pan/midgard: Implement non-aligned UBOs
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static midgard_block *
79 create_empty_block(compiler_context *ctx)
80 {
81 midgard_block *blk = rzalloc(ctx, midgard_block);
82
83 blk->predecessors = _mesa_set_create(blk,
84 _mesa_hash_pointer,
85 _mesa_key_pointer_equal);
86
87 blk->source_id = ctx->block_source_count++;
88
89 return blk;
90 }
91
92 static void
93 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
94 {
95 assert(block);
96 assert(successor);
97
98 /* Deduplicate */
99 for (unsigned i = 0; i < block->nr_successors; ++i) {
100 if (block->successors[i] == successor)
101 return;
102 }
103
104 block->successors[block->nr_successors++] = successor;
105 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
106
107 /* Note the predecessor in the other direction */
108 _mesa_set_add(successor->predecessors, block);
109 }
110
111 static void
112 schedule_barrier(compiler_context *ctx)
113 {
114 midgard_block *temp = ctx->after_block;
115 ctx->after_block = create_empty_block(ctx);
116 ctx->block_count++;
117 list_addtail(&ctx->after_block->link, &ctx->blocks);
118 list_inithead(&ctx->after_block->instructions);
119 midgard_block_add_successor(ctx->current_block, ctx->after_block);
120 ctx->current_block = ctx->after_block;
121 ctx->after_block = temp;
122 }
123
124 /* Helpers to generate midgard_instruction's using macro magic, since every
125 * driver seems to do it that way */
126
127 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
128
129 #define M_LOAD_STORE(name, store) \
130 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
131 midgard_instruction i = { \
132 .type = TAG_LOAD_STORE_4, \
133 .mask = 0xF, \
134 .dest = ~0, \
135 .src = { ~0, ~0, ~0 }, \
136 .swizzle = SWIZZLE_IDENTITY_4, \
137 .load_store = { \
138 .op = midgard_op_##name, \
139 .address = address \
140 } \
141 }; \
142 \
143 if (store) \
144 i.src[0] = ssa; \
145 else \
146 i.dest = ssa; \
147 \
148 return i; \
149 }
150
151 #define M_LOAD(name) M_LOAD_STORE(name, false)
152 #define M_STORE(name) M_LOAD_STORE(name, true)
153
154 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
155 * the corresponding Midgard source */
156
157 static midgard_vector_alu_src
158 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
159 bool half, bool sext)
160 {
161 /* Figure out how many components there are so we can adjust.
162 * Specifically we want to broadcast the last channel so things like
163 * ball2/3 work.
164 */
165
166 if (broadcast_count && src) {
167 uint8_t last_component = src->swizzle[broadcast_count - 1];
168
169 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
170 src->swizzle[c] = last_component;
171 }
172 }
173
174 midgard_vector_alu_src alu_src = {
175 .rep_low = 0,
176 .rep_high = 0,
177 .half = half
178 };
179
180 if (is_int) {
181 alu_src.mod = midgard_int_normal;
182
183 /* Sign/zero-extend if needed */
184
185 if (half) {
186 alu_src.mod = sext ?
187 midgard_int_sign_extend
188 : midgard_int_zero_extend;
189 }
190
191 /* These should have been lowered away */
192 if (src)
193 assert(!(src->abs || src->negate));
194 } else {
195 if (src)
196 alu_src.mod = (src->abs << 0) | (src->negate << 1);
197 }
198
199 return alu_src;
200 }
201
202 /* load/store instructions have both 32-bit and 16-bit variants, depending on
203 * whether we are using vectors composed of highp or mediump. At the moment, we
204 * don't support half-floats -- this requires changes in other parts of the
205 * compiler -- therefore the 16-bit versions are commented out. */
206
207 //M_LOAD(ld_attr_16);
208 M_LOAD(ld_attr_32);
209 //M_LOAD(ld_vary_16);
210 M_LOAD(ld_vary_32);
211 M_LOAD(ld_ubo_int4);
212 M_LOAD(ld_int4);
213 M_STORE(st_int4);
214 M_LOAD(ld_color_buffer_8);
215 //M_STORE(st_vary_16);
216 M_STORE(st_vary_32);
217 M_LOAD(ld_cubemap_coords);
218 M_LOAD(ld_compute_id);
219
220 static midgard_instruction
221 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
222 {
223 midgard_branch_cond branch = {
224 .op = op,
225 .dest_tag = tag,
226 .offset = offset,
227 .cond = cond
228 };
229
230 uint16_t compact;
231 memcpy(&compact, &branch, sizeof(branch));
232
233 midgard_instruction ins = {
234 .type = TAG_ALU_4,
235 .unit = ALU_ENAB_BR_COMPACT,
236 .prepacked_branch = true,
237 .compact_branch = true,
238 .br_compact = compact,
239 .dest = ~0,
240 .src = { ~0, ~0, ~0 },
241 };
242
243 if (op == midgard_jmp_writeout_op_writeout)
244 ins.writeout = true;
245
246 return ins;
247 }
248
249 static midgard_instruction
250 v_branch(bool conditional, bool invert)
251 {
252 midgard_instruction ins = {
253 .type = TAG_ALU_4,
254 .unit = ALU_ENAB_BRANCH,
255 .compact_branch = true,
256 .branch = {
257 .conditional = conditional,
258 .invert_conditional = invert
259 },
260 .dest = ~0,
261 .src = { ~0, ~0, ~0 },
262 };
263
264 return ins;
265 }
266
267 static midgard_branch_extended
268 midgard_create_branch_extended( midgard_condition cond,
269 midgard_jmp_writeout_op op,
270 unsigned dest_tag,
271 signed quadword_offset)
272 {
273 /* The condition code is actually a LUT describing a function to
274 * combine multiple condition codes. However, we only support a single
275 * condition code at the moment, so we just duplicate over a bunch of
276 * times. */
277
278 uint16_t duplicated_cond =
279 (cond << 14) |
280 (cond << 12) |
281 (cond << 10) |
282 (cond << 8) |
283 (cond << 6) |
284 (cond << 4) |
285 (cond << 2) |
286 (cond << 0);
287
288 midgard_branch_extended branch = {
289 .op = op,
290 .dest_tag = dest_tag,
291 .offset = quadword_offset,
292 .cond = duplicated_cond
293 };
294
295 return branch;
296 }
297
298 static void
299 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
300 {
301 ins->has_constants = true;
302 memcpy(&ins->constants, constants, 16);
303 }
304
305 static int
306 glsl_type_size(const struct glsl_type *type, bool bindless)
307 {
308 return glsl_count_attribute_slots(type, false);
309 }
310
311 /* Lower fdot2 to a vector multiplication followed by channel addition */
312 static void
313 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
314 {
315 if (alu->op != nir_op_fdot2)
316 return;
317
318 b->cursor = nir_before_instr(&alu->instr);
319
320 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
321 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
322
323 nir_ssa_def *product = nir_fmul(b, src0, src1);
324
325 nir_ssa_def *sum = nir_fadd(b,
326 nir_channel(b, product, 0),
327 nir_channel(b, product, 1));
328
329 /* Replace the fdot2 with this sum */
330 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
331 }
332
333 static int
334 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
335 {
336 /* This is way too meta */
337 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
338 unsigned idx_idx = is_store ? 1 : 0;
339
340 nir_src index = instr->src[idx_idx];
341 assert(nir_src_is_const(index));
342 uint32_t uindex = nir_src_as_uint(index);
343
344 return PAN_SYSVAL(SSBO, uindex);
345 }
346
347 static int
348 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
349 {
350 switch (instr->intrinsic) {
351 case nir_intrinsic_load_viewport_scale:
352 return PAN_SYSVAL_VIEWPORT_SCALE;
353 case nir_intrinsic_load_viewport_offset:
354 return PAN_SYSVAL_VIEWPORT_OFFSET;
355 case nir_intrinsic_load_num_work_groups:
356 return PAN_SYSVAL_NUM_WORK_GROUPS;
357 case nir_intrinsic_load_ssbo:
358 case nir_intrinsic_store_ssbo:
359 return midgard_sysval_for_ssbo(instr);
360 default:
361 return ~0;
362 }
363 }
364
365 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
366 unsigned *dest)
367 {
368 nir_intrinsic_instr *intr;
369 nir_dest *dst = NULL;
370 nir_tex_instr *tex;
371 int sysval = -1;
372
373 bool is_store = false;
374
375 switch (instr->type) {
376 case nir_instr_type_intrinsic:
377 intr = nir_instr_as_intrinsic(instr);
378 sysval = midgard_nir_sysval_for_intrinsic(intr);
379 dst = &intr->dest;
380 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
381 break;
382 case nir_instr_type_tex:
383 tex = nir_instr_as_tex(instr);
384 if (tex->op != nir_texop_txs)
385 break;
386
387 sysval = PAN_SYSVAL(TEXTURE_SIZE,
388 PAN_TXS_SYSVAL_ID(tex->texture_index,
389 nir_tex_instr_dest_size(tex) -
390 (tex->is_array ? 1 : 0),
391 tex->is_array));
392 dst = &tex->dest;
393 break;
394 default:
395 break;
396 }
397
398 if (dest && dst && !is_store)
399 *dest = nir_dest_index(ctx, dst);
400
401 return sysval;
402 }
403
404 static void
405 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
406 {
407 int sysval;
408
409 sysval = sysval_for_instr(ctx, instr, NULL);
410 if (sysval < 0)
411 return;
412
413 /* We have a sysval load; check if it's already been assigned */
414
415 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
416 return;
417
418 /* It hasn't -- so assign it now! */
419
420 unsigned id = ctx->sysval_count++;
