panfrost: MALI_DEPTH_TEST is actually MALI_DEPTH_WRITEMASK
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <panfrost-misc.h>
33
34 enum mali_job_type {
35 JOB_NOT_STARTED = 0,
36 JOB_TYPE_NULL = 1,
37 JOB_TYPE_SET_VALUE = 2,
38 JOB_TYPE_CACHE_FLUSH = 3,
39 JOB_TYPE_COMPUTE = 4,
40 JOB_TYPE_VERTEX = 5,
41 JOB_TYPE_GEOMETRY = 6,
42 JOB_TYPE_TILER = 7,
43 JOB_TYPE_FUSED = 8,
44 JOB_TYPE_FRAGMENT = 9,
45 };
46
47 enum mali_draw_mode {
48 MALI_DRAW_NONE = 0x0,
49 MALI_POINTS = 0x1,
50 MALI_LINES = 0x2,
51 MALI_LINE_STRIP = 0x4,
52 MALI_LINE_LOOP = 0x6,
53 MALI_TRIANGLES = 0x8,
54 MALI_TRIANGLE_STRIP = 0xA,
55 MALI_TRIANGLE_FAN = 0xC,
56 MALI_POLYGON = 0xD,
57 MALI_QUADS = 0xE,
58 MALI_QUAD_STRIP = 0xF,
59
60 /* All other modes invalid */
61 };
62
63 /* Applies to tiler_gl_enables */
64
65 #define MALI_OCCLUSION_QUERY (1 << 3)
66 #define MALI_OCCLUSION_PRECISE (1 << 4)
67
68 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
69 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
70 * disagree about how to do viewport flipping, so the blob actually sets this
71 * for GL_CW but then has a negative viewport stride */
72
73 #define MALI_FRONT_CCW_TOP (1 << 5)
74
75 #define MALI_CULL_FACE_FRONT (1 << 6)
76 #define MALI_CULL_FACE_BACK (1 << 7)
77
78 /* TODO: Might this actually be a finer bitfield? */
79 #define MALI_DEPTH_STENCIL_ENABLE 0x6400
80
81 #define DS_ENABLE(field) \
82 (field == MALI_DEPTH_STENCIL_ENABLE) \
83 ? "MALI_DEPTH_STENCIL_ENABLE" \
84 : (field == 0) ? "0" \
85 : "0 /* XXX: Unknown, check hexdump */"
86
87 /* Used in stencil and depth tests */
88
89 enum mali_func {
90 MALI_FUNC_NEVER = 0,
91 MALI_FUNC_LESS = 1,
92 MALI_FUNC_EQUAL = 2,
93 MALI_FUNC_LEQUAL = 3,
94 MALI_FUNC_GREATER = 4,
95 MALI_FUNC_NOTEQUAL = 5,
96 MALI_FUNC_GEQUAL = 6,
97 MALI_FUNC_ALWAYS = 7
98 };
99
100 /* Same OpenGL, but mixed up. Why? Because forget me, that's why! */
101
102 enum mali_alt_func {
103 MALI_ALT_FUNC_NEVER = 0,
104 MALI_ALT_FUNC_GREATER = 1,
105 MALI_ALT_FUNC_EQUAL = 2,
106 MALI_ALT_FUNC_GEQUAL = 3,
107 MALI_ALT_FUNC_LESS = 4,
108 MALI_ALT_FUNC_NOTEQUAL = 5,
109 MALI_ALT_FUNC_LEQUAL = 6,
110 MALI_ALT_FUNC_ALWAYS = 7
111 };
112
113 /* Flags apply to unknown2_3? */
114
115 #define MALI_HAS_MSAA (1 << 0)
116 #define MALI_CAN_DISCARD (1 << 5)
117
118 /* Applies on SFBD systems, specifying that programmable blending is in use */
119 #define MALI_HAS_BLEND_SHADER (1 << 6)
120
121 /* func is mali_func */
122 #define MALI_DEPTH_FUNC(func) (func << 8)
123 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
124 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
125
126 #define MALI_DEPTH_WRITEMASK (1 << 11)
127
128 /* Next flags to unknown2_4 */
129 #define MALI_STENCIL_TEST (1 << 0)
130
131 /* What?! */
132 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
133
134 #define MALI_NO_DITHER (1 << 9)
135 #define MALI_DEPTH_RANGE_A (1 << 12)
136 #define MALI_DEPTH_RANGE_B (1 << 13)
137 #define MALI_NO_MSAA (1 << 14)
138
139 /* Stencil test state is all encoded in a single u32, just with a lot of
140 * enums... */
141
142 enum mali_stencil_op {
143 MALI_STENCIL_KEEP = 0,
144 MALI_STENCIL_REPLACE = 1,
145 MALI_STENCIL_ZERO = 2,
146 MALI_STENCIL_INVERT = 3,
147 MALI_STENCIL_INCR_WRAP = 4,
148 MALI_STENCIL_DECR_WRAP = 5,
149 MALI_STENCIL_INCR = 6,
150 MALI_STENCIL_DECR = 7
151 };
152
153 struct mali_stencil_test {
154 unsigned ref : 8;
155 unsigned mask : 8;
156 enum mali_func func : 3;
157 enum mali_stencil_op sfail : 3;
158 enum mali_stencil_op dpfail : 3;
159 enum mali_stencil_op dppass : 3;
160 unsigned zero : 4;
161 } __attribute__((packed));
162
163 #define MALI_MASK_R (1 << 0)
164 #define MALI_MASK_G (1 << 1)
165 #define MALI_MASK_B (1 << 2)
166 #define MALI_MASK_A (1 << 3)
167
168 enum mali_nondominant_mode {
169 MALI_BLEND_NON_MIRROR = 0,
170 MALI_BLEND_NON_ZERO = 1
171 };
172
173 enum mali_dominant_blend {
174 MALI_BLEND_DOM_SOURCE = 0,
175 MALI_BLEND_DOM_DESTINATION = 1
176 };
177
178 enum mali_dominant_factor {
179 MALI_DOMINANT_UNK0 = 0,
180 MALI_DOMINANT_ZERO = 1,
181 MALI_DOMINANT_SRC_COLOR = 2,
182 MALI_DOMINANT_DST_COLOR = 3,
183 MALI_DOMINANT_UNK4 = 4,
184 MALI_DOMINANT_SRC_ALPHA = 5,
185 MALI_DOMINANT_DST_ALPHA = 6,
186 MALI_DOMINANT_CONSTANT = 7,
187 };
188
189 enum mali_blend_modifier {
190 MALI_BLEND_MOD_UNK0 = 0,
191 MALI_BLEND_MOD_NORMAL = 1,
192 MALI_BLEND_MOD_SOURCE_ONE = 2,
193 MALI_BLEND_MOD_DEST_ONE = 3,
194 };
195
196 struct mali_blend_mode {
197 enum mali_blend_modifier clip_modifier : 2;
198 unsigned unused_0 : 1;
199 unsigned negate_source : 1;
200
201 enum mali_dominant_blend dominant : 1;
202
203 enum mali_nondominant_mode nondominant_mode : 1;
204
205 unsigned unused_1 : 1;
206
207 unsigned negate_dest : 1;
208
209 enum mali_dominant_factor dominant_factor : 3;
210 unsigned complement_dominant : 1;
211 } __attribute__((packed));
212
213 struct mali_blend_equation {
214 /* Of type mali_blend_mode */
215 unsigned rgb_mode : 12;
216 unsigned alpha_mode : 12;
217
218 unsigned zero1 : 4;
219
220 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
221
222 unsigned color_mask : 4;
223 } __attribute__((packed));
224
225 /* Used with channel swizzling */
226 enum mali_channel {
227 MALI_CHANNEL_RED = 0,
228 MALI_CHANNEL_GREEN = 1,
229 MALI_CHANNEL_BLUE = 2,
230 MALI_CHANNEL_ALPHA = 3,
231 MALI_CHANNEL_ZERO = 4,
232 MALI_CHANNEL_ONE = 5,
233 MALI_CHANNEL_RESERVED_0 = 6,
234 MALI_CHANNEL_RESERVED_1 = 7,
235 };
236
237 struct mali_channel_swizzle {
238 enum mali_channel r : 3;
239 enum mali_channel g : 3;
240 enum mali_channel b : 3;
241 enum mali_channel a : 3;
242 } __attribute__((packed));
243
244 /* Compressed per-pixel formats. Each of these formats expands to one to four
245 * floating-point or integer numbers, as defined by the OpenGL specification.
