panfrost: Add ETC1/ETC2 texture formats
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <panfrost-misc.h>
34
35 enum mali_job_type {
36 JOB_NOT_STARTED = 0,
37 JOB_TYPE_NULL = 1,
38 JOB_TYPE_WRITE_VALUE = 2,
39 JOB_TYPE_CACHE_FLUSH = 3,
40 JOB_TYPE_COMPUTE = 4,
41 JOB_TYPE_VERTEX = 5,
42 JOB_TYPE_GEOMETRY = 6,
43 JOB_TYPE_TILER = 7,
44 JOB_TYPE_FUSED = 8,
45 JOB_TYPE_FRAGMENT = 9,
46 };
47
48 enum mali_draw_mode {
49 MALI_DRAW_NONE = 0x0,
50 MALI_POINTS = 0x1,
51 MALI_LINES = 0x2,
52 MALI_LINE_STRIP = 0x4,
53 MALI_LINE_LOOP = 0x6,
54 MALI_TRIANGLES = 0x8,
55 MALI_TRIANGLE_STRIP = 0xA,
56 MALI_TRIANGLE_FAN = 0xC,
57 MALI_POLYGON = 0xD,
58 MALI_QUADS = 0xE,
59 MALI_QUAD_STRIP = 0xF,
60
61 /* All other modes invalid */
62 };
63
64 /* Applies to tiler_gl_enables */
65
66 #define MALI_OCCLUSION_QUERY (1 << 3)
67 #define MALI_OCCLUSION_PRECISE (1 << 4)
68
69 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
70 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
71 * disagree about how to do viewport flipping, so the blob actually sets this
72 * for GL_CW but then has a negative viewport stride */
73
74 #define MALI_FRONT_CCW_TOP (1 << 5)
75
76 #define MALI_CULL_FACE_FRONT (1 << 6)
77 #define MALI_CULL_FACE_BACK (1 << 7)
78
79 /* Used in stencil and depth tests */
80
81 enum mali_func {
82 MALI_FUNC_NEVER = 0,
83 MALI_FUNC_LESS = 1,
84 MALI_FUNC_EQUAL = 2,
85 MALI_FUNC_LEQUAL = 3,
86 MALI_FUNC_GREATER = 4,
87 MALI_FUNC_NOTEQUAL = 5,
88 MALI_FUNC_GEQUAL = 6,
89 MALI_FUNC_ALWAYS = 7
90 };
91
92 /* Flags apply to unknown2_3? */
93
94 #define MALI_HAS_MSAA (1 << 0)
95 #define MALI_CAN_DISCARD (1 << 5)
96
97 /* Applies on SFBD systems, specifying that programmable blending is in use */
98 #define MALI_HAS_BLEND_SHADER (1 << 6)
99
100 /* func is mali_func */
101 #define MALI_DEPTH_FUNC(func) (func << 8)
102 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
103 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
104
105 #define MALI_DEPTH_WRITEMASK (1 << 11)
106
107 /* Next flags to unknown2_4 */
108 #define MALI_STENCIL_TEST (1 << 0)
109
110 /* What?! */
111 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
112
113 #define MALI_NO_DITHER (1 << 9)
114 #define MALI_DEPTH_RANGE_A (1 << 12)
115 #define MALI_DEPTH_RANGE_B (1 << 13)
116 #define MALI_NO_MSAA (1 << 14)
117
118 /* Stencil test state is all encoded in a single u32, just with a lot of
119 * enums... */
120
121 enum mali_stencil_op {
122 MALI_STENCIL_KEEP = 0,
123 MALI_STENCIL_REPLACE = 1,
124 MALI_STENCIL_ZERO = 2,
125 MALI_STENCIL_INVERT = 3,
126 MALI_STENCIL_INCR_WRAP = 4,
127 MALI_STENCIL_DECR_WRAP = 5,
128 MALI_STENCIL_INCR = 6,
129 MALI_STENCIL_DECR = 7
130 };
131
132 struct mali_stencil_test {
133 unsigned ref : 8;
134 unsigned mask : 8;
135 enum mali_func func : 3;
136 enum mali_stencil_op sfail : 3;
137 enum mali_stencil_op dpfail : 3;
138 enum mali_stencil_op dppass : 3;
139 unsigned zero : 4;
140 } __attribute__((packed));
141
142 #define MALI_MASK_R (1 << 0)
143 #define MALI_MASK_G (1 << 1)
144 #define MALI_MASK_B (1 << 2)
145 #define MALI_MASK_A (1 << 3)
146
147 enum mali_nondominant_mode {
148 MALI_BLEND_NON_MIRROR = 0,
149 MALI_BLEND_NON_ZERO = 1
150 };
151
152 enum mali_dominant_blend {
153 MALI_BLEND_DOM_SOURCE = 0,
154 MALI_BLEND_DOM_DESTINATION = 1
155 };
156
157 enum mali_dominant_factor {
158 MALI_DOMINANT_UNK0 = 0,
159 MALI_DOMINANT_ZERO = 1,
160 MALI_DOMINANT_SRC_COLOR = 2,
161 MALI_DOMINANT_DST_COLOR = 3,
162 MALI_DOMINANT_UNK4 = 4,
163 MALI_DOMINANT_SRC_ALPHA = 5,
164 MALI_DOMINANT_DST_ALPHA = 6,
165 MALI_DOMINANT_CONSTANT = 7,
166 };
167
168 enum mali_blend_modifier {
169 MALI_BLEND_MOD_UNK0 = 0,
170 MALI_BLEND_MOD_NORMAL = 1,
171 MALI_BLEND_MOD_SOURCE_ONE = 2,
172 MALI_BLEND_MOD_DEST_ONE = 3,
173 };
174
175 struct mali_blend_mode {
176 enum mali_blend_modifier clip_modifier : 2;
177 unsigned unused_0 : 1;
178 unsigned negate_source : 1;
179
180 enum mali_dominant_blend dominant : 1;
181
182 enum mali_nondominant_mode nondominant_mode : 1;
183
184 unsigned unused_1 : 1;
185
186 unsigned negate_dest : 1;
187
188 enum mali_dominant_factor dominant_factor : 3;
189 unsigned complement_dominant : 1;
190 } __attribute__((packed));
191
192 struct mali_blend_equation {
193 /* Of type mali_blend_mode */
194 unsigned rgb_mode : 12;
195 unsigned alpha_mode : 12;
196
197 unsigned zero1 : 4;
198
199 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
200
201 unsigned color_mask : 4;
202 } __attribute__((packed));
203
204 /* Used with channel swizzling */
205 enum mali_channel {
206 MALI_CHANNEL_RED = 0,
207 MALI_CHANNEL_GREEN = 1,
208 MALI_CHANNEL_BLUE = 2,
209 MALI_CHANNEL_ALPHA = 3,
210 MALI_CHANNEL_ZERO = 4,
211 MALI_CHANNEL_ONE = 5,
212 MALI_CHANNEL_RESERVED_0 = 6,
213 MALI_CHANNEL_RESERVED_1 = 7,
214 };
215
216 struct mali_channel_swizzle {
217 enum mali_channel r : 3;
218 enum mali_channel g : 3;
219 enum mali_channel b : 3;
220 enum mali_channel a : 3;
221 } __attribute__((packed));
222
223 /* Compressed per-pixel formats. Each of these formats expands to one to four
224 * floating-point or integer numbers, as defined by the OpenGL specification.