421 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
422 ctx->sysvals[id] = sysval;
423 }
424
425 static void
426 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
427 {
428 ctx->sysval_count = 0;
429
430 nir_foreach_function(function, shader) {
431 if (!function->impl) continue;
432
433 nir_foreach_block(block, function->impl) {
434 nir_foreach_instr_safe(instr, block) {
435 midgard_nir_assign_sysval_body(ctx, instr);
436 }
437 }
438 }
439 }
440
441 static bool
442 midgard_nir_lower_fdot2(nir_shader *shader)
443 {
444 bool progress = false;
445
446 nir_foreach_function(function, shader) {
447 if (!function->impl) continue;
448
449 nir_builder _b;
450 nir_builder *b = &_b;
451 nir_builder_init(b, function->impl);
452
453 nir_foreach_block(block, function->impl) {
454 nir_foreach_instr_safe(instr, block) {
455 if (instr->type != nir_instr_type_alu) continue;
456
457 nir_alu_instr *alu = nir_instr_as_alu(instr);
458 midgard_nir_lower_fdot2_body(b, alu);
459
460 progress |= true;
461 }
462 }
463
464 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
465
466 }
467
468 return progress;
469 }
470
471 /* Flushes undefined values to zero */
472
473 static void
474 optimise_nir(nir_shader *nir)
475 {
476 bool progress;
477 unsigned lower_flrp =
478 (nir->options->lower_flrp16 ? 16 : 0) |
479 (nir->options->lower_flrp32 ? 32 : 0) |
480 (nir->options->lower_flrp64 ? 64 : 0);
481
482 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
483 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
484 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
485
486 nir_lower_tex_options lower_tex_options = {
487 .lower_txs_lod = true,
488 .lower_txp = ~0
489 };
490
491 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
492
493 do {
494 progress = false;
495
496 NIR_PASS(progress, nir, nir_lower_var_copies);
497 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
498
499 NIR_PASS(progress, nir, nir_copy_prop);
500 NIR_PASS(progress, nir, nir_opt_dce);
501 NIR_PASS(progress, nir, nir_opt_dead_cf);
502 NIR_PASS(progress, nir, nir_opt_cse);
503 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
504 NIR_PASS(progress, nir, nir_opt_algebraic);
505 NIR_PASS(progress, nir, nir_opt_constant_folding);
506
507 if (lower_flrp != 0) {
508 bool lower_flrp_progress = false;
509 NIR_PASS(lower_flrp_progress,
510 nir,
511 nir_lower_flrp,
512 lower_flrp,
513 false /* always_precise */,
514 nir->options->lower_ffma);
515 if (lower_flrp_progress) {
516 NIR_PASS(progress, nir,
517 nir_opt_constant_folding);
518 progress = true;
519 }
520
521 /* Nothing should rematerialize any flrps, so we only
522 * need to do this lowering once.
523 */
524 lower_flrp = 0;
525 }
526
527 NIR_PASS(progress, nir, nir_opt_undef);
528 NIR_PASS(progress, nir, nir_undef_to_zero);
529
530 NIR_PASS(progress, nir, nir_opt_loop_unroll,
531 nir_var_shader_in |
532 nir_var_shader_out |
533 nir_var_function_temp);
534
535 NIR_PASS(progress, nir, nir_opt_vectorize);
536 } while (progress);
537
538 /* Must be run at the end to prevent creation of fsin/fcos ops */
539 NIR_PASS(progress, nir, midgard_nir_scale_trig);
540
541 do {
542 progress = false;
543
544 NIR_PASS(progress, nir, nir_opt_dce);
545 NIR_PASS(progress, nir, nir_opt_algebraic);
546 NIR_PASS(progress, nir, nir_opt_constant_folding);
547 NIR_PASS(progress, nir, nir_copy_prop);
548 } while (progress);
549
550 NIR_PASS(progress, nir, nir_opt_algebraic_late);
551
552 /* We implement booleans as 32-bit 0/~0 */
553 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
554
555 /* Now that booleans are lowered, we can run out late opts */
556 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
557
558 /* Lower mods for float ops only. Integer ops don't support modifiers
559 * (saturate doesn't make sense on integers, neg/abs require dedicated
560 * instructions) */
561
562 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
563 NIR_PASS(progress, nir, nir_copy_prop);
564 NIR_PASS(progress, nir, nir_opt_dce);
565
566 /* Take us out of SSA */
567 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
568 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
569
570 /* We are a vector architecture; write combine where possible */
571 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
572 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
573
574 NIR_PASS(progress, nir, nir_opt_dce);
575 }
576
577 /* Do not actually emit a load; instead, cache the constant for inlining */
578
579 static void
580 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
581 {
582 nir_ssa_def def = instr->def;
583
584 float *v = rzalloc_array(NULL, float, 4);
585 nir_const_value_to_array(v, instr->value, instr->def.num_components, f32);
586
587 /* Shifted for SSA, +1 for off-by-one */
588 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
589 }
590
591 /* Normally constants are embedded implicitly, but for I/O and such we have to
592 * explicitly emit a move with the constant source */
593
594 static void
595 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
596 {
597 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
598
599 if (constant_value) {
600 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
601 attach_constants(ctx, &ins, constant_value, node + 1);
602 emit_mir_instruction(ctx, ins);
603 }
604 }
605
606 static bool
607 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
608 {
609 unsigned comp = src->swizzle[0];
610
611 for (unsigned c = 1; c < nr_components; ++c) {
612 if (src->swizzle[c] != comp)
613 return true;
614 }
615
616 return false;
617 }
618
619 #define ALU_CASE(nir, _op) \
620 case nir_op_##nir: \
621 op = midgard_alu_op_##_op; \
622 assert(src_bitsize == dst_bitsize); \
623 break;
624
625 #define ALU_CASE_BCAST(nir, _op, count) \
626 case nir_op_##nir: \
627 op = midgard_alu_op_##_op; \
628 broadcast_swizzle = count; \
629 assert(src_bitsize == dst_bitsize); \
630 break;
631 static bool
632 nir_is_fzero_constant(nir_src src)
633 {
634 if (!nir_src_is_const(src))
635 return false;
636
637 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
638 if (nir_src_comp_as_float(src, c) != 0.0)
639 return false;
640 }
641
642 return true;
643 }
644
645 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
646 * special treatment override this anyway. */
647
648 static midgard_reg_mode
649 reg_mode_for_nir(nir_alu_instr *instr)
650 {
651 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
652
653 switch (src_bitsize) {
654 case 8:
655 return midgard_reg_mode_8;
656 case 16:
657 return midgard_reg_mode_16;
658 case 32:
659 return midgard_reg_mode_32;
660 case 64:
661 return midgard_reg_mode_64;
662 default:
663 unreachable("Invalid bit size");
664 }
665 }
666
667 static void
668 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
669 {
670 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
671 * is handled elsewhere */
672
673 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
674 midgard_emit_derivatives(ctx, instr);
675 return;
676 }
677
678 bool is_ssa = instr->dest.dest.is_ssa;
679
680 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
681 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
682 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
683
684 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
685 * supported. A few do not and are commented for now. Also, there are a
686 * number of NIR ops which Midgard does not support and need to be
687 * lowered, also TODO. This switch block emits the opcode and calling
688 * convention of the Midgard instruction; actual packing is done in
689 * emit_alu below */
690
691 unsigned op;
692
693 /* Number of components valid to check for the instruction (the rest
694 * will be forced to the last), or 0 to use as-is. Relevant as
695 * ball-type instructions have a channel count in NIR but are all vec4
696 * in Midgard */
697
698 unsigned broadcast_swizzle = 0;
699
700 /* What register mode should we operate in? */
701 midgard_reg_mode reg_mode =
702 reg_mode_for_nir(instr);
703
704 /* Do we need a destination override? Used for inline
705 * type conversion */
706
707 midgard_dest_override dest_override =
708 midgard_dest_override_none;
709
710 /* Should we use a smaller respective source and sign-extend? */
711
712 bool half_1 = false, sext_1 = false;
713 bool half_2 = false, sext_2 = false;
714
715 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
716 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
717
718 switch (instr->op) {
719 ALU_CASE(fadd, fadd);
720 ALU_CASE(fmul, fmul);
721 ALU_CASE(fmin, fmin);
722 ALU_CASE(fmax, fmax);
723 ALU_CASE(imin, imin);
724 ALU_CASE(imax, imax);
725 ALU_CASE(umin, umin);
726 ALU_CASE(umax, umax);
727 ALU_CASE(ffloor, ffloor);
728 ALU_CASE(fround_even, froundeven);
729 ALU_CASE(ftrunc, ftrunc);
730 ALU_CASE(fceil, fceil);
731 ALU_CASE(fdot3, fdot3);
732 ALU_CASE(fdot4, fdot4);