246 * There are various places in OpenGL where the user can specify a compressed
247 * format in memory, which all use the same 8-bit enum in the various
248 * descriptors, although different hardware units support different formats.
249 */
250
251 /* The top 3 bits specify how the bits of each component are interpreted. */
252
253 /* e.g. R11F_G11F_B10F */
254 #define MALI_FORMAT_SPECIAL (2 << 5)
255
256 /* signed normalized, e.g. RGBA8_SNORM */
257 #define MALI_FORMAT_SNORM (3 << 5)
258
259 /* e.g. RGBA8UI */
260 #define MALI_FORMAT_UINT (4 << 5)
261
262 /* e.g. RGBA8 and RGBA32F */
263 #define MALI_FORMAT_UNORM (5 << 5)
264
265 /* e.g. RGBA8I and RGBA16F */
266 #define MALI_FORMAT_SINT (6 << 5)
267
268 /* These formats seem to largely duplicate the others. They're used at least
269 * for Bifrost framebuffer output.
270 */
271 #define MALI_FORMAT_SPECIAL2 (7 << 5)
272
273 /* If the high 3 bits are 3 to 6 these two bits say how many components
274 * there are.
275 */
276 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
277
278 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
279 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
280 * bits mean.
281 */
282
283 #define MALI_CHANNEL_4 2
284
285 #define MALI_CHANNEL_8 3
286
287 #define MALI_CHANNEL_16 4
288
289 #define MALI_CHANNEL_32 5
290
291 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
292 * MALI_FORMAT_UNORM, it means a 32-bit float.
293 */
294 #define MALI_CHANNEL_FLOAT 7
295
296 enum mali_format {
297 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
298 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
299 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
300 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
301 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
302 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
303
304 /* YUV formats */
305 MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
306
307 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
308 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
309 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
310 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
311 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
312 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
313 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
314 /* Only used for varyings, to indicate the transformed gl_Position */
315 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
316 /* Only used for varyings, to indicate that the write should be
317 * discarded.
318 */
319 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
320
321 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
322 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
323 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
324 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
325 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
326 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
327 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
328 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
329 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
330 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
331 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
332 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
333
334 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
335 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
336 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
337 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
338 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
339 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
340 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
341 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
342 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
343 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
344 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
345 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
346
347 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
348 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
349 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
350 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
351 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
352 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
353 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
354 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
355 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
356 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
357 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
358 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
359 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
360 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
361 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
362 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
363 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
364
365 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
366 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
367 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
368 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
369 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
370 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
371 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
372 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
373 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
374 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
375 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
376 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
377 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
378 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
379 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
380 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
381
382 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
383 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
384 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
385 };
386
387
388 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
389 * literally performing a bitwise invert. This function produces slightly wrong
390 * results and I'm not sure why; some rounding issue I suppose... */
391
392 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
393 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
394
395 /* Applies to midgard1.flags */
396
397 /* Should the hardware perform early-Z testing? Normally should be set
398 * for performance reasons. Clear if you use: discard,
399 * alpha-to-coverage... * It's also possible this disables
400 * forward-pixel kill; we're not quite sure which bit is which yet.
401 * TODO: How does this interact with blending?*/
402
403 #define MALI_EARLY_Z (1 << 6)
404
405 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
406 * fragment shader that uses texturing or derivative functions */
407
408 #define MALI_HELPER_INVOCATIONS (1 << 7)
409
410 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
411 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
412 * it might read depth/stencil in particular, also set MALI_READS_ZS */
413
414 #define MALI_READS_ZS (1 << 8)
415 #define MALI_READS_TILEBUFFER (1 << 12)
416
417 /* The raw Midgard blend payload can either be an equation or a shader
418 * address, depending on the context */
419
420 union midgard_blend {
421 mali_ptr shader;
422
423 struct {
424 struct mali_blend_equation equation;
425 float constant;
426 };
427 };
428
429 /* On MRT Midgard systems (using an MFBD), each render target gets its own
430 * blend descriptor */
431
432 #define MALI_BLEND_SRGB (0x400)
433
434 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
435 #define MALI_BLEND_NO_DITHER (0x800)
436
437 struct midgard_blend_rt {
438 /* Flags base value of 0x200 to enable the render target.
439 * OR with 0x1 for blending (anything other than REPLACE).
440 * OR with 0x2 for programmable blending with 0-2 registers
441 * OR with 0x3 for programmable blending with 2+ registers
442 * OR with MALI_BLEND_SRGB for implicit sRGB
443 */
444
445 u64 flags;
446 union midgard_blend blend;
447 } __attribute__((packed));
448
449 /* On Bifrost systems (all MRT), each render target gets one of these
450 * descriptors */
451
452 struct bifrost_blend_rt {
453 /* This is likely an analogue of the flags on
454 * midgard_blend_rt */
455
456 u16 flags; // = 0x200
457
458 /* Single-channel blend constants are encoded in a sort of
459 * fixed-point. Basically, the float is mapped to a byte, becoming
460 * a high byte, and then the lower-byte is added for precision.