225 * There are various places in OpenGL where the user can specify a compressed
226 * format in memory, which all use the same 8-bit enum in the various
227 * descriptors, although different hardware units support different formats.
228 */
229
230 /* The top 3 bits specify how the bits of each component are interpreted. */
231
232 /* e.g. ETC2_RGB8 */
233 #define MALI_FORMAT_COMPRESSED (0 << 5)
234
235 /* e.g. R11F_G11F_B10F */
236 #define MALI_FORMAT_SPECIAL (2 << 5)
237
238 /* signed normalized, e.g. RGBA8_SNORM */
239 #define MALI_FORMAT_SNORM (3 << 5)
240
241 /* e.g. RGBA8UI */
242 #define MALI_FORMAT_UINT (4 << 5)
243
244 /* e.g. RGBA8 and RGBA32F */
245 #define MALI_FORMAT_UNORM (5 << 5)
246
247 /* e.g. RGBA8I and RGBA16F */
248 #define MALI_FORMAT_SINT (6 << 5)
249
250 /* These formats seem to largely duplicate the others. They're used at least
251 * for Bifrost framebuffer output.
252 */
253 #define MALI_FORMAT_SPECIAL2 (7 << 5)
254
255 /* If the high 3 bits are 3 to 6 these two bits say how many components
256 * there are.
257 */
258 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
259
260 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
261 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
262 * bits mean.
263 */
264
265 #define MALI_CHANNEL_4 2
266
267 #define MALI_CHANNEL_8 3
268
269 #define MALI_CHANNEL_16 4
270
271 #define MALI_CHANNEL_32 5
272
273 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
274 * MALI_FORMAT_UNORM, it means a 32-bit float.
275 */
276 #define MALI_CHANNEL_FLOAT 7
277
278 enum mali_format {
279 MALI_ETC2_RGB8 = MALI_FORMAT_COMPRESSED | 0x1,
280 MALI_ETC2_R11_UNORM = MALI_FORMAT_COMPRESSED | 0x2,
281 MALI_ETC2_RGBA8 = MALI_FORMAT_COMPRESSED | 0x3,
282 MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
283 MALI_ETC2_R11_SNORM = MALI_FORMAT_COMPRESSED | 0x11,
284 MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12,
285 MALI_ETC2_RGB8A1 = MALI_FORMAT_COMPRESSED | 0x13,
286
287 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
288 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
289 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
290 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
291 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
292 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
293
294 /* YUV formats */
295 MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
296
297 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
298 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
299 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
300 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
301 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
302 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
303 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
304 /* Only used for varyings, to indicate the transformed gl_Position */
305 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
306 /* Only used for varyings, to indicate that the write should be
307 * discarded.
308 */
309 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
310
311 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
312 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
313 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
314 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
315 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
316 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
317 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
318 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
319 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
320 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
321 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
322 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
323
324 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
325 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
326 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
327 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
328 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
329 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
330 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
331 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
332 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
333 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
334 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
335 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
336
337 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
338 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
339 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
340 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
341 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
342 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
343 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
344 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
345 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
346 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
347 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
348 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
349 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
350 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
351 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
352 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
353 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
354
355 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
356 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
357 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
358 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
359 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
360 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
361 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
362 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
363 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
364 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
365 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
366 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
367 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
368 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
369 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
370 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
371
372 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
373 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
374 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
375 };
376
377
378 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
379 * literally performing a bitwise invert. This function produces slightly wrong
380 * results and I'm not sure why; some rounding issue I suppose... */
381
382 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
383 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
384
385 /* Applies to midgard1.flags */
386
387 /* Should the hardware perform early-Z testing? Normally should be set
388 * for performance reasons. Clear if you use: discard,
389 * alpha-to-coverage... * It's also possible this disables
390 * forward-pixel kill; we're not quite sure which bit is which yet.
391 * TODO: How does this interact with blending?*/
392
393 #define MALI_EARLY_Z (1 << 6)
394
395 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
396 * fragment shader that uses texturing or derivative functions */
397
398 #define MALI_HELPER_INVOCATIONS (1 << 7)
399
400 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
401 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
402 * it might read depth/stencil in particular, also set MALI_READS_ZS */
403
404 #define MALI_READS_ZS (1 << 8)
405 #define MALI_READS_TILEBUFFER (1 << 12)
406
407 /* The raw Midgard blend payload can either be an equation or a shader
408 * address, depending on the context */
409
410 union midgard_blend {
411 mali_ptr shader;
412
413 struct {
414 struct mali_blend_equation equation;
415 float constant;
416 };
417 };
418
419 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
420 * ZERO) */
421
422 #define MALI_BLEND_LOAD_TIB (0x1)
423
424 /* A blend shader is used to blend this render target */
425 #define MALI_BLEND_MRT_SHADER (0x2)
426
427 /* On MRT Midgard systems (using an MFBD), each render target gets its own
428 * blend descriptor */
429
430 #define MALI_BLEND_SRGB (0x400)
431
432 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
433 #define MALI_BLEND_NO_DITHER (0x800)
434
435 struct midgard_blend_rt {
436 /* Flags base value of 0x200 to enable the render target.
437 * OR with 0x1 for blending (anything other than REPLACE).
438 * OR with 0x2 for programmable blending
439 * OR with MALI_BLEND_SRGB for implicit sRGB
440 */
441
442 u64 flags;
443 union midgard_blend blend;
444 } __attribute__((packed));
445
446 /* On Bifrost systems (all MRT), each render target gets one of these
447 * descriptors */
448
449 struct bifrost_blend_rt {
450 /* This is likely an analogue of the flags on
451 * midgard_blend_rt */
452
453 u16 flags; // = 0x200
454
455 /* Single-channel blend constants are encoded in a sort of
456 * fixed-point. Basically, the float is mapped to a byte, becoming
457 * a high byte, and then the lower-byte is added for precision.
458 * For the original float f:
459 *
460 * f = (constant_hi / 255) + (constant_lo / 65535)
461 *
462 * constant_hi = int(f / 255)
463 * constant_lo = 65535*f - (65535/255) * constant_hi
464 */
465
466 u16 constant;
467
468 struct mali_blend_equation equation;
469 /*
470 * - 0x19 normally
471 * - 0x3 when this slot is unused (everything else is 0 except the index)
472 * - 0x11 when this is the fourth slot (and it's used)
473 + * - 0 when there is a blend shader
474 */
475 u16 unk2;
476 /* increments from 0 to 3 */
477 u16 index;
478
479 union {
480 struct {
481 /* So far, I've only seen:
482 * - R001 for 1-component formats
483 * - RG01 for 2-component formats
484 * - RGB1 for 3-component formats
485 * - RGBA for 4-component formats
486 */
487 u32 swizzle : 12;
488 enum mali_format format : 8;
489
490 /* Type of the shader output variable. Note, this can
491 * be different from the format.