733 ALU_CASE(iadd, iadd);
734 ALU_CASE(isub, isub);
735 ALU_CASE(imul, imul);
736
737 /* Zero shoved as second-arg */
738 ALU_CASE(iabs, iabsdiff);
739
740 ALU_CASE(mov, imov);
741
742 ALU_CASE(feq32, feq);
743 ALU_CASE(fne32, fne);
744 ALU_CASE(flt32, flt);
745 ALU_CASE(ieq32, ieq);
746 ALU_CASE(ine32, ine);
747 ALU_CASE(ilt32, ilt);
748 ALU_CASE(ult32, ult);
749
750 /* We don't have a native b2f32 instruction. Instead, like many
751 * GPUs, we exploit booleans as 0/~0 for false/true, and
752 * correspondingly AND
753 * by 1.0 to do the type conversion. For the moment, prime us
754 * to emit:
755 *
756 * iand [whatever], #0
757 *
758 * At the end of emit_alu (as MIR), we'll fix-up the constant
759 */
760
761 ALU_CASE(b2f32, iand);
762 ALU_CASE(b2i32, iand);
763
764 /* Likewise, we don't have a dedicated f2b32 instruction, but
765 * we can do a "not equal to 0.0" test. */
766
767 ALU_CASE(f2b32, fne);
768 ALU_CASE(i2b32, ine);
769
770 ALU_CASE(frcp, frcp);
771 ALU_CASE(frsq, frsqrt);
772 ALU_CASE(fsqrt, fsqrt);
773 ALU_CASE(fexp2, fexp2);
774 ALU_CASE(flog2, flog2);
775
776 ALU_CASE(f2i32, f2i_rtz);
777 ALU_CASE(f2u32, f2u_rtz);
778 ALU_CASE(i2f32, i2f_rtz);
779 ALU_CASE(u2f32, u2f_rtz);
780
781 ALU_CASE(f2i16, f2i_rtz);
782 ALU_CASE(f2u16, f2u_rtz);
783 ALU_CASE(i2f16, i2f_rtz);
784 ALU_CASE(u2f16, u2f_rtz);
785
786 ALU_CASE(fsin, fsin);
787 ALU_CASE(fcos, fcos);
788
789 /* We'll set invert */
790 ALU_CASE(inot, imov);
791 ALU_CASE(iand, iand);
792 ALU_CASE(ior, ior);
793 ALU_CASE(ixor, ixor);
794 ALU_CASE(ishl, ishl);
795 ALU_CASE(ishr, iasr);
796 ALU_CASE(ushr, ilsr);
797
798 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
799 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
800 ALU_CASE(b32all_fequal4, fball_eq);
801
802 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
803 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
804 ALU_CASE(b32any_fnequal4, fbany_neq);
805
806 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
807 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
808 ALU_CASE(b32all_iequal4, iball_eq);
809
810 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
811 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
812 ALU_CASE(b32any_inequal4, ibany_neq);
813
814 /* Source mods will be shoved in later */
815 ALU_CASE(fabs, fmov);
816 ALU_CASE(fneg, fmov);
817 ALU_CASE(fsat, fmov);
818
819 /* For size conversion, we use a move. Ideally though we would squash
820 * these ops together; maybe that has to happen after in NIR as part of
821 * propagation...? An earlier algebraic pass ensured we step down by
822 * only / exactly one size. If stepping down, we use a dest override to
823 * reduce the size; if stepping up, we use a larger-sized move with a
824 * half source and a sign/zero-extension modifier */
825
826 case nir_op_i2i8:
827 case nir_op_i2i16:
828 case nir_op_i2i32:
829 case nir_op_i2i64:
830 /* If we end up upscale, we'll need a sign-extend on the
831 * operand (the second argument) */
832
833 sext_2 = true;
834 /* fallthrough */
835 case nir_op_u2u8:
836 case nir_op_u2u16:
837 case nir_op_u2u32:
838 case nir_op_u2u64: {
839 op = midgard_alu_op_imov;
840
841 if (dst_bitsize == (src_bitsize * 2)) {
842 /* Converting up */
843 half_2 = true;
844
845 /* Use a greater register mode */
846 reg_mode++;
847 } else if (src_bitsize == (dst_bitsize * 2)) {
848 /* Converting down */
849 dest_override = midgard_dest_override_lower;
850 }
851
852 break;
853 }
854
855 case nir_op_f2f16: {
856 assert(src_bitsize == 32);
857
858 op = midgard_alu_op_fmov;
859 dest_override = midgard_dest_override_lower;
860 break;
861 }
862
863 case nir_op_f2f32: {
864 assert(src_bitsize == 16);
865
866 op = midgard_alu_op_fmov;
867 half_2 = true;
868 reg_mode++;
869 break;
870 }
871
872
873 /* For greater-or-equal, we lower to less-or-equal and flip the
874 * arguments */
875
876 case nir_op_fge:
877 case nir_op_fge32:
878 case nir_op_ige32:
879 case nir_op_uge32: {
880 op =
881 instr->op == nir_op_fge ? midgard_alu_op_fle :
882 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
883 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
884 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
885 0;
886
887 /* Swap via temporary */
888 nir_alu_src temp = instr->src[1];
889 instr->src[1] = instr->src[0];
890 instr->src[0] = temp;
891
892 break;
893 }
894
895 case nir_op_b32csel: {
896 /* Midgard features both fcsel and icsel, depending on
897 * the type of the arguments/output. However, as long
898 * as we're careful we can _always_ use icsel and
899 * _never_ need fcsel, since the latter does additional
900 * floating-point-specific processing whereas the
901 * former just moves bits on the wire. It's not obvious
902 * why these are separate opcodes, save for the ability
903 * to do things like sat/pos/abs/neg for free */
904
905 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
906 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
907
908 /* The condition is the first argument; move the other
909 * arguments up one to be a binary instruction for
910 * Midgard with the condition last */
911
912 nir_alu_src temp = instr->src[2];
913
914 instr->src[2] = instr->src[0];
915 instr->src[0] = instr->src[1];
916 instr->src[1] = temp;
917
918 break;
919 }
920
921 default:
922 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
923 assert(0);
924 return;
925 }
926
927 /* Midgard can perform certain modifiers on output of an ALU op */
928 unsigned outmod;
929
930 if (midgard_is_integer_out_op(op)) {
931 outmod = midgard_outmod_int_wrap;
932 } else {
933 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
934 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
935 }
936
937 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
938
939 if (instr->op == nir_op_fmax) {
940 if (nir_is_fzero_constant(instr->src[0].src)) {
941 op = midgard_alu_op_fmov;
942 nr_inputs = 1;
943 outmod = midgard_outmod_pos;
944 instr->src[0] = instr->src[1];
945 } else if (nir_is_fzero_constant(instr->src[1].src)) {
946 op = midgard_alu_op_fmov;
947 nr_inputs = 1;
948 outmod = midgard_outmod_pos;
949 }
950 }
951
952 /* Fetch unit, quirks, etc information */
953 unsigned opcode_props = alu_opcode_props[op].props;
954 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
955
956 /* src0 will always exist afaik, but src1 will not for 1-argument
957 * instructions. The latter can only be fetched if the instruction
958 * needs it, or else we may segfault. */
959
960 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
961 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
962 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
963 assert(nr_inputs <= 3);
964
965 /* Rather than use the instruction generation helpers, we do it
966 * ourselves here to avoid the mess */
967
968 midgard_instruction ins = {
969 .type = TAG_ALU_4,
970 .src = {
971 quirk_flipped_r24 ? ~0 : src0,
972 quirk_flipped_r24 ? src0 : src1,
973 src2,
974 },
975 .dest = dest,
976 };
977
978 nir_alu_src *nirmods[3] = { NULL };
979
980 if (nr_inputs >= 2) {
981 nirmods[0] = &instr->src[0];
982 nirmods[1] = &instr->src[1];
983 } else if (nr_inputs == 1) {
984 nirmods[quirk_flipped_r24] = &instr->src[0];
985 } else {
986 assert(0);
987 }
988
989 if (nr_inputs == 3)
990 nirmods[2] = &instr->src[2];
991
992 /* These were lowered to a move, so apply the corresponding mod */
993
994 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
995 nir_alu_src *s = nirmods[quirk_flipped_r24];
996
997 if (instr->op == nir_op_fneg)
998 s->negate = !s->negate;
999
1000 if (instr->op == nir_op_fabs)
1001 s->abs = !s->abs;
1002 }
1003
1004 bool is_int = midgard_is_integer_op(op);
1005
1006 ins.mask = mask_of(nr_components);
1007
1008 midgard_vector_alu alu = {
1009 .op = op,
1010 .reg_mode = reg_mode,
1011 .dest_override = dest_override,
1012 .outmod = outmod,
1013
1014 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1015 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1016 };
1017
1018 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1019
1020 if (!is_ssa)
1021 ins.mask &= instr->dest.write_mask;
1022
1023 for (unsigned m = 0; m < 3; ++m) {
1024 if (!nirmods[m])
1025 continue;
1026
1027 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
1028 ins.swizzle[m][c] = nirmods[m]->swizzle[c];
1029
1030 /* Replicate. TODO: remove when vec16 lands */
1031 for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
1032 ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
1033 }
1034
1035 if (nr_inputs == 3) {
1036 /* Conditions can't have mods */
1037 assert(!nirmods[2]->abs);
1038 assert(!nirmods[2]->negate);
1039 }
1040
1041 ins.alu = alu;
1042
1043 /* Late fixup for emulated instructions */
1044
1045 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1046 /* Presently, our second argument is an inline #0 constant.