461 * For the original float f:
462 *
463 * f = (constant_hi / 255) + (constant_lo / 65535)
464 *
465 * constant_hi = int(f / 255)
466 * constant_lo = 65535*f - (65535/255) * constant_hi
467 */
468
469 u16 constant;
470
471 struct mali_blend_equation equation;
472 /*
473 * - 0x19 normally
474 * - 0x3 when this slot is unused (everything else is 0 except the index)
475 * - 0x11 when this is the fourth slot (and it's used)
476 + * - 0 when there is a blend shader
477 */
478 u16 unk2;
479 /* increments from 0 to 3 */
480 u16 index;
481
482 union {
483 struct {
484 /* So far, I've only seen:
485 * - R001 for 1-component formats
486 * - RG01 for 2-component formats
487 * - RGB1 for 3-component formats
488 * - RGBA for 4-component formats
489 */
490 u32 swizzle : 12;
491 enum mali_format format : 8;
492
493 /* Type of the shader output variable. Note, this can
494 * be different from the format.
495 *
496 * 0: f16 (mediump float)
497 * 1: f32 (highp float)
498 * 2: i32 (highp int)
499 * 3: u32 (highp uint)
500 * 4: i16 (mediump int)
501 * 5: u16 (mediump uint)
502 */
503 u32 shader_type : 3;
504 u32 zero : 9;
505 };
506
507 /* Only the low 32 bits of the blend shader are stored, the
508 * high 32 bits are implicitly the same as the original shader.
509 * According to the kernel driver, the program counter for
510 * shaders is actually only 24 bits, so shaders cannot cross
511 * the 2^24-byte boundary, and neither can the blend shader.
512 * The blob handles this by allocating a 2^24 byte pool for
513 * shaders, and making sure that any blend shaders are stored
514 * in the same pool as the original shader. The kernel will
515 * make sure this allocation is aligned to 2^24 bytes.
516 */
517 u32 shader;
518 };
519 } __attribute__((packed));
520
521 /* Descriptor for the shader. Following this is at least one, up to four blend
522 * descriptors for each active render target */
523
524 struct mali_shader_meta {
525 mali_ptr shader;
526 u16 sampler_count;
527 u16 texture_count;
528 u16 attribute_count;
529 u16 varying_count;
530
531 union {
532 struct {
533 u32 uniform_buffer_count : 4;
534 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
535 } bifrost1;
536 struct {
537 unsigned uniform_buffer_count : 4;
538 unsigned flags : 12;
539
540 /* Whole number of uniform registers used, times two;
541 * whole number of work registers used (no scale).
542 */
543 unsigned work_count : 5;
544 unsigned uniform_count : 5;
545 unsigned unknown2 : 6;
546 } midgard1;
547 };
548
549 /* Same as glPolygoOffset() arguments */
550 float depth_units;
551 float depth_factor;
552
553 u32 unknown2_2;
554
555 u16 alpha_coverage;
556 u16 unknown2_3;
557
558 u8 stencil_mask_front;
559 u8 stencil_mask_back;
560 u16 unknown2_4;
561
562 struct mali_stencil_test stencil_front;
563 struct mali_stencil_test stencil_back;
564
565 union {
566 struct {
567 u32 unk3 : 7;
568 /* On Bifrost, some system values are preloaded in
569 * registers R55-R62 by the thread dispatcher prior to
570 * the start of shader execution. This is a bitfield
571 * with one entry for each register saying which
572 * registers need to be preloaded. Right now, the known
573 * values are:
574 *
575 * Vertex/compute:
576 * - R55 : gl_LocalInvocationID.xy
577 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
578 * - R57 : gl_WorkGroupID.x
579 * - R58 : gl_WorkGroupID.y
580 * - R59 : gl_WorkGroupID.z
581 * - R60 : gl_GlobalInvocationID.x
582 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
583 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
584 *
585 * Fragment:
586 * - R55 : unknown, never seen (but the bit for this is
587 * always set?)
588 * - R56 : unknown (bit always unset)
589 * - R57 : gl_PrimitiveID
590 * - R58 : gl_FrontFacing in low bit, potentially other stuff
591 * - R59 : u16 fragment coordinates (used to compute
592 * gl_FragCoord.xy, together with sample positions)
593 * - R60 : gl_SampleMask (used in epilog, so pretty
594 * much always used, but the bit is always 0 -- is
595 * this just always pushed?)
596 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
597 * varying interpolation.
598 * - R62 : unknown (bit always unset).
599 */
600 u32 preload_regs : 8;
601 /* In units of 8 bytes or 64 bits, since the
602 * uniform/const port loads 64 bits at a time.
603 */
604 u32 uniform_count : 7;
605 u32 unk4 : 10; // = 2
606 } bifrost2;
607 struct {
608 u32 unknown2_7;
609 } midgard2;
610 };
611
612 /* zero on bifrost */
613 u32 unknown2_8;
614
615 /* Blending information for the older non-MRT Midgard HW. Check for
616 * MALI_HAS_BLEND_SHADER to decide how to interpret.
617 */
618
619 union midgard_blend blend;
620 } __attribute__((packed));
621
622 /* This only concerns hardware jobs */
623
624 /* Possible values for job_descriptor_size */
625
626 #define MALI_JOB_32 0
627 #define MALI_JOB_64 1
628
629 struct mali_job_descriptor_header {
630 u32 exception_status;
631 u32 first_incomplete_task;
632 u64 fault_pointer;
633 u8 job_descriptor_size : 1;
634 enum mali_job_type job_type : 7;
635 u8 job_barrier : 1;
636 u8 unknown_flags : 7;
637 u16 job_index;
638 u16 job_dependency_index_1;
639 u16 job_dependency_index_2;
640
641 union {
642 u64 next_job_64;
643 u32 next_job_32;
644 };
645 } __attribute__((packed));
646
647 /* These concern exception_status */
648
649 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
650 * kernel */
651
652 enum mali_exception_access {
653 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
654 * fault so it's just unused */
655 MALI_EXCEPTION_ACCESS_NONE = 0,
656
657 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
658 MALI_EXCEPTION_ACCESS_READ = 2,
659 MALI_EXCEPTION_ACCESS_WRITE = 3
660 };
661
662 struct mali_payload_set_value {
663 u64 out;
664 u64 unknown;
665 } __attribute__((packed));
666
667 /* Special attributes have a fixed index */
668 #define MALI_SPECIAL_ATTRIBUTE_BASE 16
669 #define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0)
670 #define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1)
671
672 /*
673 * Mali Attributes
674 *
675 * This structure lets the attribute unit compute the address of an attribute
676 * given the vertex and instance ID. Unfortunately, the way this works is
677 * rather complicated when instancing is enabled.
678 *
679 * To explain this, first we need to explain how compute and vertex threads are
680 * dispatched. This is a guess (although a pretty firm guess!) since the
681 * details are mostly hidden from the driver, except for attribute instancing.