492 *
493 * 0: f16 (mediump float)
494 * 1: f32 (highp float)
495 * 2: i32 (highp int)
496 * 3: u32 (highp uint)
497 * 4: i16 (mediump int)
498 * 5: u16 (mediump uint)
499 */
500 u32 shader_type : 3;
501 u32 zero : 9;
502 };
503
504 /* Only the low 32 bits of the blend shader are stored, the
505 * high 32 bits are implicitly the same as the original shader.
506 * According to the kernel driver, the program counter for
507 * shaders is actually only 24 bits, so shaders cannot cross
508 * the 2^24-byte boundary, and neither can the blend shader.
509 * The blob handles this by allocating a 2^24 byte pool for
510 * shaders, and making sure that any blend shaders are stored
511 * in the same pool as the original shader. The kernel will
512 * make sure this allocation is aligned to 2^24 bytes.
513 */
514 u32 shader;
515 };
516 } __attribute__((packed));
517
518 /* Descriptor for the shader. Following this is at least one, up to four blend
519 * descriptors for each active render target */
520
521 struct mali_shader_meta {
522 mali_ptr shader;
523 u16 sampler_count;
524 u16 texture_count;
525 u16 attribute_count;
526 u16 varying_count;
527
528 union {
529 struct {
530 u32 uniform_buffer_count : 4;
531 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
532 } bifrost1;
533 struct {
534 unsigned uniform_buffer_count : 4;
535 unsigned flags : 12;
536
537 /* vec4 units */
538 unsigned work_count : 5;
539 unsigned uniform_count : 5;
540 unsigned unknown2 : 6;
541 } midgard1;
542 };
543
544 /* Same as glPolygoOffset() arguments */
545 float depth_units;
546 float depth_factor;
547
548 u32 unknown2_2;
549
550 u16 alpha_coverage;
551 u16 unknown2_3;
552
553 u8 stencil_mask_front;
554 u8 stencil_mask_back;
555 u16 unknown2_4;
556
557 struct mali_stencil_test stencil_front;
558 struct mali_stencil_test stencil_back;
559
560 union {
561 struct {
562 u32 unk3 : 7;
563 /* On Bifrost, some system values are preloaded in
564 * registers R55-R62 by the thread dispatcher prior to
565 * the start of shader execution. This is a bitfield
566 * with one entry for each register saying which
567 * registers need to be preloaded. Right now, the known
568 * values are:
569 *
570 * Vertex/compute:
571 * - R55 : gl_LocalInvocationID.xy
572 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
573 * - R57 : gl_WorkGroupID.x
574 * - R58 : gl_WorkGroupID.y
575 * - R59 : gl_WorkGroupID.z
576 * - R60 : gl_GlobalInvocationID.x
577 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
578 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
579 *
580 * Fragment:
581 * - R55 : unknown, never seen (but the bit for this is
582 * always set?)
583 * - R56 : unknown (bit always unset)
584 * - R57 : gl_PrimitiveID
585 * - R58 : gl_FrontFacing in low bit, potentially other stuff
586 * - R59 : u16 fragment coordinates (used to compute
587 * gl_FragCoord.xy, together with sample positions)
588 * - R60 : gl_SampleMask (used in epilog, so pretty
589 * much always used, but the bit is always 0 -- is
590 * this just always pushed?)
591 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
592 * varying interpolation.
593 * - R62 : unknown (bit always unset).
594 */
595 u32 preload_regs : 8;
596 /* In units of 8 bytes or 64 bits, since the
597 * uniform/const port loads 64 bits at a time.
598 */
599 u32 uniform_count : 7;
600 u32 unk4 : 10; // = 2
601 } bifrost2;
602 struct {
603 u32 unknown2_7;
604 } midgard2;
605 };
606
607 /* zero on bifrost */
608 u32 unknown2_8;
609
610 /* Blending information for the older non-MRT Midgard HW. Check for
611 * MALI_HAS_BLEND_SHADER to decide how to interpret.
612 */
613
614 union midgard_blend blend;
615 } __attribute__((packed));
616
617 /* This only concerns hardware jobs */
618
619 /* Possible values for job_descriptor_size */
620
621 #define MALI_JOB_32 0
622 #define MALI_JOB_64 1
623
624 struct mali_job_descriptor_header {
625 u32 exception_status;
626 u32 first_incomplete_task;
627 u64 fault_pointer;
628 u8 job_descriptor_size : 1;
629 enum mali_job_type job_type : 7;
630 u8 job_barrier : 1;
631 u8 unknown_flags : 7;
632 u16 job_index;
633 u16 job_dependency_index_1;
634 u16 job_dependency_index_2;
635 u64 next_job;
636 } __attribute__((packed));
637
638 /* These concern exception_status */
639
640 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
641 * kernel */
642
643 enum mali_exception_access {
644 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
645 * fault so it's just unused */
646 MALI_EXCEPTION_ACCESS_NONE = 0,
647
648 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
649 MALI_EXCEPTION_ACCESS_READ = 2,
650 MALI_EXCEPTION_ACCESS_WRITE = 3
651 };
652
653 /* Details about write_value from panfrost igt tests which use it as a generic
654 * dword write primitive */
655
656 #define MALI_WRITE_VALUE_ZERO 3
657
658 struct mali_payload_write_value {
659 u64 address;
660 u32 value_descriptor;
661 u32 reserved;
662 u64 immediate;
663 } __attribute__((packed));
664
665 /*
666 * Mali Attributes
667 *
668 * This structure lets the attribute unit compute the address of an attribute
669 * given the vertex and instance ID. Unfortunately, the way this works is
670 * rather complicated when instancing is enabled.
671 *
672 * To explain this, first we need to explain how compute and vertex threads are
673 * dispatched. This is a guess (although a pretty firm guess!) since the
674 * details are mostly hidden from the driver, except for attribute instancing.
675 * When a quad is dispatched, it receives a single, linear index. However, we
676 * need to translate that index into a (vertex id, instance id) pair, or a
677 * (local id x, local id y, local id z) triple for compute shaders (although
678 * vertex shaders and compute shaders are handled almost identically).
679 * Focusing on vertex shaders, one option would be to do:
680 *
681 * vertex_id = linear_id % num_vertices
682 * instance_id = linear_id / num_vertices
683 *
684 * but this involves a costly division and modulus by an arbitrary number.
685 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
686 * num_instances threads instead of num_vertices * num_instances, which results
687 * in some "extra" threads with vertex_id >= num_vertices, which we have to
688 * discard. The more we pad num_vertices, the more "wasted" threads we
689 * dispatch, but the division is potentially easier.