1047 * Switch over to an embedded 1.0 constant (that can't fit
1048 * inline, since we're 32-bit, not 16-bit like the inline
1049 * constants) */
1050
1051 ins.has_inline_constant = false;
1052 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1053 ins.has_constants = true;
1054
1055 if (instr->op == nir_op_b2f32) {
1056 float f = 1.0f;
1057 memcpy(&ins.constants, &f, sizeof(float));
1058 } else {
1059 ins.constants[0] = 1;
1060 }
1061
1062
1063 for (unsigned c = 0; c < 16; ++c)
1064 ins.swizzle[1][c] = 0;
1065 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1066 /* Lots of instructions need a 0 plonked in */
1067 ins.has_inline_constant = false;
1068 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1069 ins.has_constants = true;
1070 ins.constants[0] = 0;
1071
1072 for (unsigned c = 0; c < 16; ++c)
1073 ins.swizzle[1][c] = 0;
1074 } else if (instr->op == nir_op_inot) {
1075 ins.invert = true;
1076 }
1077
1078 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1079 /* To avoid duplicating the lookup tables (probably), true LUT
1080 * instructions can only operate as if they were scalars. Lower
1081 * them here by changing the component. */
1082
1083 unsigned orig_mask = ins.mask;
1084
1085 for (int i = 0; i < nr_components; ++i) {
1086 /* Mask the associated component, dropping the
1087 * instruction if needed */
1088
1089 ins.mask = 1 << i;
1090 ins.mask &= orig_mask;
1091
1092 if (!ins.mask)
1093 continue;
1094
1095 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1096 ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
1097
1098 emit_mir_instruction(ctx, ins);
1099 }
1100 } else {
1101 emit_mir_instruction(ctx, ins);
1102 }
1103 }
1104
1105 #undef ALU_CASE
1106
1107 static unsigned
1108 mir_mask_for_intr(nir_instr *instr, bool is_read)
1109 {
1110 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1111
1112 if (is_read)
1113 return mask_of(nir_intrinsic_dest_components(intr));
1114 else
1115 return nir_intrinsic_write_mask(intr);
1116 }
1117
1118 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1119 * optimized) versions of UBO #0 */
1120
1121 midgard_instruction *
1122 emit_ubo_read(
1123 compiler_context *ctx,
1124 nir_instr *instr,
1125 unsigned dest,
1126 unsigned offset,
1127 nir_src *indirect_offset,
1128 unsigned index)
1129 {
1130 /* TODO: half-floats */
1131
1132 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1133
1134 /* TODO: Don't split */
1135 ins.load_store.varying_parameters = (offset & 0x7F) << 3;
1136 ins.load_store.address = offset >> 7;
1137 ins.mask = mir_mask_for_intr(instr, true);
1138
1139 if (indirect_offset) {
1140 ins.src[2] = nir_src_index(ctx, indirect_offset);
1141 ins.load_store.arg_2 = 0x80;
1142 } else {
1143 ins.load_store.arg_2 = 0x1E;
1144 }
1145
1146 ins.load_store.arg_1 = index;
1147
1148 return emit_mir_instruction(ctx, ins);
1149 }
1150
1151 /* SSBO reads are like UBO reads if you squint */
1152
1153 static void
1154 emit_ssbo_access(
1155 compiler_context *ctx,
1156 nir_instr *instr,
1157 bool is_read,
1158 unsigned srcdest,
1159 unsigned offset,
1160 nir_src *indirect_offset,
1161 unsigned index)
1162 {
1163 /* TODO: types */
1164
1165 midgard_instruction ins;
1166
1167 if (is_read)
1168 ins = m_ld_int4(srcdest, offset);
1169 else
1170 ins = m_st_int4(srcdest, offset);
1171
1172 /* SSBO reads use a generic memory read interface, so we need the
1173 * address of the SSBO as the first argument. This is a sysval. */
1174
1175 unsigned addr = make_compiler_temp(ctx);
1176 emit_sysval_read(ctx, instr, addr, 2);
1177
1178 /* The source array:
1179 *
1180 * src[0] = store ? value : unused
1181 * src[1] = arg_1
1182 * src[2] = arg_2
1183 *
1184 * We would like arg_1 = the address and
1185 * arg_2 = the offset.
1186 */
1187
1188 ins.src[1] = addr;
1189
1190 /* TODO: What is this? It looks superficially like a shift << 5, but
1191 * arg_1 doesn't take a shift Should it be E0 or A0? We also need the
1192 * indirect offset. */
1193
1194 if (indirect_offset) {
1195 ins.load_store.arg_1 |= 0xE0;
1196 ins.src[2] = nir_src_index(ctx, indirect_offset);
1197 } else {
1198 ins.load_store.arg_2 = 0x7E;
1199 }
1200
1201 /* TODO: Bounds check */
1202
1203 /* Finally, we emit the direct offset */
1204
1205 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1206 ins.load_store.address = (offset >> 9);
1207 ins.mask = mir_mask_for_intr(instr, is_read);
1208
1209 emit_mir_instruction(ctx, ins);
1210 }
1211
1212 static void
1213 emit_varying_read(
1214 compiler_context *ctx,
1215 unsigned dest, unsigned offset,
1216 unsigned nr_comp, unsigned component,
1217 nir_src *indirect_offset, nir_alu_type type)
1218 {
1219 /* XXX: Half-floats? */
1220 /* TODO: swizzle, mask */
1221
1222 midgard_instruction ins = m_ld_vary_32(dest, offset);
1223 ins.mask = mask_of(nr_comp);
1224
1225 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1226 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1227
1228 midgard_varying_parameter p = {
1229 .is_varying = 1,
1230 .interpolation = midgard_interp_default,
1231 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1232 };
1233
1234 unsigned u;
1235 memcpy(&u, &p, sizeof(p));
1236 ins.load_store.varying_parameters = u;
1237
1238 if (indirect_offset)
1239 ins.src[2] = nir_src_index(ctx, indirect_offset);
1240 else
1241 ins.load_store.arg_2 = 0x1E;
1242
1243 ins.load_store.arg_1 = 0x9E;
1244
1245 /* Use the type appropriate load */
1246 switch (type) {
1247 case nir_type_uint:
1248 case nir_type_bool:
1249 ins.load_store.op = midgard_op_ld_vary_32u;
1250 break;
1251 case nir_type_int:
1252 ins.load_store.op = midgard_op_ld_vary_32i;
1253 break;
1254 case nir_type_float:
1255 ins.load_store.op = midgard_op_ld_vary_32;
1256 break;
1257 default:
1258 unreachable("Attempted to load unknown type");
1259 break;
1260 }
1261
1262 emit_mir_instruction(ctx, ins);
1263 }
1264
1265 void
1266 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1267 unsigned nr_components)
1268 {
1269 unsigned dest = 0;
1270
1271 /* Figure out which uniform this is */
1272 int sysval = sysval_for_instr(ctx, instr, &dest);
1273 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1274
1275 if (dest_override >= 0)
1276 dest = dest_override;
1277
1278 /* Sysvals are prefix uniforms */
1279 unsigned uniform = ((uintptr_t) val) - 1;
1280
1281 /* Emit the read itself -- this is never indirect */
1282 midgard_instruction *ins =