682 * When a quad is dispatched, it receives a single, linear index. However, we
683 * need to translate that index into a (vertex id, instance id) pair, or a
684 * (local id x, local id y, local id z) triple for compute shaders (although
685 * vertex shaders and compute shaders are handled almost identically).
686 * Focusing on vertex shaders, one option would be to do:
687 *
688 * vertex_id = linear_id % num_vertices
689 * instance_id = linear_id / num_vertices
690 *
691 * but this involves a costly division and modulus by an arbitrary number.
692 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
693 * num_instances threads instead of num_vertices * num_instances, which results
694 * in some "extra" threads with vertex_id >= num_vertices, which we have to
695 * discard. The more we pad num_vertices, the more "wasted" threads we
696 * dispatch, but the division is potentially easier.
697 *
698 * One straightforward choice is to pad num_vertices to the next power of two,
699 * which means that the division and modulus are just simple bit shifts and
700 * masking. But the actual algorithm is a bit more complicated. The thread
701 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
702 * to dividing by a power of two. This is possibly using the technique
703 * described in patent US20170010862A1. As a result, padded_num_vertices can be
704 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
705 * since we need less padding.
706 *
707 * padded_num_vertices is picked by the hardware. The driver just specifies the
708 * actual number of vertices. At least for Mali G71, the first few cases are
709 * given by:
710 *
711 * num_vertices | padded_num_vertices
712 * 3 | 4
713 * 4-7 | 8
714 * 8-11 | 12 (3 * 4)
715 * 12-15 | 16
716 * 16-19 | 20 (5 * 4)
717 *
718 * Note that padded_num_vertices is a multiple of four (presumably because
719 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
720 * at least one more than num_vertices, which seems like a quirk of the
721 * hardware. For larger num_vertices, the hardware uses the following
722 * algorithm: using the binary representation of num_vertices, we look at the
723 * most significant set bit as well as the following 3 bits. Let n be the
724 * number of bits after those 4 bits. Then we set padded_num_vertices according
725 * to the following table:
726 *
727 * high bits | padded_num_vertices
728 * 1000 | 9 * 2^n
729 * 1001 | 5 * 2^(n+1)
730 * 101x | 3 * 2^(n+2)
731 * 110x | 7 * 2^(n+1)
732 * 111x | 2^(n+4)
733 *
734 * For example, if num_vertices = 70 is passed to glDraw(), its binary
735 * representation is 1000110, so n = 3 and the high bits are 1000, and
736 * therefore padded_num_vertices = 9 * 2^3 = 72.
737 *
738 * The attribute unit works in terms of the original linear_id. if
739 * num_instances = 1, then they are the same, and everything is simple.
740 * However, with instancing things get more complicated. There are four
741 * possible modes, two of them we can group together:
742 *
743 * 1. Use the linear_id directly. Only used when there is no instancing.
744 *
745 * 2. Use the linear_id modulo a constant. This is used for per-vertex
746 * attributes with instancing enabled by making the constant equal
747 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
748 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
749 * The shift field specifies the power of two, while the extra_flags field
750 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
751 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
752 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
753 * shift = 3. Note that we must exactly follow the hardware algorithm used to
754 * get padded_num_vertices in order to correctly implement per-vertex
755 * attributes.
756 *
757 * 3. Divide the linear_id by a constant. In order to correctly implement
758 * instance divisors, we have to divide linear_id by padded_num_vertices times
759 * to user-specified divisor. So first we compute padded_num_vertices, again
760 * following the exact same algorithm that the hardware uses, then multiply it
761 * by the GL-level divisor to get the hardware-level divisor. This case is
762 * further divided into two more cases. If the hardware-level divisor is a
763 * power of two, then we just need to shift. The shift amount is specified by
764 * the shift field, so that the hardware-level divisor is just 2^shift.
765 *
766 * If it isn't a power of two, then we have to divide by an arbitrary integer.
767 * For that, we use the well-known technique of multiplying by an approximation
768 * of the inverse. The driver must compute the magic multiplier and shift
769 * amount, and then the hardware does the multiplication and shift. The
770 * hardware and driver also use the "round-down" optimization as described in
771 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
772 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
773 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
774 * presumably this simplifies the hardware multiplier a little. The hardware
775 * first multiplies linear_id by the multiplier and takes the high 32 bits,
776 * then applies the round-down correction if extra_flags = 1, then finally
777 * shifts right by the shift field.
778 *
779 * There are some differences between ridiculousfish's algorithm and the Mali
780 * hardware algorithm, which means that the reference code from ridiculousfish
781 * doesn't always produce the right constants. Mali does not use the pre-shift
782 * optimization, since that would make a hardware implementation slower (it
783 * would have to always do the pre-shift, multiply, and post-shift operations).
784 * It also forces the multplier to be at least 2^31, which means that the
785 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
786 * given the divisor d, the algorithm the driver must follow is:
787 *
788 * 1. Set shift = floor(log2(d)).
789 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
790 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
791 * magic_divisor = m - 1 and extra_flags = 1.
792 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
793 *
794 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
795 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
796 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
797 * (*NOT the row stride*). Size is set to the size of the image itself.
798 *
799 * Special internal varyings (including gl_FrontFacing) could be seen as
800 * IMAGE/INTERNAL as well as LINEAR, setting all fields set to zero and using a
801 * special elements pseudo-pointer.
802 */
803
804 enum mali_attr_mode {
805 MALI_ATTR_UNUSED = 0,
806 MALI_ATTR_LINEAR = 1,
807 MALI_ATTR_POT_DIVIDE = 2,
808 MALI_ATTR_MODULO = 3,
809 MALI_ATTR_NPOT_DIVIDE = 4,
810 MALI_ATTR_IMAGE = 5,
811 MALI_ATTR_INTERNAL = 6
812 };
813
814 /* Pseudo-address for gl_FrontFacing, used with INTERNAL. Same addres is used
815 * for gl_FragCoord with IMAGE, needing a coordinate flip. Who knows. */
816
817 #define MALI_VARYING_FRAG_COORD (0x25)
818 #define MALI_VARYING_FRONT_FACING (0x26)
819
820 /* This magic "pseudo-address" is used as `elements` to implement
821 * gl_PointCoord. When read from a fragment shader, it generates a point
822 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
823 * require an affine transformation in the shader. */
824
825 #define MALI_VARYING_POINT_COORD (0x61)
826
827 /* Used for comparison to check if an address is special. Mostly a guess, but
828 * it doesn't really matter. */
829
830 #define MALI_VARYING_SPECIAL (0x100)
831
832 union mali_attr {
833 /* This is used for actual attributes. */
834 struct {
835 /* The bottom 3 bits are the mode */
836 mali_ptr elements : 64 - 8;
837 u32 shift : 5;
838 u32 extra_flags : 3;
839 u32 stride;
840 u32 size;
841 };
842 /* The entry after an NPOT_DIVIDE entry has this format. It stores
843 * extra information that wouldn't fit in a normal entry.