690 *
691 * One straightforward choice is to pad num_vertices to the next power of two,
692 * which means that the division and modulus are just simple bit shifts and
693 * masking. But the actual algorithm is a bit more complicated. The thread
694 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
695 * to dividing by a power of two. This is possibly using the technique
696 * described in patent US20170010862A1. As a result, padded_num_vertices can be
697 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
698 * since we need less padding.
699 *
700 * padded_num_vertices is picked by the hardware. The driver just specifies the
701 * actual number of vertices. At least for Mali G71, the first few cases are
702 * given by:
703 *
704 * num_vertices | padded_num_vertices
705 * 3 | 4
706 * 4-7 | 8
707 * 8-11 | 12 (3 * 4)
708 * 12-15 | 16
709 * 16-19 | 20 (5 * 4)
710 *
711 * Note that padded_num_vertices is a multiple of four (presumably because
712 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
713 * at least one more than num_vertices, which seems like a quirk of the
714 * hardware. For larger num_vertices, the hardware uses the following
715 * algorithm: using the binary representation of num_vertices, we look at the
716 * most significant set bit as well as the following 3 bits. Let n be the
717 * number of bits after those 4 bits. Then we set padded_num_vertices according
718 * to the following table:
719 *
720 * high bits | padded_num_vertices
721 * 1000 | 9 * 2^n
722 * 1001 | 5 * 2^(n+1)
723 * 101x | 3 * 2^(n+2)
724 * 110x | 7 * 2^(n+1)
725 * 111x | 2^(n+4)
726 *
727 * For example, if num_vertices = 70 is passed to glDraw(), its binary
728 * representation is 1000110, so n = 3 and the high bits are 1000, and
729 * therefore padded_num_vertices = 9 * 2^3 = 72.
730 *
731 * The attribute unit works in terms of the original linear_id. if
732 * num_instances = 1, then they are the same, and everything is simple.
733 * However, with instancing things get more complicated. There are four
734 * possible modes, two of them we can group together:
735 *
736 * 1. Use the linear_id directly. Only used when there is no instancing.
737 *
738 * 2. Use the linear_id modulo a constant. This is used for per-vertex
739 * attributes with instancing enabled by making the constant equal
740 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
741 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
742 * The shift field specifies the power of two, while the extra_flags field
743 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
744 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
745 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
746 * shift = 3. Note that we must exactly follow the hardware algorithm used to
747 * get padded_num_vertices in order to correctly implement per-vertex
748 * attributes.
749 *
750 * 3. Divide the linear_id by a constant. In order to correctly implement
751 * instance divisors, we have to divide linear_id by padded_num_vertices times
752 * to user-specified divisor. So first we compute padded_num_vertices, again
753 * following the exact same algorithm that the hardware uses, then multiply it
754 * by the GL-level divisor to get the hardware-level divisor. This case is
755 * further divided into two more cases. If the hardware-level divisor is a
756 * power of two, then we just need to shift. The shift amount is specified by
757 * the shift field, so that the hardware-level divisor is just 2^shift.
758 *
759 * If it isn't a power of two, then we have to divide by an arbitrary integer.
760 * For that, we use the well-known technique of multiplying by an approximation
761 * of the inverse. The driver must compute the magic multiplier and shift
762 * amount, and then the hardware does the multiplication and shift. The
763 * hardware and driver also use the "round-down" optimization as described in
764 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
765 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
766 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
767 * presumably this simplifies the hardware multiplier a little. The hardware
768 * first multiplies linear_id by the multiplier and takes the high 32 bits,
769 * then applies the round-down correction if extra_flags = 1, then finally
770 * shifts right by the shift field.
771 *
772 * There are some differences between ridiculousfish's algorithm and the Mali
773 * hardware algorithm, which means that the reference code from ridiculousfish
774 * doesn't always produce the right constants. Mali does not use the pre-shift
775 * optimization, since that would make a hardware implementation slower (it
776 * would have to always do the pre-shift, multiply, and post-shift operations).
777 * It also forces the multplier to be at least 2^31, which means that the
778 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
779 * given the divisor d, the algorithm the driver must follow is:
780 *
781 * 1. Set shift = floor(log2(d)).
782 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
783 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
784 * magic_divisor = m - 1 and extra_flags = 1.
785 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
786 *
787 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
788 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
789 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
790 * (*NOT the row stride*). Size is set to the size of the image itself.
791 *
792 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
793 * use particular fixed addresses with modified structures.
794 */
795
796 enum mali_attr_mode {
797 MALI_ATTR_UNUSED = 0,
798 MALI_ATTR_LINEAR = 1,
799 MALI_ATTR_POT_DIVIDE = 2,
800 MALI_ATTR_MODULO = 3,
801 MALI_ATTR_NPOT_DIVIDE = 4,
802 MALI_ATTR_IMAGE = 5,
803 };
804
805 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
806
807 #define MALI_ATTR_VERTEXID (0x22)
808 #define MALI_ATTR_INSTANCEID (0x24)
809 #define MALI_VARYING_FRAG_COORD (0x25)
810 #define MALI_VARYING_FRONT_FACING (0x26)
811
812 /* This magic "pseudo-address" is used as `elements` to implement
813 * gl_PointCoord. When read from a fragment shader, it generates a point
814 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
815 * require an affine transformation in the shader. */
816
817 #define MALI_VARYING_POINT_COORD (0x61)
818
819 /* Used for comparison to check if an address is special. Mostly a guess, but
820 * it doesn't really matter. */
821
822 #define MALI_RECORD_SPECIAL (0x100)
823
824 union mali_attr {
825 /* This is used for actual attributes. */
826 struct {
827 /* The bottom 3 bits are the mode */
828 mali_ptr elements : 64 - 8;
829 u32 shift : 5;
830 u32 extra_flags : 3;
831 u32 stride;
832 u32 size;
833 };
834 /* The entry after an NPOT_DIVIDE entry has this format. It stores
835 * extra information that wouldn't fit in a normal entry.
836 */
837 struct {
838 u32 unk; /* = 0x20 */
839 u32 magic_divisor;
840 u32 zero;
841 /* This is the original, GL-level divisor. */
842 u32 divisor;
843 };
844 } __attribute__((packed));
845
846 struct mali_attr_meta {
847 /* Vertex buffer index */
848 u8 index;
849
850 unsigned unknown1 : 2;
851 unsigned swizzle : 12;
852 enum mali_format format : 8;
853
854 /* Always observed to be zero at the moment */
855 unsigned unknown3 : 2;
856
857 /* When packing multiple attributes in a buffer, offset addresses by
858 * this value. Obscurely, this is signed. */
859 int32_t src_offset;
860 } __attribute__((packed));
861
862 #define FBD_MASK (~0x3f)
863
864 /* MFBD, rather than SFBD */
865 #define MALI_MFBD (0x1)
866
867 /* ORed into an MFBD address to specify the fbx section is included */
868 #define MALI_MFBD_TAG_EXTRA (0x2)
869
870 struct mali_uniform_buffer_meta {
871 /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
872 * bytes. This gives a maximum of 2^14 bytes, which just so happens to
873 * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
874 */
875 u64 size : 10;
876
877 /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
878 * should be 0 for userspace pointers, according to
879 * https://lwn.net/Articles/718895/. By reusing these bits, we can make
880 * each entry in the table only 64 bits.