1283 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1284
1285 ins->mask = mask_of(nr_components);
1286 }
1287
1288 static unsigned
1289 compute_builtin_arg(nir_op op)
1290 {
1291 switch (op) {
1292 case nir_intrinsic_load_work_group_id:
1293 return 0x14;
1294 case nir_intrinsic_load_local_invocation_id:
1295 return 0x10;
1296 default:
1297 unreachable("Invalid compute paramater loaded");
1298 }
1299 }
1300
1301 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1302 * Handle MRT here */
1303
1304 static void
1305 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1306 {
1307 emit_explicit_constant(ctx, src, src);
1308
1309 /* If we're doing MRT, we need to specify the render target */
1310
1311 midgard_instruction rt_move = {
1312 .dest = ~0
1313 };
1314
1315 if (rt != 0) {
1316 /* We'll write to r1.z */
1317 rt_move = v_mov(~0, SSA_FIXED_REGISTER(1));
1318 rt_move.mask = 1 << COMPONENT_Z;
1319 rt_move.unit = UNIT_SADD;
1320
1321 /* r1.z = (rt * 0x100) */
1322 rt_move.has_inline_constant = true;
1323 rt_move.inline_constant = (rt * 0x100);
1324
1325 /* r1 */
1326 ctx->work_registers = MAX2(ctx->work_registers, 1);
1327
1328 /* Do the write */
1329 emit_mir_instruction(ctx, rt_move);
1330 }
1331
1332 /* Next, generate the branch. For R render targets in the writeout, the
1333 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1334
1335 unsigned outputs = ctx->is_blend ? 1 : ctx->nir->num_outputs;
1336 unsigned offset = (2 * (outputs - 1)) + rt;
1337
1338 struct midgard_instruction ins =
1339 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1340
1341 /* Add dependencies */
1342 ins.src[0] = src;
1343 ins.src[1] = rt_move.dest;
1344
1345 /* Emit the branch */
1346 emit_mir_instruction(ctx, ins);
1347 }
1348
1349 static void
1350 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1351 {
1352 unsigned reg = nir_dest_index(ctx, &instr->dest);
1353 midgard_instruction ins = m_ld_compute_id(reg, 0);
1354 ins.mask = mask_of(3);
1355 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1356 emit_mir_instruction(ctx, ins);
1357 }
1358 static void
1359 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1360 {
1361 unsigned offset = 0, reg;
1362
1363 switch (instr->intrinsic) {
1364 case nir_intrinsic_discard_if:
1365 case nir_intrinsic_discard: {
1366 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1367 struct midgard_instruction discard = v_branch(conditional, false);
1368 discard.branch.target_type = TARGET_DISCARD;
1369
1370 if (conditional)
1371 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1372
1373 emit_mir_instruction(ctx, discard);
1374 schedule_barrier(ctx);
1375
1376 break;
1377 }
1378
1379 case nir_intrinsic_load_uniform:
1380 case nir_intrinsic_load_ubo:
1381 case nir_intrinsic_load_ssbo:
1382 case nir_intrinsic_load_input: {
1383 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1384 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1385 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1386
1387 /* Get the base type of the intrinsic */
1388 /* TODO: Infer type? Does it matter? */
1389 nir_alu_type t =
1390 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1391 t = nir_alu_type_get_base_type(t);
1392
1393 if (!(is_ubo || is_ssbo)) {
1394 offset = nir_intrinsic_base(instr);
1395 }
1396
1397 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1398
1399 nir_src *src_offset = nir_get_io_offset_src(instr);
1400
1401 bool direct = nir_src_is_const(*src_offset);
1402 nir_src *indirect_offset = direct ? NULL : src_offset;
1403
1404 if (direct)
1405 offset += nir_src_as_uint(*src_offset);
1406
1407 /* We may need to apply a fractional offset */
1408 int component = instr->intrinsic == nir_intrinsic_load_input ?
1409 nir_intrinsic_component(instr) : 0;
1410 reg = nir_dest_index(ctx, &instr->dest);
1411
1412 if (is_uniform && !ctx->is_blend) {
1413 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1414 } else if (is_ubo) {
1415 nir_src index = instr->src[0];
1416
1417 /* We don't yet support indirect UBOs. For indirect
1418 * block numbers (if that's possible), we don't know
1419 * enough about the hardware yet. For indirect sources,
1420 * we know what we need but we need to add some NIR
1421 * support for lowering correctly with respect to
1422 * 128-bit reads */
1423
1424 assert(nir_src_is_const(index));
1425 assert(nir_src_is_const(*src_offset));
1426
1427 uint32_t uindex = nir_src_as_uint(index) + 1;
1428 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1429 } else if (is_ssbo) {
1430 nir_src index = instr->src[0];
1431 assert(nir_src_is_const(index));
1432 uint32_t uindex = nir_src_as_uint(index);
1433
1434 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1435 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1436 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1437 } else if (ctx->is_blend) {
1438 /* For blend shaders, load the input color, which is
1439 * preloaded to r0 */
1440
1441 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1442 emit_mir_instruction(ctx, move);
1443 schedule_barrier(ctx);
1444 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1445 midgard_instruction ins = m_ld_attr_32(reg, offset);
1446 ins.load_store.arg_1 = 0x1E;
1447 ins.load_store.arg_2 = 0x1E;
1448 ins.mask = mask_of(nr_comp);
1449
1450 /* Use the type appropriate load */
1451 switch (t) {
1452 case nir_type_uint:
1453 case nir_type_bool:
1454 ins.load_store.op = midgard_op_ld_attr_32u;
1455 break;
1456 case nir_type_int:
1457 ins.load_store.op = midgard_op_ld_attr_32i;
1458 break;
1459 case nir_type_float:
1460 ins.load_store.op = midgard_op_ld_attr_32;
1461 break;
1462 default:
1463 unreachable("Attempted to load unknown type");
1464 break;
1465 }
1466
1467 emit_mir_instruction(ctx, ins);
1468 } else {
1469 DBG("Unknown load\n");
1470 assert(0);
1471 }
1472
1473 break;
1474 }
1475
1476 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1477
1478 case nir_intrinsic_load_raw_output_pan:
1479 case nir_intrinsic_load_output_u8_as_fp16_pan:
1480 reg = nir_dest_index(ctx, &instr->dest);
1481 assert(ctx->is_blend);
1482
1483 /* T720 and below use different blend opcodes with slightly
1484 * different semantics than T760 and up */
1485
1486 midgard_instruction ld = m_ld_color_buffer_8(reg, 0);
1487 bool old_blend = ctx->gpu_id < 0x750;
1488
1489 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1490 ld.load_store.op = old_blend ?