844 */
845 struct {
846 u32 unk; /* = 0x20 */
847 u32 magic_divisor;
848 u32 zero;
849 /* This is the original, GL-level divisor. */
850 u32 divisor;
851 };
852 } __attribute__((packed));
853
854 struct mali_attr_meta {
855 /* Vertex buffer index */
856 u8 index;
857
858 unsigned unknown1 : 2;
859 unsigned swizzle : 12;
860 enum mali_format format : 8;
861
862 /* Always observed to be zero at the moment */
863 unsigned unknown3 : 2;
864
865 /* When packing multiple attributes in a buffer, offset addresses by
866 * this value. Obscurely, this is signed. */
867 int32_t src_offset;
868 } __attribute__((packed));
869
870 enum mali_fbd_type {
871 MALI_SFBD = 0,
872 MALI_MFBD = 1,
873 };
874
875 #define FBD_TYPE (1)
876 #define FBD_MASK (~0x3f)
877
878 /* ORed into an MFBD address to specify the fbx section is included */
879 #define MALI_MFBD_TAG_EXTRA (0x2)
880
881 struct mali_uniform_buffer_meta {
882 /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
883 * bytes. This gives a maximum of 2^14 bytes, which just so happens to
884 * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
885 */
886 u64 size : 10;
887
888 /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
889 * should be 0 for userspace pointers, according to
890 * https://lwn.net/Articles/718895/. By reusing these bits, we can make
891 * each entry in the table only 64 bits.
892 */
893 mali_ptr ptr : 64 - 10;
894 };
895
896 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
897 * They also seem to be the same between Bifrost and Midgard. They're shared in
898 * fused payloads.
899 */
900
901 /* Applies to unknown_draw */
902
903 #define MALI_DRAW_INDEXED_UINT8 (0x10)
904 #define MALI_DRAW_INDEXED_UINT16 (0x20)
905 #define MALI_DRAW_INDEXED_UINT32 (0x30)
906 #define MALI_DRAW_INDEXED_SIZE (0x30)
907 #define MALI_DRAW_INDEXED_SHIFT (4)
908
909 #define MALI_DRAW_VARYING_SIZE (0x100)
910 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
911
912 struct mali_vertex_tiler_prefix {
913 /* This is a dynamic bitfield containing the following things in this order:
914 *
915 * - gl_WorkGroupSize.x
916 * - gl_WorkGroupSize.y
917 * - gl_WorkGroupSize.z
918 * - gl_NumWorkGroups.x
919 * - gl_NumWorkGroups.y
920 * - gl_NumWorkGroups.z
921 *
922 * The number of bits allocated for each number is based on the *_shift
923 * fields below. For example, workgroups_y_shift gives the bit that
924 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
925 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
926 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
927 * value is one more than the stored value, since if any of the values
928 * are zero, then there would be no invocations (and hence no job). If
929 * there were 0 bits allocated to a given field, then it must be zero,
930 * and hence the real value is one.
931 *
932 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
933 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
934 * where vertex count is the number of vertices.
935 */
936 u32 invocation_count;
937
938 u32 size_y_shift : 5;
939 u32 size_z_shift : 5;
940 u32 workgroups_x_shift : 6;
941 u32 workgroups_y_shift : 6;
942 u32 workgroups_z_shift : 6;
943 /* This is max(workgroups_x_shift, 2) in all the cases I've seen. */
944 u32 workgroups_x_shift_2 : 4;
945
946 u32 draw_mode : 4;
947 u32 unknown_draw : 22;
948
949 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
950 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
951 * something to do with how many quads get put in the same execution
952 * engine, which is a balance (you don't want to starve the engine, but
953 * you also want to distribute work evenly).
954 */
955 u32 workgroups_x_shift_3 : 6;
956
957
958 /* Negative of min_index. This is used to compute
959 * the unbiased index in tiler/fragment shader runs.
960 *
961 * The hardware adds offset_bias_correction in each run,
962 * so that absent an index bias, the first vertex processed is
963 * genuinely the first vertex (0). But with an index bias,
964 * the first vertex process is numbered the same as the bias.
965 *
966 * To represent this more conviniently:
967 * unbiased_index = lower_bound_index +
968 * index_bias +
969 * offset_bias_correction
970 *
971 * This is done since the hardware doesn't accept a index_bias
972 * and this allows it to recover the unbiased index.
973 */
974 int32_t offset_bias_correction;
975 u32 zero1;
976
977 /* Like many other strictly nonzero quantities, index_count is
978 * subtracted by one. For an indexed cube, this is equal to 35 = 6
979 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
980 * for an indexed draw, index_count is the number of actual vertices
981 * rendered whereas invocation_count is the number of unique vertices
982 * rendered (the number of times the vertex shader must be invoked).
983 * For non-indexed draws, this is just equal to invocation_count. */
984
985 u32 index_count;
986
987 /* No hidden structure; literally just a pointer to an array of uint
988 * indices (width depends on flags). Thanks, guys, for not making my
989 * life insane for once! NULL for non-indexed draws. */
990
991 u64 indices;
992 } __attribute__((packed));
993
994 /* Point size / line width can either be specified as a 32-bit float (for
995 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
996 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
997 * payload, the contents of varying_pointer will be intepreted as an array of
998 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
999 * creating a special MALI_R16F varying writing to varying_pointer. */
1000
1001 union midgard_primitive_size {
1002 float constant;
1003 u64 pointer;
1004 };
1005
1006 struct bifrost_vertex_only {
1007 u32 unk2; /* =0x2 */
1008
1009 u32 zero0;
1010
1011 u64 zero1;
1012 } __attribute__((packed));
1013
1014 struct bifrost_tiler_heap_meta {
1015 u32 zero;
1016 u32 heap_size;
1017 /* note: these are just guesses! */
1018 mali_ptr tiler_heap_start;
1019 mali_ptr tiler_heap_free;
1020 mali_ptr tiler_heap_end;
1021
1022 /* hierarchy weights? but they're still 0 after the job has run... */
1023 u32 zeros[12];
1024 } __attribute__((packed));
1025
1026 struct bifrost_tiler_meta {
1027 u64 zero0;
1028 u16 hierarchy_mask;
1029 u16 flags;
1030 u16 width;
1031 u16 height;
1032 u64 zero1;
1033 mali_ptr tiler_heap_meta;
1034 /* TODO what is this used for? */
1035 u64 zeros[20];
1036 } __attribute__((packed));
1037
1038 struct bifrost_tiler_only {
1039 /* 0x20 */
1040 union midgard_primitive_size primitive_size;
1041
1042 mali_ptr tiler_meta;
1043
1044 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1045
1046 u32 gl_enables;
1047 u32 zero7;
1048 u64 zero8;
1049 } __attribute__((packed));
1050
1051 struct bifrost_scratchpad {
1052 u32 zero;
1053 u32 flags; // = 0x1f
1054 /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
1055 * during startup. It seems to serve the same purpose as the
1056 * gpu_scratchpad in the SFBD for Midgard, although it's slightly
1057 * larger.