881 */
882 mali_ptr ptr : 64 - 10;
883 };
884
885 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
886 * They also seem to be the same between Bifrost and Midgard. They're shared in
887 * fused payloads.
888 */
889
890 /* Applies to unknown_draw */
891
892 #define MALI_DRAW_INDEXED_UINT8 (0x10)
893 #define MALI_DRAW_INDEXED_UINT16 (0x20)
894 #define MALI_DRAW_INDEXED_UINT32 (0x30)
895 #define MALI_DRAW_INDEXED_SIZE (0x30)
896 #define MALI_DRAW_INDEXED_SHIFT (4)
897
898 #define MALI_DRAW_VARYING_SIZE (0x100)
899
900 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
901 * use the last vertex. This is the default in DX and VK, but not in GL. */
902
903 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
904
905 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
906
907 struct mali_vertex_tiler_prefix {
908 /* This is a dynamic bitfield containing the following things in this order:
909 *
910 * - gl_WorkGroupSize.x
911 * - gl_WorkGroupSize.y
912 * - gl_WorkGroupSize.z
913 * - gl_NumWorkGroups.x
914 * - gl_NumWorkGroups.y
915 * - gl_NumWorkGroups.z
916 *
917 * The number of bits allocated for each number is based on the *_shift
918 * fields below. For example, workgroups_y_shift gives the bit that
919 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
920 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
921 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
922 * value is one more than the stored value, since if any of the values
923 * are zero, then there would be no invocations (and hence no job). If
924 * there were 0 bits allocated to a given field, then it must be zero,
925 * and hence the real value is one.
926 *
927 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
928 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
929 * where vertex count is the number of vertices.
930 */
931 u32 invocation_count;
932
933 /* Bitfield for shifts:
934 *
935 * size_y_shift : 5
936 * size_z_shift : 5
937 * workgroups_x_shift : 6
938 * workgroups_y_shift : 6
939 * workgroups_z_shift : 6
940 * workgroups_x_shift_2 : 4
941 */
942 u32 invocation_shifts;
943
944 u32 draw_mode : 4;
945 u32 unknown_draw : 22;
946
947 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
948 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
949 * something to do with how many quads get put in the same execution
950 * engine, which is a balance (you don't want to starve the engine, but
951 * you also want to distribute work evenly).
952 */
953 u32 workgroups_x_shift_3 : 6;
954
955
956 /* Negative of min_index. This is used to compute
957 * the unbiased index in tiler/fragment shader runs.
958 *
959 * The hardware adds offset_bias_correction in each run,
960 * so that absent an index bias, the first vertex processed is
961 * genuinely the first vertex (0). But with an index bias,
962 * the first vertex process is numbered the same as the bias.
963 *
964 * To represent this more conviniently:
965 * unbiased_index = lower_bound_index +
966 * index_bias +
967 * offset_bias_correction
968 *
969 * This is done since the hardware doesn't accept a index_bias
970 * and this allows it to recover the unbiased index.
971 */
972 int32_t offset_bias_correction;
973 u32 zero1;
974
975 /* Like many other strictly nonzero quantities, index_count is
976 * subtracted by one. For an indexed cube, this is equal to 35 = 6
977 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
978 * for an indexed draw, index_count is the number of actual vertices
979 * rendered whereas invocation_count is the number of unique vertices
980 * rendered (the number of times the vertex shader must be invoked).
981 * For non-indexed draws, this is just equal to invocation_count. */
982
983 u32 index_count;
984
985 /* No hidden structure; literally just a pointer to an array of uint
986 * indices (width depends on flags). Thanks, guys, for not making my
987 * life insane for once! NULL for non-indexed draws. */
988
989 u64 indices;
990 } __attribute__((packed));
991
992 /* Point size / line width can either be specified as a 32-bit float (for
993 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
994 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
995 * payload, the contents of varying_pointer will be intepreted as an array of
996 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
997 * creating a special MALI_R16F varying writing to varying_pointer. */
998
999 union midgard_primitive_size {
1000 float constant;
1001 u64 pointer;
1002 };
1003
1004 struct bifrost_vertex_only {
1005 u32 unk2; /* =0x2 */
1006
1007 u32 zero0;
1008
1009 u64 zero1;
1010 } __attribute__((packed));
1011
1012 struct bifrost_tiler_heap_meta {
1013 u32 zero;
1014 u32 heap_size;
1015 /* note: these are just guesses! */
1016 mali_ptr tiler_heap_start;
1017 mali_ptr tiler_heap_free;
1018 mali_ptr tiler_heap_end;
1019
1020 /* hierarchy weights? but they're still 0 after the job has run... */
1021 u32 zeros[12];
1022 } __attribute__((packed));
1023
1024 struct bifrost_tiler_meta {
1025 u64 zero0;
1026 u16 hierarchy_mask;
1027 u16 flags;
1028 u16 width;
1029 u16 height;
1030 u64 zero1;
1031 mali_ptr tiler_heap_meta;
1032 /* TODO what is this used for? */
1033 u64 zeros[20];
1034 } __attribute__((packed));
1035
1036 struct bifrost_tiler_only {
1037 /* 0x20 */
1038 union midgard_primitive_size primitive_size;
1039
1040 mali_ptr tiler_meta;
1041
1042 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1043
1044 u32 gl_enables;
1045 u32 zero7;
1046 u64 zero8;
1047 } __attribute__((packed));
1048
1049 struct bifrost_scratchpad {
1050 u32 zero;
1051 u32 flags; // = 0x1f
1052 /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
1053 * during startup. It seems to serve the same purpose as the
1054 * gpu_scratchpad in the SFBD for Midgard, although it's slightly
1055 * larger.
1056 */
1057 mali_ptr gpu_scratchpad;
1058 } __attribute__((packed));
1059
1060 struct mali_vertex_tiler_postfix {
1061 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1062 * output from the vertex shader for tiler jobs.
1063 */
1064
1065 u64 position_varying;
1066
1067 /* An array of mali_uniform_buffer_meta's. The size is given by the
1068 * shader_meta.
1069 */
1070 u64 uniform_buffers;
1071
1072 /* This is a pointer to an array of pointers to the texture
1073 * descriptors, number of pointers bounded by number of textures. The
1074 * indirection is needed to accomodate varying numbers and sizes of
1075 * texture descriptors */
1076 u64 texture_trampoline;
1077
1078 /* For OpenGL, from what I've seen, this is intimately connected to
1079 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1080 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1081 * array of sampler descriptors (which are uniform in size) */
1082 u64 sampler_descriptor;
1083
1084 u64 uniforms;
1085 u64 shader;
1086 u64 attributes; /* struct attribute_buffer[] */
1087 u64 attribute_meta; /* attribute_meta[] */
1088 u64 varyings; /* struct attr */
1089 u64 varying_meta; /* pointer */
1090 u64 viewport;
1091 u64 occlusion_counter; /* A single bit as far as I can tell */
1092
1093 /* Note: on Bifrost, this isn't actually the FBD. It points to
1094 * bifrost_scratchpad instead. However, it does point to the same thing
1095 * in vertex and tiler jobs.