1491 midgard_op_ld_color_buffer_u8_as_fp16_old :
1492 midgard_op_ld_color_buffer_u8_as_fp16;
1493
1494 if (old_blend) {
1495 ld.load_store.address = 1;
1496 ld.load_store.arg_2 = 0x1E;
1497 }
1498
1499 for (unsigned c = 2; c < 16; ++c)
1500 ld.swizzle[0][c] = 0;
1501 }
1502
1503 emit_mir_instruction(ctx, ld);
1504 break;
1505
1506 case nir_intrinsic_load_blend_const_color_rgba: {
1507 assert(ctx->is_blend);
1508 reg = nir_dest_index(ctx, &instr->dest);
1509
1510 /* Blend constants are embedded directly in the shader and
1511 * patched in, so we use some magic routing */
1512
1513 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1514 ins.has_constants = true;
1515 ins.has_blend_constant = true;
1516 emit_mir_instruction(ctx, ins);
1517 break;
1518 }
1519
1520 case nir_intrinsic_store_output:
1521 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1522
1523 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1524
1525 reg = nir_src_index(ctx, &instr->src[0]);
1526
1527 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1528 /* Determine number of render targets */
1529 emit_fragment_store(ctx, reg, offset);
1530 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1531 /* We should have been vectorized, though we don't
1532 * currently check that st_vary is emitted only once
1533 * per slot (this is relevant, since there's not a mask
1534 * parameter available on the store [set to 0 by the
1535 * blob]). We do respect the component by adjusting the
1536 * swizzle. If this is a constant source, we'll need to
1537 * emit that explicitly. */
1538
1539 emit_explicit_constant(ctx, reg, reg);
1540
1541 unsigned component = nir_intrinsic_component(instr);
1542 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1543
1544 midgard_instruction st = m_st_vary_32(reg, offset);
1545 st.load_store.arg_1 = 0x9E;
1546 st.load_store.arg_2 = 0x1E;
1547
1548 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle[0]); ++i)
1549 st.swizzle[0][i] = MIN2(i + component, nr_comp);
1550
1551 emit_mir_instruction(ctx, st);
1552 } else {
1553 DBG("Unknown store\n");
1554 assert(0);
1555 }
1556
1557 break;
1558
1559 /* Special case of store_output for lowered blend shaders */
1560 case nir_intrinsic_store_raw_output_pan:
1561 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1562 reg = nir_src_index(ctx, &instr->src[0]);
1563 emit_fragment_store(ctx, reg, 0);
1564
1565 break;
1566
1567 case nir_intrinsic_store_ssbo:
1568 assert(nir_src_is_const(instr->src[1]));
1569
1570 bool direct_offset = nir_src_is_const(instr->src[2]);
1571 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1572 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1573 reg = nir_src_index(ctx, &instr->src[0]);
1574
1575 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1576
1577 emit_explicit_constant(ctx, reg, reg);
1578 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1579 break;
1580
1581 case nir_intrinsic_load_viewport_scale:
1582 case nir_intrinsic_load_viewport_offset:
1583 case nir_intrinsic_load_num_work_groups:
1584 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1585 break;
1586
1587 case nir_intrinsic_load_work_group_id:
1588 case nir_intrinsic_load_local_invocation_id:
1589 emit_compute_builtin(ctx, instr);
1590 break;
1591
1592 default:
1593 printf ("Unhandled intrinsic\n");
1594 assert(0);
1595 break;
1596 }
1597 }
1598
1599 static unsigned
1600 midgard_tex_format(enum glsl_sampler_dim dim)
1601 {
1602 switch (dim) {
1603 case GLSL_SAMPLER_DIM_1D:
1604 case GLSL_SAMPLER_DIM_BUF:
1605 return MALI_TEX_1D;
1606
1607 case GLSL_SAMPLER_DIM_2D:
1608 case GLSL_SAMPLER_DIM_EXTERNAL:
1609 case GLSL_SAMPLER_DIM_RECT:
1610 return MALI_TEX_2D;
1611
1612 case GLSL_SAMPLER_DIM_3D:
1613 return MALI_TEX_3D;
1614
1615 case GLSL_SAMPLER_DIM_CUBE:
1616 return MALI_TEX_CUBE;
1617
1618 default:
1619 DBG("Unknown sampler dim type\n");
1620 assert(0);
1621 return 0;
1622 }
1623 }
1624
1625 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1626 * was successful */
1627
1628 static bool
1629 pan_attach_constant_bias(
1630 compiler_context *ctx,
1631 nir_src lod,
1632 midgard_texture_word *word)
1633 {
1634 /* To attach as constant, it has to *be* constant */
1635
1636 if (!nir_src_is_const(lod))
1637 return false;
1638
1639 float f = nir_src_as_float(lod);
1640
1641 /* Break into fixed-point */
1642 signed lod_int = f;
1643 float lod_frac = f - lod_int;
1644
1645 /* Carry over negative fractions */
1646 if (lod_frac < 0.0) {
1647 lod_int--;
1648 lod_frac += 1.0;
1649 }
1650
1651 /* Encode */
1652 word->bias = float_to_ubyte(lod_frac);
1653 word->bias_int = lod_int;
1654
1655 return true;
1656 }
1657
1658 static enum mali_sampler_type
1659 midgard_sampler_type(nir_alu_type t) {
1660 switch (nir_alu_type_get_base_type(t))
1661 {
1662 case nir_type_float:
1663 return MALI_SAMPLER_FLOAT;
1664 case nir_type_int:
1665 return MALI_SAMPLER_SIGNED;
1666 case nir_type_uint:
1667 return MALI_SAMPLER_UNSIGNED;
1668 default:
1669 unreachable("Unknown sampler type");
1670 }
1671 }
1672
1673 static void
1674 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1675 unsigned midgard_texop)
1676 {
1677 /* TODO */
1678 //assert (!instr->sampler);
1679 //assert (!instr->texture_array_size);
1680
1681 int texture_index = instr->texture_index;
1682 int sampler_index = texture_index;
1683
1684 /* No helper to build texture words -- we do it all here */
1685 midgard_instruction ins = {
1686 .type = TAG_TEXTURE_4,
1687 .mask = 0xF,
1688 .dest = nir_dest_index(ctx, &instr->dest),
1689 .src = { ~0, ~0, ~0 },
1690 .swizzle = SWIZZLE_IDENTITY_4,
1691 .texture = {
1692 .op = midgard_texop,
1693 .format = midgard_tex_format(instr->sampler_dim),
1694 .texture_handle = texture_index,
1695 .sampler_handle = sampler_index,
1696
1697 /* TODO: half */
1698 .in_reg_full = 1,
1699 .out_full = 1,
1700
1701 .sampler_type = midgard_sampler_type(instr->dest_type),
1702 }
1703 };
1704
1705 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1706 int index = nir_src_index(ctx, &instr->src[i].src);
1707 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1708
1709 switch (instr->src[i].src_type) {
1710 case nir_tex_src_coord: {
1711 emit_explicit_constant(ctx, index, index);
1712
1713 /* Texelfetch coordinates uses all four elements
1714 * (xyz/index) regardless of texture dimensionality,
1715 * which means it's necessary to zero the unused
1716 * components to keep everything happy */
1717
1718 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1719 unsigned old_index = index;
1720
1721 index = make_compiler_temp(ctx);
1722
1723 /* mov index, old_index */
1724 midgard_instruction mov = v_mov(old_index, index);
1725 mov.mask = 0x3;
1726 emit_mir_instruction(ctx, mov);
1727
1728 /* mov index.zw, #0 */
1729 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), index);
1730 mov.has_constants = true;
1731 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1732 emit_mir_instruction(ctx, mov);
1733 }
1734
1735 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1736 /* texelFetch is undefined on samplerCube */
1737 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1738
1739 /* For cubemaps, we use a special ld/st op to
1740 * select the face and copy the xy into the
1741 * texture register */
1742
1743 unsigned temp = make_compiler_temp(ctx);
1744 midgard_instruction ld = m_ld_cubemap_coords(temp, 0);
1745 ld.src[1] = index;
1746 ld.mask = 0x3; /* xy */
1747 ld.load_store.arg_1 = 0x20;
1748 ld.swizzle[1][3] = COMPONENT_X;
1749 emit_mir_instruction(ctx, ld);
1750
1751 ins.src[1] = temp;
1752 /* xyzw -> xyxx */
1753 ins.swizzle[1][2] = COMPONENT_X;
1754 ins.swizzle[1][3] = COMPONENT_X;
1755 } else {
1756 ins.src[1] = index;
1757 }
1758
1759 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1760 /* Array component in w but NIR wants it in z */
1761 if (nr_components == 3) {
1762 ins.swizzle[1][2] = COMPONENT_Z;
1763 ins.swizzle[1][3] = COMPONENT_Z;
1764 } else if (nr_components == 2) {
1765 ins.swizzle[1][2] = COMPONENT_X;
1766 ins.swizzle[1][3] = COMPONENT_X;
1767 } else
1768 unreachable("Invalid texture 2D components");
1769 }
1770
1771 break;
1772 }
1773
1774 case nir_tex_src_bias:
1775 case nir_tex_src_lod: {
1776 /* Try as a constant if we can */
1777
