 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1207 u32 clear_color_2; // always equal, but unclear function?
1208 u32 clear_color_3; // always equal, but unclear function?
1209 u32 clear_color_4; // always equal, but unclear function?
1210
1211 /* Set to zero if not cleared */
1212
1213 float clear_depth_1; // float32, ditto
1214 float clear_depth_2; // float32, ditto
1215 float clear_depth_3; // float32, ditto
1216 float clear_depth_4; // float32, ditto
1217
1218 u32 clear_stencil; // Exactly as it appears in OpenGL
1219
1220 u32 zero6[7];
1221
1222 struct midgard_tiler_descriptor tiler;
1223
1224 /* More below this, maybe */
1225 } __attribute__((packed));
1226
1227
1228 #define MALI_MFBD_FORMAT_SRGB (1 << 0)
1229
1230 struct mali_rt_format {
1231 unsigned unk1 : 32;
1232 unsigned unk2 : 3;
1233
1234 unsigned nr_channels : 2; /* MALI_POSITIVE */
1235
1236 unsigned unk3 : 4;
1237 unsigned unk4 : 1;
1238 enum mali_block_format block : 2;
1239 enum mali_msaa msaa : 2;
1240 unsigned flags : 2;
1241
1242 unsigned swizzle : 12;
1243
1244 unsigned zero : 3;
1245
1246 /* Disables MFBD preload. When this bit is set, the render target will
1247 * be cleared every frame. When this bit is clear, the hardware will
1248 * automatically wallpaper the render target back from main memory.
1249 * Unfortunately, MFBD preload is very broken on Midgard, so in
1250 * practice, this is a chicken bit that should always be set.
1251 * Discovered by accident, as all good chicken bits are. */
1252
1253 unsigned no_preload : 1;
1254 } __attribute__((packed));
1255
1256 /* Flags for afbc.flags and ds_afbc.flags */
1257
1258 #define MALI_AFBC_FLAGS 0x10009
1259
1260 /* Lossless RGB and RGBA colorspace transform */
1261 #define MALI_AFBC_YTR (1 << 17)
1262
1263 struct mali_render_target {
1264 struct mali_rt_format format;
1265
1266 u64 zero1;
1267
1268 struct {
1269 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1270 * there is an extra metadata buffer that contains 16 bytes per tile.
1271 * The framebuffer needs to be the same size as before, since we don't
1272 * know ahead of time how much space it will take up. The
1273 * framebuffer_stride is set to 0, since the data isn't stored linearly
1274 * anymore.
1275 *
1276 * When AFBC is disabled, these fields are zero.
1277 */
1278
1279 mali_ptr metadata;
1280 u32 stride; // stride in units of tiles
1281 u32 flags; // = 0x20000
1282 } afbc;
1283
1284 mali_ptr framebuffer;
1285
1286 u32 zero2 : 4;
1287 u32 framebuffer_stride : 28; // in units of bytes, row to next
1288 u32 layer_stride; /* For multisample rendering */
1289
1290 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1291 u32 clear_color_2; // always equal, but unclear function?
1292 u32 clear_color_3; // always equal, but unclear function?
1293 u32 clear_color_4; // always equal, but unclear function?
1294 } __attribute__((packed));
1295
1296 /* An optional part of mali_framebuffer. It comes between the main structure
1297 * and the array of render targets. It must be included if any of these are
1298 * enabled:
1299 *
1300 * - Transaction Elimination
1301 * - Depth/stencil
1302 * - TODO: Anything else?
1303 */
1304
1305 /* flags_hi */
1306 #define MALI_EXTRA_PRESENT (0x1)
1307
1308 /* flags_lo */
1309 #define MALI_EXTRA_ZS (0x4)
1310
1311 struct mali_framebuffer_extra {
1312 mali_ptr checksum;
1313 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1314 u32 checksum_stride;
1315
1316 unsigned flags_lo : 4;
1317 enum mali_block_format zs_block : 2;
1318
1319 /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
1320 * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
1321 unsigned zs_samples : 4;
1322 unsigned flags_hi : 22;
1323
1324 union {
1325 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1326 struct {
1327 mali_ptr depth_stencil_afbc_metadata;
1328 u32 depth_stencil_afbc_stride; // in units of tiles
1329 u32 flags;
1330
1331 mali_ptr depth_stencil;
1332
1333 u64 padding;
1334 } ds_afbc;
1335
1336 struct {
1337 /* Depth becomes depth/stencil in case of combined D/S */
1338 mali_ptr depth;
1339 u32 depth_stride_zero : 4;
1340 u32 depth_stride : 28;
1341 u32 depth_layer_stride;
1342
1343 mali_ptr stencil;
1344 u32 stencil_stride_zero : 4;
1345 u32 stencil_stride : 28;
1346 u32 stencil_layer_stride;
1347 } ds_linear;
1348 };
1349
1350
1351 u32 clear_color_1;
1352 u32 clear_color_2;
1353 u64 zero3;
1354 } __attribute__((packed));
1355
1356 /* Flags for mfbd_flags */
1357
1358 /* Enables writing depth results back to main memory (rather than keeping them
1359 * on-chip in the tile buffer and then discarding) */
1360
1361 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1362
1363 /* The MFBD contains the extra mali_framebuffer_extra section */
1364
1365 #define MALI_MFBD_EXTRA (1 << 13)
1366
1367 struct mali_framebuffer {
1368 union {
1369 struct mali_shared_memory shared_memory;
1370 struct bifrost_multisampling msaa;
1371 };
1372
1373 /* 0x20 */
1374 u16 width1, height1;
1375 u32 zero3;
1376 u16 width2, height2;
1377 u32 unk1 : 19; // = 0x01000
1378 u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1379 u32 unk2 : 2; // = 0
1380 u32 rt_count_2 : 3; // no off-by-one
1381 u32 zero4 : 5;
1382 /* 0x30 */
1383 u32 clear_stencil : 8;
1384 u32 mfbd_flags : 24; // = 0x100
1385 float clear_depth;
1386
1387 union {
1388 struct midgard_tiler_descriptor tiler;
1389 struct {
1390 mali_ptr tiler_meta;
1391 u32 zeros[16];
1392 };
1393 };
1394
1395 /* optional: struct mali_framebuffer_extra extra */
1396 /* struct mali_render_target rts[] */
1397 } __attribute__((packed));
1398
1399 #endif /* __PANFROST_JOB_H__ */