1096 */
1097 mali_ptr framebuffer;
1098 } __attribute__((packed));
1099
1100 struct midgard_payload_vertex_tiler {
1101 struct mali_vertex_tiler_prefix prefix;
1102
1103 u16 gl_enables; // 0x5
1104
1105 /* Both zero for non-instanced draws. For instanced draws, a
1106 * decomposition of padded_num_vertices. See the comments about the
1107 * corresponding fields in mali_attr for context. */
1108
1109 unsigned instance_shift : 5;
1110 unsigned instance_odd : 3;
1111
1112 u8 zero4;
1113
1114 /* Offset for first vertex in buffer */
1115 u32 offset_start;
1116
1117 u64 zero5;
1118
1119 struct mali_vertex_tiler_postfix postfix;
1120
1121 union midgard_primitive_size primitive_size;
1122 } __attribute__((packed));
1123
1124 struct bifrost_payload_vertex {
1125 struct mali_vertex_tiler_prefix prefix;
1126 struct bifrost_vertex_only vertex;
1127 struct mali_vertex_tiler_postfix postfix;
1128 } __attribute__((packed));
1129
1130 struct bifrost_payload_tiler {
1131 struct mali_vertex_tiler_prefix prefix;
1132 struct bifrost_tiler_only tiler;
1133 struct mali_vertex_tiler_postfix postfix;
1134 } __attribute__((packed));
1135
1136 struct bifrost_payload_fused {
1137 struct mali_vertex_tiler_prefix prefix;
1138 struct bifrost_tiler_only tiler;
1139 struct mali_vertex_tiler_postfix tiler_postfix;
1140 u64 padding; /* zero */
1141 struct bifrost_vertex_only vertex;
1142 struct mali_vertex_tiler_postfix vertex_postfix;
1143 } __attribute__((packed));
1144
1145 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1146 * texture is stored as (63, 63) in these fields. This adjusts for that.
1147 * There's an identical pattern in the framebuffer descriptor. Even vertex
1148 * count fields work this way, hence the generic name -- integral fields that
1149 * are strictly positive generally need this adjustment. */
1150
1151 #define MALI_POSITIVE(dim) (dim - 1)
1152
1153 /* Used with wrapping. Unclear what top bit conveys */
1154
1155 enum mali_wrap_mode {
1156 MALI_WRAP_REPEAT = 0x8 | 0x0,
1157 MALI_WRAP_CLAMP_TO_EDGE = 0x8 | 0x1,
1158 MALI_WRAP_CLAMP = 0x8 | 0x2,
1159 MALI_WRAP_CLAMP_TO_BORDER = 0x8 | 0x3,
1160 MALI_WRAP_MIRRORED_REPEAT = 0x8 | 0x4 | 0x0,
1161 MALI_WRAP_MIRRORED_CLAMP_TO_EDGE = 0x8 | 0x4 | 0x1,
1162 MALI_WRAP_MIRRORED_CLAMP = 0x8 | 0x4 | 0x2,
1163 MALI_WRAP_MIRRORED_CLAMP_TO_BORDER = 0x8 | 0x4 | 0x3,
1164 };
1165
1166 /* Shared across both command stream and Midgard, and even with Bifrost */
1167
1168 enum mali_texture_type {
1169 MALI_TEX_CUBE = 0x0,
1170 MALI_TEX_1D = 0x1,
1171 MALI_TEX_2D = 0x2,
1172 MALI_TEX_3D = 0x3
1173 };
1174
1175 /* 8192x8192 */
1176 #define MAX_MIP_LEVELS (13)
1177
1178 /* Cubemap bloats everything up */
1179 #define MAX_CUBE_FACES (6)
1180
1181 /* For each pointer, there is an address and optionally also a stride */
1182 #define MAX_ELEMENTS (2)
1183
1184 /* It's not known why there are 4-bits allocated -- this enum is almost
1185 * certainly incomplete */
1186
1187 enum mali_texture_layout {
1188 /* For a Z/S texture, this is linear */
1189 MALI_TEXTURE_TILED = 0x1,
1190
1191 /* Z/S textures cannot be tiled */
1192 MALI_TEXTURE_LINEAR = 0x2,
1193
1194 /* 16x16 sparse */
1195 MALI_TEXTURE_AFBC = 0xC
1196 };
1197
1198 /* Corresponds to the type passed to glTexImage2D and so forth */
1199
1200 struct mali_texture_format {
1201 unsigned swizzle : 12;
1202 enum mali_format format : 8;
1203
1204 unsigned srgb : 1;
1205 unsigned unknown1 : 1;
1206
1207 enum mali_texture_type type : 2;
1208 enum mali_texture_layout layout : 4;
1209
1210 /* Always set */
1211 unsigned unknown2 : 1;
1212
1213 /* Set to allow packing an explicit stride */
1214 unsigned manual_stride : 1;
1215
1216 unsigned zero : 2;
1217 } __attribute__((packed));
1218
1219 struct mali_texture_descriptor {
1220 uint16_t width;
1221 uint16_t height;
1222 uint16_t depth;
1223 uint16_t array_size;
1224
1225 struct mali_texture_format format;
1226
1227 uint16_t unknown3;
1228
1229 /* One for non-mipmapped, zero for mipmapped */
1230 uint8_t unknown3A;
1231
1232 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1233 uint8_t levels;
1234
1235 /* Swizzling is a single 32-bit word, broken up here for convenience.
1236 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1237 * level swizzling, not the internal pixel-level swizzling which is
1238 * below OpenGL's reach */
1239
1240 unsigned swizzle : 12;
1241 unsigned swizzle_zero : 20;
1242
1243 uint32_t unknown5;
1244 uint32_t unknown6;
1245 uint32_t unknown7;
1246 } __attribute__((packed));
1247
1248 /* filter_mode */
1249
1250 #define MALI_SAMP_MAG_NEAREST (1 << 0)
1251 #define MALI_SAMP_MIN_NEAREST (1 << 1)
1252
1253 /* TODO: What do these bits mean individually? Only seen set together */
1254
1255 #define MALI_SAMP_MIP_LINEAR_1 (1 << 3)
1256 #define MALI_SAMP_MIP_LINEAR_2 (1 << 4)
1257
1258 /* Flag in filter_mode, corresponding to OpenCL's NORMALIZED_COORDS_TRUE
1259 * sampler_t flag. For typical OpenGL textures, this is always set. */
1260
1261 #define MALI_SAMP_NORM_COORDS (1 << 5)
1262
1263 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1264 * be cleaned up a lot. */
1265
1266 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1267
1268 static inline int16_t
1269 FIXED_16(float x, bool allow_negative)
1270 {
1271 /* Clamp inputs, accounting for float error */
1272 float max_lod = (32.0 - (1.0 / 512.0));
1273 float min_lod = allow_negative ? -max_lod : 0.0;
1274
1275 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1276
1277 return (int) (x * 256.0);
1278 }
1279
1280 struct mali_sampler_descriptor {
1281 uint16_t filter_mode;
1282
1283 /* Fixed point, signed.