1778 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1779 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1780 break;
1781
1782 ins.texture.lod_register = true;
1783 ins.src[2] = index;
1784 emit_explicit_constant(ctx, index, index);
1785
1786 break;
1787 };
1788
1789 default:
1790 unreachable("Unknown texture source type\n");
1791 }
1792 }
1793
1794 emit_mir_instruction(ctx, ins);
1795
1796 /* Used for .cont and .last hinting */
1797 ctx->texture_op_count++;
1798 }
1799
1800 static void
1801 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1802 {
1803 /* Fixup op, since only textureLod is permitted in VS on later Midgard
1804 * but NIR can give generic tex in some cases (which confuses the
1805 * hardware). Interestingly, early Midgard lines up with NIR */
1806
1807 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1808
1809 if (is_vertex && instr->op == nir_texop_tex && ctx->gpu_id >= 0x750)
1810 instr->op = nir_texop_txl;
1811
1812 switch (instr->op) {
1813 case nir_texop_tex:
1814 case nir_texop_txb:
1815 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1816 break;
1817 case nir_texop_txl:
1818 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1819 break;
1820 case nir_texop_txf:
1821 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1822 break;
1823 case nir_texop_txs:
1824 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1825 break;
1826 default:
1827 unreachable("Unhanlded texture op");
1828 }
1829 }
1830
1831 static void
1832 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1833 {
1834 switch (instr->type) {
1835 case nir_jump_break: {
1836 /* Emit a branch out of the loop */
1837 struct midgard_instruction br = v_branch(false, false);
1838 br.branch.target_type = TARGET_BREAK;
1839 br.branch.target_break = ctx->current_loop_depth;
1840 emit_mir_instruction(ctx, br);
1841 break;
1842 }
1843
1844 default:
1845 DBG("Unknown jump type %d\n", instr->type);
1846 break;
1847 }
1848 }
1849
1850 static void
1851 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1852 {
1853 switch (instr->type) {
1854 case nir_instr_type_load_const:
1855 emit_load_const(ctx, nir_instr_as_load_const(instr));
1856 break;
1857
1858 case nir_instr_type_intrinsic:
1859 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1860 break;
1861
1862 case nir_instr_type_alu:
1863 emit_alu(ctx, nir_instr_as_alu(instr));
1864 break;
1865
1866 case nir_instr_type_tex:
1867 emit_tex(ctx, nir_instr_as_tex(instr));
1868 break;
1869
1870 case nir_instr_type_jump:
1871 emit_jump(ctx, nir_instr_as_jump(instr));
1872 break;
1873
1874 case nir_instr_type_ssa_undef:
1875 /* Spurious */
1876 break;
1877
1878 default:
1879 DBG("Unhandled instruction type\n");
1880 break;
1881 }
1882 }
1883
1884
1885 /* ALU instructions can inline or embed constants, which decreases register
1886 * pressure and saves space. */
1887
1888 #define CONDITIONAL_ATTACH(idx) { \
1889 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
1890 \
1891 if (entry) { \
1892 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
1893 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1894 } \
1895 }
1896
1897 static void
1898 inline_alu_constants(compiler_context *ctx, midgard_block *block)
1899 {
1900 mir_foreach_instr_in_block(block, alu) {
1901 /* Other instructions cannot inline constants */
1902 if (alu->type != TAG_ALU_4) continue;
1903 if (alu->compact_branch) continue;
1904
1905 /* If there is already a constant here, we can do nothing */
1906 if (alu->has_constants) continue;
1907
1908 CONDITIONAL_ATTACH(0);
1909
1910 if (!alu->has_constants) {
1911 CONDITIONAL_ATTACH(1)
1912 } else if (!alu->inline_constant) {
1913 /* Corner case: _two_ vec4 constants, for instance with a
1914 * csel. For this case, we can only use a constant
1915 * register for one, we'll have to emit a move for the
1916 * other. Note, if both arguments are constants, then
1917 * necessarily neither argument depends on the value of
1918 * any particular register. As the destination register
1919 * will be wiped, that means we can spill the constant
1920 * to the destination register.
1921 */
1922
1923 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
1924 unsigned scratch = alu->dest;
1925
1926 if (entry) {
1927 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
1928 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
1929
1930 /* Set the source */
1931 alu->src[1] = scratch;
1932
1933 /* Inject us -before- the last instruction which set r31 */
1934 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
1935 }
1936 }
1937 }
1938 }
1939
1940 /* Being a little silly with the names, but returns the op that is the bitwise
1941 * inverse of the op with the argument switched. I.e. (f and g are
1942 * contrapositives):
1943 *
1944 * f(a, b) = ~g(b, a)
1945 *
1946 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1947 *
1948 * f(a, b) = ~g(b, a)
1949 * ~f(a, b) = g(b, a)
1950 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1951 * f(a, b) = h(a, b)
1952 *
1953 * Thus we define this function in pairs.
1954 */
1955
1956 static inline midgard_alu_op
1957 mir_contrapositive(midgard_alu_op op)
1958 {
1959 switch (op) {
1960 case midgard_alu_op_flt:
1961 return midgard_alu_op_fle;
1962 case midgard_alu_op_fle:
1963 return midgard_alu_op_flt;
1964
1965 case midgard_alu_op_ilt:
1966 return midgard_alu_op_ile;
1967 case midgard_alu_op_ile:
1968 return midgard_alu_op_ilt;
1969
1970 default:
1971 unreachable("No known contrapositive");
1972 }
1973 }
1974
1975 /* Midgard supports two types of constants, embedded constants (128-bit) and
1976 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1977 * constants can be demoted to inline constants, for space savings and
1978 * sometimes a performance boost */
1979
1980 static void
1981 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
1982 {
1983 mir_foreach_instr_in_block(block, ins) {
1984 if (!ins->has_constants) continue;
1985 if (ins->has_inline_constant) continue;
1986
1987 /* Blend constants must not be inlined by definition */
1988 if (ins->has_blend_constant) continue;
1989
1990 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1991 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1992 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1993
1994 if (!(is_16 || is_32))
1995 continue;
1996
1997 /* src1 cannot be an inline constant due to encoding
1998 * restrictions. So, if possible we try to flip the arguments
1999 * in that case */
2000
2001 int op = ins->alu.op;
2002
2003 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2004 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2005
2006 switch (op) {
2007 /* Conditionals can be inverted */
2008 case midgard_alu_op_flt:
2009 case midgard_alu_op_ilt:
2010 case midgard_alu_op_fle:
2011 case midgard_alu_op_ile:
2012 ins->alu.op = mir_contrapositive(ins->alu.op);
2013 ins->invert = true;
2014 flip = true;
2015 break;
2016
2017 case midgard_alu_op_fcsel:
2018 case midgard_alu_op_icsel:
2019 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2020 default:
2021 break;
2022 }
2023
2024 if (flip)
2025 mir_flip(ins);
2026 }
2027
2028 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2029 /* Extract the source information */
2030
2031 midgard_vector_alu_src *src;
2032 int q = ins->alu.src2;
2033 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2034 src = m;
2035
2036 /* Component is from the swizzle. Take a nonzero component */
2037 assert(ins->mask);
2038 unsigned first_comp = ffs(ins->mask) - 1;
2039 unsigned component = ins->swizzle[1][first_comp];
2040
2041 /* Scale constant appropriately, if we can legally */
2042 uint16_t scaled_constant = 0;
2043
2044 if (midgard_is_integer_op(op) || is_16) {
2045 unsigned int *iconstants = (unsigned int *) ins->constants;
2046 scaled_constant = (uint16_t) iconstants[component];
2047
2048 /* Constant overflow after resize */
2049 if (scaled_constant != iconstants[component])
2050 continue;
2051 } else {
2052 float *f = (float *) ins->constants;
2053 float original = f[component];
2054 scaled_constant = _mesa_float_to_half(original);
2055
2056 /* Check for loss of precision. If this is
2057 * mediump, we don't care, but for a highp
2058 * shader, we need to pay attention. NIR
2059 * doesn't yet tell us which mode we're in!