1058 */
1059 mali_ptr gpu_scratchpad;
1060 } __attribute__((packed));
1061
1062 struct mali_vertex_tiler_postfix {
1063 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1064 * output from the vertex shader for tiler jobs.
1065 */
1066
1067 u64 position_varying;
1068
1069 /* An array of mali_uniform_buffer_meta's. The size is given by the
1070 * shader_meta.
1071 */
1072 u64 uniform_buffers;
1073
1074 /* This is a pointer to an array of pointers to the texture
1075 * descriptors, number of pointers bounded by number of textures. The
1076 * indirection is needed to accomodate varying numbers and sizes of
1077 * texture descriptors */
1078 u64 texture_trampoline;
1079
1080 /* For OpenGL, from what I've seen, this is intimately connected to
1081 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1082 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1083 * array of sampler descriptors (which are uniform in size) */
1084 u64 sampler_descriptor;
1085
1086 u64 uniforms;
1087 u64 shader;
1088 u64 attributes; /* struct attribute_buffer[] */
1089 u64 attribute_meta; /* attribute_meta[] */
1090 u64 varyings; /* struct attr */
1091 u64 varying_meta; /* pointer */
1092 u64 viewport;
1093 u64 occlusion_counter; /* A single bit as far as I can tell */
1094
1095 /* Note: on Bifrost, this isn't actually the FBD. It points to
1096 * bifrost_scratchpad instead. However, it does point to the same thing
1097 * in vertex and tiler jobs.
1098 */
1099 mali_ptr framebuffer;
1100 } __attribute__((packed));
1101
1102 struct midgard_payload_vertex_tiler {
1103 struct mali_vertex_tiler_prefix prefix;
1104
1105 u16 gl_enables; // 0x5
1106
1107 /* Both zero for non-instanced draws. For instanced draws, a
1108 * decomposition of padded_num_vertices. See the comments about the
1109 * corresponding fields in mali_attr for context. */
1110
1111 unsigned instance_shift : 5;
1112 unsigned instance_odd : 3;
1113
1114 u8 zero4;
1115
1116 /* Offset for first vertex in buffer */
1117 u32 offset_start;
1118
1119 u64 zero5;
1120
1121 struct mali_vertex_tiler_postfix postfix;
1122
1123 union midgard_primitive_size primitive_size;
1124 } __attribute__((packed));
1125
1126 struct bifrost_payload_vertex {
1127 struct mali_vertex_tiler_prefix prefix;
1128 struct bifrost_vertex_only vertex;
1129 struct mali_vertex_tiler_postfix postfix;
1130 } __attribute__((packed));
1131
1132 struct bifrost_payload_tiler {
1133 struct mali_vertex_tiler_prefix prefix;
1134 struct bifrost_tiler_only tiler;
1135 struct mali_vertex_tiler_postfix postfix;
1136 } __attribute__((packed));
1137
1138 struct bifrost_payload_fused {
1139 struct mali_vertex_tiler_prefix prefix;
1140 struct bifrost_tiler_only tiler;
1141 struct mali_vertex_tiler_postfix tiler_postfix;
1142 u64 padding; /* zero */
1143 struct bifrost_vertex_only vertex;
1144 struct mali_vertex_tiler_postfix vertex_postfix;
1145 } __attribute__((packed));
1146
1147 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1148 * texture is stored as (63, 63) in these fields. This adjusts for that.
1149 * There's an identical pattern in the framebuffer descriptor. Even vertex
1150 * count fields work this way, hence the generic name -- integral fields that
1151 * are strictly positive generally need this adjustment. */
1152
1153 #define MALI_POSITIVE(dim) (dim - 1)
1154
1155 /* Opposite of MALI_POSITIVE, found in the depth_units field */
1156
1157 #define MALI_NEGATIVE(dim) (dim + 1)
1158
1159 /* Used with wrapping. Incomplete (this is a 4-bit field...) */
1160
1161 enum mali_wrap_mode {
1162 MALI_WRAP_REPEAT = 0x8,
1163 MALI_WRAP_CLAMP_TO_EDGE = 0x9,
1164 MALI_WRAP_CLAMP_TO_BORDER = 0xB,
1165 MALI_WRAP_MIRRORED_REPEAT = 0xC
1166 };
1167
1168 /* Shared across both command stream and Midgard, and even with Bifrost */
1169
1170 enum mali_texture_type {
1171 MALI_TEX_CUBE = 0x0,
1172 MALI_TEX_1D = 0x1,
1173 MALI_TEX_2D = 0x2,
1174 MALI_TEX_3D = 0x3
1175 };
1176
1177 /* 8192x8192 */
1178 #define MAX_MIP_LEVELS (13)
1179
1180 /* Cubemap bloats everything up */
1181 #define MAX_CUBE_FACES (6)
1182
1183 /* For each pointer, there is an address and optionally also a stride */
1184 #define MAX_ELEMENTS (2)
1185
1186 /* It's not known why there are 4-bits allocated -- this enum is almost
1187 * certainly incomplete */
1188
1189 enum mali_texture_layout {
1190 /* For a Z/S texture, this is linear */
1191 MALI_TEXTURE_TILED = 0x1,
1192
1193 /* Z/S textures cannot be tiled */
1194 MALI_TEXTURE_LINEAR = 0x2,
1195
1196 /* 16x16 sparse */
1197 MALI_TEXTURE_AFBC = 0xC
1198 };
1199
1200 /* Corresponds to the type passed to glTexImage2D and so forth */
1201
1202 struct mali_texture_format {
1203 unsigned swizzle : 12;
1204 enum mali_format format : 8;
1205
1206 unsigned srgb : 1;
1207 unsigned unknown1 : 1;
1208
1209 enum mali_texture_type type : 2;
1210 enum mali_texture_layout layout : 4;
1211
1212 /* Always set */
1213 unsigned unknown2 : 1;
1214
1215 /* Set to allow packing an explicit stride */
1216 unsigned manual_stride : 1;
1217
1218 unsigned zero : 2;
1219 } __attribute__((packed));
1220
1221 struct mali_texture_descriptor {
1222 uint16_t width;
1223 uint16_t height;
1224 uint16_t depth;
1225 uint16_t array_size;
1226
1227 struct mali_texture_format format;
1228
1229 uint16_t unknown3;
1230
1231 /* One for non-mipmapped, zero for mipmapped */
1232 uint8_t unknown3A;
1233
1234 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1235 uint8_t levels;
1236
1237 /* Swizzling is a single 32-bit word, broken up here for convenience.