1284 * Upper 7 bits before the decimal point, although it caps [0-31].
1285 * Lower 8 bits after the decimal point: int(round(x * 256)) */
1286
1287 int16_t lod_bias;
1288 int16_t min_lod;
1289 int16_t max_lod;
1290
1291 /* All one word in reality, but packed a bit. Comparisons are flipped
1292 * from OpenGL. */
1293
1294 enum mali_wrap_mode wrap_s : 4;
1295 enum mali_wrap_mode wrap_t : 4;
1296 enum mali_wrap_mode wrap_r : 4;
1297 enum mali_func compare_func : 3;
1298
1299 /* No effect on 2D textures. For cubemaps, set for ES3 and clear for
1300 * ES2, controlling seamless cubemapping */
1301 unsigned seamless_cube_map : 1;
1302
1303 unsigned zero : 16;
1304
1305 uint32_t zero2;
1306 float border_color[4];
1307 } __attribute__((packed));
1308
1309 /* viewport0/viewport1 form the arguments to glViewport. viewport1 is
1310 * modified by MALI_POSITIVE; viewport0 is as-is.
1311 */
1312
1313 struct mali_viewport {
1314 /* XY clipping planes */
1315 float clip_minx;
1316 float clip_miny;
1317 float clip_maxx;
1318 float clip_maxy;
1319
1320 /* Depth clipping planes */
1321 float clip_minz;
1322 float clip_maxz;
1323
1324 u16 viewport0[2];
1325 u16 viewport1[2];
1326 } __attribute__((packed));
1327
1328 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1329 * of tile numbers. */
1330
1331 #define MALI_TILE_SHIFT 4
1332 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1333
1334 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1335 * each component. Notice that this provides a theoretical upper bound of (1 <<
1336 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1337 * 65536x65536. Multiplying that together, times another four given that Mali
1338 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1339 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1340 * alone rendering in real-time to such a buffer.
1341 *
1342 * Nice job, guys.*/
1343
1344 /* From mali_kbase_10969_workaround.c */
1345 #define MALI_X_COORD_MASK 0x00000FFF
1346 #define MALI_Y_COORD_MASK 0x0FFF0000
1347
1348 /* Extract parts of a tile coordinate */
1349
1350 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1351 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1352
1353 /* Helpers to generate tile coordinates based on the boundary coordinates in
1354 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1355 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1356 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1357 * problem. */
1358
1359 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1360 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1361 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1362 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1363 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1364
1365 struct mali_payload_fragment {
1366 u32 min_tile_coord;
1367 u32 max_tile_coord;
1368 mali_ptr framebuffer;
1369 } __attribute__((packed));
1370
1371 /* Single Framebuffer Descriptor */
1372
1373 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1374 * configured for 4x. With MSAA_8, it is configured for 8x. */
1375
1376 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1377 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1378 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1379 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1380
1381 /* Fast/slow based on whether all three buffers are cleared at once */
1382
1383 #define MALI_CLEAR_FAST (1 << 18)
1384 #define MALI_CLEAR_SLOW (1 << 28)
1385 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1386
1387 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1388 * within the larget framebuffer descriptor). Analogous to
1389 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1390
1391 /* See pan_tiler.c for derivation */
1392 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1393
1394 /* Flag disabling the tiler for clear-only jobs, with
1395 hierarchical tiling */
1396 #define MALI_TILER_DISABLED (1 << 12)
1397
1398 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1399 * hierarhical tiling. */
1400 #define MALI_TILER_USER 0xFFF
1401
1402 /* Absent any geometry, the minimum size of the polygon list header */
1403 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1404
1405 struct midgard_tiler_descriptor {
1406 /* Size of the entire polygon list; see pan_tiler.c for the
1407 * computation. It's based on hierarchical tiling */
1408
1409 u32 polygon_list_size;
1410
1411 /* Name known from the replay workaround in the kernel. What exactly is
1412 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1413 * specifies a mask of hierarchy weights, which explains some of the
1414 * performance mysteries around setting it. We also see the bottom bit
1415 * of tiler_flags set in the kernel, but no comment why.
1416 *
1417 * hierarchy_mask can have the TILER_DISABLED flag */
1418
1419 u16 hierarchy_mask;
1420 u16 flags;
1421
1422 /* See mali_tiler.c for an explanation */
1423 mali_ptr polygon_list;
1424 mali_ptr polygon_list_body;
1425
1426 /* Names based on we see symmetry with replay jobs which name these
1427 * explicitly */
1428
1429 mali_ptr heap_start; /* tiler heap_free_address */
1430 mali_ptr heap_end;
1431
1432 /* Hierarchy weights. We know these are weights based on the kernel,
1433 * but I've never seen them be anything other than zero */
1434 u32 weights[8];
1435 };
1436
1437 enum mali_block_format {
1438 MALI_BLOCK_TILED = 0x0,
1439 MALI_BLOCK_UNKNOWN = 0x1,
1440 MALI_BLOCK_LINEAR = 0x2,
1441 MALI_BLOCK_AFBC = 0x3,
1442 };
1443
1444 struct mali_sfbd_format {
1445 /* 0x1 */
1446 unsigned unk1 : 6;
1447
1448 /* mali_channel_swizzle */
1449 unsigned swizzle : 12;
1450
1451 /* MALI_POSITIVE */
1452 unsigned nr_channels : 2;
1453
1454 /* 0x4 */
1455 unsigned unk2 : 6;
1456
1457 enum mali_block_format block : 2;
1458
1459 /* 0xb */
1460 unsigned unk3 : 4;
1461 };
1462
1463 struct mali_single_framebuffer {
1464 u32 unknown1;
1465 u32 unknown2;
1466 mali_ptr scratchpad;
1467
1468 u64 zero1;
1469 u64 zero0;
1470
1471 struct mali_sfbd_format format;
1472
1473 u32 clear_flags;
1474 u32 zero2;
1475
1476 /* Purposeful off-by-one in these fields should be accounted for by the
1477 * MALI_DIMENSION macro */
1478
1479 u16 width;
1480 u16 height;
1481
1482 u32 zero3[4];
1483 mali_ptr checksum;
1484 u32 checksum_stride;
1485 u32 zero5;
1486
1487 /* By default, the framebuffer is upside down from OpenGL's
1488 * perspective. Set framebuffer to the end and negate the stride to
1489 * flip in the Y direction */
1490
1491 mali_ptr framebuffer;
1492 int32_t stride;
1493
1494 u32 zero4;
1495
1496 /* Depth and stencil buffers are interleaved, it appears, as they are
1497 * set to the same address in captures. Both fields set to zero if the
1498 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1499 * get a zero enable despite the buffer being present; that still is
1500 * disabled. */
1501
1502 mali_ptr depth_buffer; // not SAME_VA
1503 u32 depth_stride_zero : 4;
1504 u32 depth_stride : 28;
1505 u32 zero7;
1506
1507 mali_ptr stencil_buffer; // not SAME_VA
1508 u32 stencil_stride_zero : 4;
1509 u32 stencil_stride : 28;
1510 u32 zero8;
1511
1512 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1513 u32 clear_color_2; // always equal, but unclear function?