1238 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1239 * level swizzling, not the internal pixel-level swizzling which is
1240 * below OpenGL's reach */
1241
1242 unsigned swizzle : 12;
1243 unsigned swizzle_zero : 20;
1244
1245 uint32_t unknown5;
1246 uint32_t unknown6;
1247 uint32_t unknown7;
1248
1249 mali_ptr payload[MAX_MIP_LEVELS * MAX_CUBE_FACES * MAX_ELEMENTS];
1250 } __attribute__((packed));
1251
1252 /* filter_mode */
1253
1254 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1255 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1256
1257 /* TODO: What do these bits mean individually? Only seen set together */
1258
1259 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1260 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1261
1262 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1263 * sampler_t flag. For typical OpenGL textures, this is always set. */
1264
1265 #define MALI_SAMP_NORM_COORDS (1 << 5)
1266
1267 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1268 * be cleaned up a lot. */
1269
1270 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1271
1272 static inline uint16_t
1273 FIXED_16(float x)
1274 {
1275 /* Clamp inputs, accounting for float error */
1276 float max_lod = (32.0 - (1.0 / 512.0));
1277
1278 x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x));
1279
1280 return (int) (x * 256.0);
1281 }
1282
1283 struct mali_sampler_descriptor {
1284 uint32_t filter_mode;
1285
1286 /* Fixed point. Upper 8-bits is before the decimal point, although it
1287 * caps [0-31]. Lower 8-bits is after the decimal point: int(round(x *
1288 * 256)) */
1289
1290 uint16_t min_lod;
1291 uint16_t max_lod;
1292
1293 /* All one word in reality, but packed a bit */
1294
1295 enum mali_wrap_mode wrap_s : 4;
1296 enum mali_wrap_mode wrap_t : 4;
1297 enum mali_wrap_mode wrap_r : 4;
1298 enum mali_alt_func compare_func : 3;
1299
1300 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1301 * ES2, controlling seamless cubemapping */
1302 unsigned seamless_cube_map : 1;
1303
1304 unsigned zero : 16;
1305
1306 uint32_t zero2;
1307 float border_color[4];
1308 } __attribute__((packed));
1309
1310 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1311 * modified by MALI_POSITIVE; viewport0 is as-is.
1312 */
1313
1314 struct mali_viewport {
1315 /* XY clipping planes */
1316 float clip_minx;
1317 float clip_miny;
1318 float clip_maxx;
1319 float clip_maxy;
1320
1321 /* Depth clipping planes */
1322 float clip_minz;
1323 float clip_maxz;
1324
1325 u16 viewport0[2];
1326 u16 viewport1[2];
1327 } __attribute__((packed));
1328
1329 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1330 * of tile numbers. */
1331
1332 #define MALI_TILE_SHIFT 4
1333 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1334
1335 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1336 * each component. Notice that this provides a theoretical upper bound of (1 <<
1337 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1338 * 65536x65536. Multiplying that together, times another four given that Mali
1339 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1340 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1341 * alone rendering in real-time to such a buffer.
1342 *
1343 * Nice job, guys.*/
1344
1345 /* From mali_kbase_10969_workaround.c */
1346 #define MALI_X_COORD_MASK 0x00000FFF
1347 #define MALI_Y_COORD_MASK 0x0FFF0000
1348
1349 /* Extract parts of a tile coordinate */
1350
1351 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1352 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1353
1354 /* Helpers to generate tile coordinates based on the boundary coordinates in
1355 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1356 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1357 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1358 * problem. */
1359
1360 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1361 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1362 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1363 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1364 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1365
1366 struct mali_payload_fragment {
1367 u32 min_tile_coord;
1368 u32 max_tile_coord;
1369 mali_ptr framebuffer;
1370 } __attribute__((packed));
1371
1372 /* Single Framebuffer Descriptor */
1373
1374 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1375 * configured for 4x. With MSAA_8, it is configured for 8x. */
1376
1377 #define MALI_FRAMEBUFFER_MSAA_8 (1 << 3)
1378 #define MALI_FRAMEBUFFER_MSAA_A (1 << 4)
1379 #define MALI_FRAMEBUFFER_MSAA_B (1 << 23)
1380
1381 /* Fast/slow based on whether all three buffers are cleared at once */
1382
1383 #define MALI_CLEAR_FAST (1 << 18)
1384 #define MALI_CLEAR_SLOW (1 << 28)
1385 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1386
1387 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1388 * within the larget framebuffer descriptor). Analogous to
1389 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1390
1391 /* See pan_tiler.c for derivation */
1392 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1393
1394 /* Flag disabling the tiler for clear-only jobs */
1395 #define MALI_TILER_DISABLED (1 << 12)
1396
1397 struct midgard_tiler_descriptor {
1398 /* Size of the entire polygon list; see pan_tiler.c for the
1399 * computation. It's based on hierarchical tiling */
1400
1401 u32 polygon_list_size;
1402
1403 /* Name known from the replay workaround in the kernel. What exactly is
1404 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1405 * specifies a mask of hierarchy weights, which explains some of the
1406 * performance mysteries around setting it. We also see the bottom bit
1407 * of tiler_flags set in the kernel, but no comment why.
1408 *
1409 * hierarchy_mask can have the TILER_DISABLED flag */
1410
1411 u16 hierarchy_mask;
1412 u16 flags;
1413
1414 /* See mali_tiler.c for an explanation */
1415 mali_ptr polygon_list;
1416 mali_ptr polygon_list_body;
1417
1418 /* Names based on we see symmetry with replay jobs which name these
1419 * explicitly */
1420
1421 mali_ptr heap_start; /* tiler heap_free_address */
1422 mali_ptr heap_end;
1423
1424 /* Hierarchy weights. We know these are weights based on the kernel,
1425 * but I've never seen them be anything other than zero */
1426 u32 weights[8];
1427 };
1428
1429 struct mali_single_framebuffer {
1430 u32 unknown1;
1431 u32 unknown2;
1432 u64 unknown_address_0;
1433 u64 zero1;
1434 u64 zero0;
1435
1436 /* Exact format is ironically not known, since EGL is finnicky with the
1437 * blob. MSAA, colourspace, etc are configured here. */
1438
1439 u32 format;
1440
1441 u32 clear_flags;
1442 u32 zero2;
1443
1444 /* Purposeful off-by-one in these fields should be accounted for by the
1445 * MALI_DIMENSION macro */
1446
1447 u16 width;
1448 u16 height;
1449
1450 u32 zero3[8];
1451
1452 /* By default, the framebuffer is upside down from OpenGL's
1453 * perspective. Set framebuffer to the end and negate the stride to
1454 * flip in the Y direction */
1455
1456 mali_ptr framebuffer;
1457 int32_t stride;
1458
1459 u32 zero4;
1460
1461 /* Depth and stencil buffers are interleaved, it appears, as they are
1462 * set to the same address in captures. Both fields set to zero if the
1463 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1464 * get a zero enable despite the buffer being present; that still is
1465 * disabled. */
1466
1467 mali_ptr depth_buffer; // not SAME_VA
1468 u64 depth_buffer_enable;
1469
1470 mali_ptr stencil_buffer; // not SAME_VA
1471 u64 stencil_buffer_enable;
1472
1473 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1474 u32 clear_color_2; // always equal, but unclear function?
1475 u32 clear_color_3; // always equal, but unclear function?
1476 u32 clear_color_4; // always equal, but unclear function?
1477
1478 /* Set to zero if not cleared */
1479
1480 float clear_depth_1; // float32, ditto
1481 float clear_depth_2; // float32, ditto
1482 float clear_depth_3; // float32, ditto
1483 float clear_depth_4; // float32, ditto
1484
1485 u32 clear_stencil; // Exactly as it appears in OpenGL
1486
1487 u32 zero6[7];
1488
1489 struct midgard_tiler_descriptor tiler;
1490
1491 /* More below this, maybe */
1492 } __attribute__((packed));
1493
1494 /* On Midgard, this "framebuffer descriptor" is used for the framebuffer field
1495 * of compute jobs. Superficially resembles a single framebuffer descriptor */
1496
1497 struct mali_compute_fbd {
1498 u32 unknown1[8];
1499 } __attribute__((packed));
1500
1501 /* Format bits for the render target flags */
1502
1503 #define MALI_MFBD_FORMAT_MSAA (1 << 1)
1504 #define MALI_MFBD_FORMAT_SRGB (1 << 2)
1505
1506 enum mali_mfbd_block_format {
1507 MALI_MFBD_BLOCK_TILED = 0x0,
1508 MALI_MFBD_BLOCK_UNKNOWN = 0x1,
1509 MALI_MFBD_BLOCK_LINEAR = 0x2,
1510 MALI_MFBD_BLOCK_AFBC = 0x3,
1511 };
1512
1513 struct mali_rt_format {
1514 unsigned unk1 : 32;
1515 unsigned unk2 : 3;
1516
1517 unsigned nr_channels : 2; /* MALI_POSITIVE */
1518
1519 unsigned unk3 : 5;
1520 enum mali_mfbd_block_format block : 2;
1521 unsigned flags : 4;
1522
1523 unsigned swizzle : 12;
1524
1525 unsigned zero : 3;
1526
1527 /* Disables MFBD preload. When this bit is set, the render target will
1528 * be cleared every frame. When this bit is clear, the hardware will
1529 * automatically wallpaper the render target back from main memory.
1530 * Unfortunately, MFBD preload is very broken on Midgard, so in
1531 * practice, this is a chicken bit that should always be set.
1532 * Discovered by accident, as all good chicken bits are. */
1533
1534 unsigned no_preload : 1;
1535 } __attribute__((packed));
1536
1537 struct bifrost_render_target {
1538 struct mali_rt_format format;
1539
1540 u64 zero1;
1541
1542 struct {
1543 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1544 * there is an extra metadata buffer that contains 16 bytes per tile.
1545 * The framebuffer needs to be the same size as before, since we don't
1546 * know ahead of time how much space it will take up. The
1547 * framebuffer_stride is set to 0, since the data isn't stored linearly
1548 * anymore.
1549 *
1550 * When AFBC is disabled, these fields are zero.
1551 */
1552
1553 mali_ptr metadata;
1554 u32 stride; // stride in units of tiles
1555 u32 unk; // = 0x20000
1556 } afbc;
1557
1558 mali_ptr framebuffer;
1559
1560 u32 zero2 : 4;
1561 u32 framebuffer_stride : 28; // in units of bytes
1562 u32 zero3;
1563
1564 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1565 u32 clear_color_2; // always equal, but unclear function?
1566 u32 clear_color_3; // always equal, but unclear function?
1567 u32 clear_color_4; // always equal, but unclear function?
1568 } __attribute__((packed));
1569
1570 /* An optional part of bifrost_framebuffer. It comes between the main structure
1571 * and the array of render targets. It must be included if any of these are
1572 * enabled:
1573 *
1574 * - Transaction Elimination
1575 * - Depth/stencil
1576 * - TODO: Anything else?
1577 */
1578
1579 /* Flags field: note, these are guesses */
1580
1581 #define MALI_EXTRA_PRESENT (0x400)
1582 #define MALI_EXTRA_AFBC (0x20)
1583 #define MALI_EXTRA_AFBC_ZS (0x10)
1584 #define MALI_EXTRA_ZS (0x4)
1585
1586 struct bifrost_fb_extra {
1587 mali_ptr checksum;
1588 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1589 u32 checksum_stride;
1590
1591 u32 flags;
1592
1593 union {
1594 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1595 struct {
1596 mali_ptr depth_stencil_afbc_metadata;
1597 u32 depth_stencil_afbc_stride; // in units of tiles
1598 u32 zero1;
1599
1600 mali_ptr depth_stencil;
1601
1602 u64 padding;
1603 } ds_afbc;
1604
1605 struct {
1606 /* Depth becomes depth/stencil in case of combined D/S */
1607 mali_ptr depth;
1608 u32 depth_stride_zero : 4;
1609 u32 depth_stride : 28;
1610 u32 zero1;
1611
1612 mali_ptr stencil;
1613 u32 stencil_stride_zero : 4;
1614 u32 stencil_stride : 28;
1615 u32 zero2;
1616 } ds_linear;
1617 };
1618
1619
1620 u64 zero3, zero4;
1621 } __attribute__((packed));
1622
1623 /* Flags for mfbd_flags */
1624
1625 /* Enables writing depth results back to main memory (rather than keeping them
1626 * on-chip in the tile buffer and then discarding) */
1627
1628 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1629
1630 /* The MFBD contains the extra bifrost_fb_extra section */
1631
1632 #define MALI_MFBD_EXTRA (1 << 13)
1633
1634 struct bifrost_framebuffer {
1635 u32 unk0; // = 0x10
1636
1637 u32 unknown2; // = 0x1f, same as SFBD
1638 mali_ptr scratchpad;
1639
1640 /* 0x10 */
1641 mali_ptr sample_locations;
1642 mali_ptr unknown1;
1643 /* 0x20 */
1644 u16 width1, height1;
1645 u32 zero3;
1646 u16 width2, height2;
1647 u32 unk1 : 19; // = 0x01000
1648 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1649 u32 unk2 : 3; // = 0
1650 u32 rt_count_2 : 3; // no off-by-one
1651 u32 zero4 : 5;
1652 /* 0x30 */
1653 u32 clear_stencil : 8;
1654 u32 mfbd_flags : 24; // = 0x100
1655 float clear_depth;
1656
1657 struct midgard_tiler_descriptor tiler;
1658
1659 /* optional: struct bifrost_fb_extra extra */
1660 /* struct bifrost_render_target rts[] */
1661 } __attribute__((packed));
1662
1663 #endif /* __PANFROST_JOB_H__ */