1514 u32 clear_color_3; // always equal, but unclear function?
1515 u32 clear_color_4; // always equal, but unclear function?
1516
1517 /* Set to zero if not cleared */
1518
1519 float clear_depth_1; // float32, ditto
1520 float clear_depth_2; // float32, ditto
1521 float clear_depth_3; // float32, ditto
1522 float clear_depth_4; // float32, ditto
1523
1524 u32 clear_stencil; // Exactly as it appears in OpenGL
1525
1526 u32 zero6[7];
1527
1528 struct midgard_tiler_descriptor tiler;
1529
1530 /* More below this, maybe */
1531 } __attribute__((packed));
1532
1533 /* On Midgard, this "framebuffer descriptor" is used for the framebuffer field
1534 * of compute jobs. Superficially resembles a single framebuffer descriptor */
1535
1536 struct mali_compute_fbd {
1537 u32 unknown1[8];
1538 } __attribute__((packed));
1539
1540 /* Format bits for the render target flags */
1541
1542 #define MALI_MFBD_FORMAT_MSAA (1 << 1)
1543 #define MALI_MFBD_FORMAT_SRGB (1 << 2)
1544
1545 struct mali_rt_format {
1546 unsigned unk1 : 32;
1547 unsigned unk2 : 3;
1548
1549 unsigned nr_channels : 2; /* MALI_POSITIVE */
1550
1551 unsigned unk3 : 5;
1552 enum mali_block_format block : 2;
1553 unsigned flags : 4;
1554
1555 unsigned swizzle : 12;
1556
1557 unsigned zero : 3;
1558
1559 /* Disables MFBD preload. When this bit is set, the render target will
1560 * be cleared every frame. When this bit is clear, the hardware will
1561 * automatically wallpaper the render target back from main memory.
1562 * Unfortunately, MFBD preload is very broken on Midgard, so in
1563 * practice, this is a chicken bit that should always be set.
1564 * Discovered by accident, as all good chicken bits are. */
1565
1566 unsigned no_preload : 1;
1567 } __attribute__((packed));
1568
1569 struct bifrost_render_target {
1570 struct mali_rt_format format;
1571
1572 u64 zero1;
1573
1574 struct {
1575 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1576 * there is an extra metadata buffer that contains 16 bytes per tile.
1577 * The framebuffer needs to be the same size as before, since we don't
1578 * know ahead of time how much space it will take up. The
1579 * framebuffer_stride is set to 0, since the data isn't stored linearly
1580 * anymore.
1581 *
1582 * When AFBC is disabled, these fields are zero.
1583 */
1584
1585 mali_ptr metadata;
1586 u32 stride; // stride in units of tiles
1587 u32 unk; // = 0x20000
1588 } afbc;
1589
1590 mali_ptr framebuffer;
1591
1592 u32 zero2 : 4;
1593 u32 framebuffer_stride : 28; // in units of bytes
1594 u32 zero3;
1595
1596 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1597 u32 clear_color_2; // always equal, but unclear function?
1598 u32 clear_color_3; // always equal, but unclear function?
1599 u32 clear_color_4; // always equal, but unclear function?
1600 } __attribute__((packed));
1601
1602 /* An optional part of bifrost_framebuffer. It comes between the main structure
1603 * and the array of render targets. It must be included if any of these are
1604 * enabled:
1605 *
1606 * - Transaction Elimination
1607 * - Depth/stencil
1608 * - TODO: Anything else?
1609 */
1610
1611 /* flags_hi */
1612 #define MALI_EXTRA_PRESENT (0x10)
1613
1614 /* flags_lo */
1615 #define MALI_EXTRA_ZS (0x4)
1616
1617 struct bifrost_fb_extra {
1618 mali_ptr checksum;
1619 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1620 u32 checksum_stride;
1621
1622 unsigned flags_lo : 4;
1623 enum mali_block_format zs_block : 2;
1624 unsigned flags_hi : 26;
1625
1626 union {
1627 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1628 struct {
1629 mali_ptr depth_stencil_afbc_metadata;
1630 u32 depth_stencil_afbc_stride; // in units of tiles
1631 u32 zero1;
1632
1633 mali_ptr depth_stencil;
1634
1635 u64 padding;
1636 } ds_afbc;
1637
1638 struct {
1639 /* Depth becomes depth/stencil in case of combined D/S */
1640 mali_ptr depth;
1641 u32 depth_stride_zero : 4;
1642 u32 depth_stride : 28;
1643 u32 zero1;
1644
1645 mali_ptr stencil;
1646 u32 stencil_stride_zero : 4;
1647 u32 stencil_stride : 28;
1648 u32 zero2;
1649 } ds_linear;
1650 };
1651
1652
1653 u64 zero3, zero4;
1654 } __attribute__((packed));
1655
1656 /* Flags for mfbd_flags */
1657
1658 /* Enables writing depth results back to main memory (rather than keeping them
1659 * on-chip in the tile buffer and then discarding) */
1660
1661 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1662
1663 /* The MFBD contains the extra bifrost_fb_extra section */
1664
1665 #define MALI_MFBD_EXTRA (1 << 13)
1666
1667 struct bifrost_framebuffer {
1668 u32 stack_shift : 4;
1669 u32 unk0 : 28;
1670
1671 u32 unknown2; // = 0x1f, same as SFBD
1672 mali_ptr scratchpad;
1673
1674 /* 0x10 */
1675 mali_ptr sample_locations;
1676 mali_ptr unknown1;
1677 /* 0x20 */
1678 u16 width1, height1;
1679 u32 zero3;
1680 u16 width2, height2;
1681 u32 unk1 : 19; // = 0x01000
1682 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1683 u32 unk2 : 3; // = 0
1684 u32 rt_count_2 : 3; // no off-by-one
1685 u32 zero4 : 5;
1686 /* 0x30 */
1687 u32 clear_stencil : 8;
1688 u32 mfbd_flags : 24; // = 0x100
1689 float clear_depth;
1690
1691 struct midgard_tiler_descriptor tiler;
1692
1693 /* optional: struct bifrost_fb_extra extra */
1694 /* struct bifrost_render_target rts[] */
1695 } __attribute__((packed));
1696
1697 #endif /* __PANFROST_JOB_H__ */