2060 * Practically this prevents most constants
2061 * from being inlined, sadly. */
2062
2063 float fp32 = _mesa_half_to_float(scaled_constant);
2064
2065 if (fp32 != original)
2066 continue;
2067 }
2068
2069 /* We don't know how to handle these with a constant */
2070
2071 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2072 DBG("Bailing inline constant...\n");
2073 continue;
2074 }
2075
2076 /* Make sure that the constant is not itself a vector
2077 * by checking if all accessed values are the same. */
2078
2079 uint32_t *cons = ins->constants;
2080 uint32_t value = cons[component];
2081
2082 bool is_vector = false;
2083 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2084
2085 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2086 /* We only care if this component is actually used */
2087 if (!(mask & (1 << c)))
2088 continue;
2089
2090 uint32_t test = cons[ins->swizzle[1][c]];
2091
2092 if (test != value) {
2093 is_vector = true;
2094 break;
2095 }
2096 }
2097
2098 if (is_vector)
2099 continue;
2100
2101 /* Get rid of the embedded constant */
2102 ins->has_constants = false;
2103 ins->src[1] = ~0;
2104 ins->has_inline_constant = true;
2105 ins->inline_constant = scaled_constant;
2106 }
2107 }
2108 }
2109
2110 /* Dead code elimination for branches at the end of a block - only one branch
2111 * per block is legal semantically */
2112
2113 static void
2114 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2115 {
2116 bool branched = false;
2117
2118 mir_foreach_instr_in_block_safe(block, ins) {
2119 if (!midgard_is_branch_unit(ins->unit)) continue;
2120
2121 if (branched)
2122 mir_remove_instruction(ins);
2123
2124 branched = true;
2125 }
2126 }
2127
2128 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2129 * the move can be propagated away entirely */
2130
2131 static bool
2132 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2133 {
2134 /* Nothing to do */
2135 if (comp == midgard_outmod_none)
2136 return true;
2137
2138 if (*outmod == midgard_outmod_none) {
2139 *outmod = comp;
2140 return true;
2141 }
2142
2143 /* TODO: Compose rules */
2144 return false;
2145 }
2146
2147 static bool
2148 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2149 {
2150 bool progress = false;
2151
2152 mir_foreach_instr_in_block_safe(block, ins) {
2153 if (ins->type != TAG_ALU_4) continue;
2154 if (ins->alu.op != midgard_alu_op_fmov) continue;
2155 if (ins->alu.outmod != midgard_outmod_pos) continue;
2156
2157 /* TODO: Registers? */
2158 unsigned src = ins->src[1];
2159 if (src & IS_REG) continue;
2160
2161 /* There might be a source modifier, too */
2162 if (mir_nontrivial_source2_mod(ins)) continue;
2163
2164 /* Backpropagate the modifier */
2165 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2166 if (v->type != TAG_ALU_4) continue;
2167 if (v->dest != src) continue;
2168
2169 /* Can we even take a float outmod? */
2170 if (midgard_is_integer_out_op(v->alu.op)) continue;
2171
2172 midgard_outmod_float temp = v->alu.outmod;
2173 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2174
2175 /* Throw in the towel.. */
2176 if (!progress) break;
2177
2178 /* Otherwise, transfer the modifier */
2179 v->alu.outmod = temp;
2180 ins->alu.outmod = midgard_outmod_none;
2181
2182 break;
2183 }
2184 }
2185
2186 return progress;
2187 }
2188
2189 static void
2190 emit_fragment_epilogue(compiler_context *ctx)
2191 {
2192 /* Just emit the last chunk with the branch */
2193 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, ~0, midgard_condition_always);
2194 }
2195
2196 static midgard_block *
2197 emit_block(compiler_context *ctx, nir_block *block)
2198 {
2199 midgard_block *this_block = ctx->after_block;
2200 ctx->after_block = NULL;
2201
2202 if (!this_block)
2203 this_block = create_empty_block(ctx);
2204
2205 list_addtail(&this_block->link, &ctx->blocks);
2206
2207 this_block->is_scheduled = false;
2208 ++ctx->block_count;
2209
2210 /* Set up current block */
2211 list_inithead(&this_block->instructions);
2212 ctx->current_block = this_block;
2213
2214 nir_foreach_instr(instr, block) {
2215 emit_instr(ctx, instr);
2216 ++ctx->instruction_count;
2217 }
2218
2219 return this_block;
2220 }
2221
2222 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2223
2224 static void
2225 emit_if(struct compiler_context *ctx, nir_if *nif)
2226 {
2227 midgard_block *before_block = ctx->current_block;
2228
2229 /* Speculatively emit the branch, but we can't fill it in until later */
2230 EMIT(branch, true, true);
2231 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2232 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2233
2234 /* Emit the two subblocks. */
2235 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2236 midgard_block *end_then_block = ctx->current_block;
2237
2238 /* Emit a jump from the end of the then block to the end of the else */
2239 EMIT(branch, false, false);
2240 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2241
2242 /* Emit second block, and check if it's empty */
2243
2244 int else_idx = ctx->block_count;
2245 int count_in = ctx->instruction_count;
2246 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2247 midgard_block *end_else_block = ctx->current_block;
2248 int after_else_idx = ctx->block_count;
2249
2250 /* Now that we have the subblocks emitted, fix up the branches */
2251
2252 assert(then_block);
2253 assert(else_block);
2254
2255 if (ctx->instruction_count == count_in) {
2256 /* The else block is empty, so don't emit an exit jump */
2257 mir_remove_instruction(then_exit);
2258 then_branch->branch.target_block = after_else_idx;
2259 } else {
2260 then_branch->branch.target_block = else_idx;
2261 then_exit->branch.target_block = after_else_idx;
2262 }
2263
2264 /* Wire up the successors */
2265
2266 ctx->after_block = create_empty_block(ctx);
2267
2268 midgard_block_add_successor(before_block, then_block);
2269 midgard_block_add_successor(before_block, else_block);
2270
2271 midgard_block_add_successor(end_then_block, ctx->after_block);
2272 midgard_block_add_successor(end_else_block, ctx->after_block);
2273 }
2274
2275 static void
2276 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2277 {
2278 /* Remember where we are */
2279 midgard_block *start_block = ctx->current_block;
2280
2281 /* Allocate a loop number, growing the current inner loop depth */
2282 int loop_idx = ++ctx->current_loop_depth;
2283
2284 /* Get index from before the body so we can loop back later */
2285 int start_idx = ctx->block_count;
2286
2287 /* Emit the body itself */
2288 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2289
2290 /* Branch back to loop back */
2291 struct midgard_instruction br_back = v_branch(false, false);
2292 br_back.branch.target_block = start_idx;
2293 emit_mir_instruction(ctx, br_back);
2294
2295 /* Mark down that branch in the graph. */
2296 midgard_block_add_successor(start_block, loop_block);
2297 midgard_block_add_successor(ctx->current_block, loop_block);
2298
2299 /* Find the index of the block about to follow us (note: we don't add
2300 * one; blocks are 0-indexed so we get a fencepost problem) */
2301 int break_block_idx = ctx->block_count;
2302
2303 /* Fix up the break statements we emitted to point to the right place,
2304 * now that we can allocate a block number for them */
2305 ctx->after_block = create_empty_block(ctx);
2306
2307 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2308 mir_foreach_instr_in_block(block, ins) {
2309 if (ins->type != TAG_ALU_4) continue;
2310 if (!ins->compact_branch) continue;
2311 if (ins->prepacked_branch) continue;
2312
2313 /* We found a branch -- check the type to see if we need to do anything */
2314 if (ins->branch.target_type != TARGET_BREAK) continue;
2315
2316 /* It's a break! Check if it's our break */
2317 if (ins->branch.target_break != loop_idx) continue;
2318
2319 /* Okay, cool, we're breaking out of this loop.
2320 * Rewrite from a break to a goto */
2321
2322 ins->branch.target_type = TARGET_GOTO;
2323 ins->branch.target_block = break_block_idx;
2324
2325 midgard_block_add_successor(block, ctx->after_block);
2326 }
2327 }
2328
2329 /* Now that we've finished emitting the loop, free up the depth again
2330 * so we play nice with recursion amid nested loops */
2331 --ctx->current_loop_depth;
2332
2333 /* Dump loop stats */
2334 ++ctx->loop_count;
2335 }
2336
2337 static midgard_block *
2338 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2339 {
2340 midgard_block *start_block = NULL;
2341
2342 foreach_list_typed(nir_cf_node, node, node, list) {
2343 switch (node->type) {
2344 case nir_cf_node_block: {
2345 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2346
2347 if (!start_block)
2348 start_block = block;
2349
2350 break;
2351 }
2352
2353 case nir_cf_node_if:
2354 emit_if(ctx, nir_cf_node_as_if(node));
2355 break;
2356
2357 case nir_cf_node_loop:
2358 emit_loop(ctx, nir_cf_node_as_loop(node));
2359 break;
2360
2361 case nir_cf_node_function:
2362 assert(0);
2363 break;
2364 }
2365 }
2366
2367 return start_block;
2368 }
2369
2370 /* Due to lookahead, we need to report the first tag executed in the command
2371 * stream and in branch targets. An initial block might be empty, so iterate
2372 * until we find one that 'works' */
2373
2374 static unsigned
2375 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2376 {
2377 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2378
2379 unsigned first_tag = 0;
2380
2381 mir_foreach_block_from(ctx, initial_block, v) {
2382 if (v->quadword_count) {
2383 midgard_bundle *initial_bundle =
2384 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2385
2386 first_tag = initial_bundle->tag;
2387 break;
2388 }
2389 }
2390
2391 return first_tag;
2392 }
2393
2394 int
2395 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend, unsigned gpu_id)
2396 {
2397 struct util_dynarray *compiled = &program->compiled;
2398
2399 midgard_debug = debug_get_option_midgard_debug();
2400
2401 /* TODO: Bound against what? */
2402 compiler_context *ctx = rzalloc(NULL, compiler_context);
2403
2404 ctx->nir = nir;
2405 ctx->stage = nir->info.stage;
2406 ctx->is_blend = is_blend;
2407 ctx->alpha_ref = program->alpha_ref;
2408 ctx->gpu_id = gpu_id;
2409
2410 /* Start off with a safe cutoff, allowing usage of all 16 work
2411 * registers. Later, we'll promote uniform reads to uniform registers
2412 * if we determine it is beneficial to do so */
2413 ctx->uniform_cutoff = 8;
2414
2415 /* Initialize at a global (not block) level hash tables */
2416
2417 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2418 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2419 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2420
2421 /* Record the varying mapping for the command stream's bookkeeping */
2422
2423 struct exec_list *varyings =
2424 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2425
2426 unsigned max_varying = 0;
2427 nir_foreach_variable(var, varyings) {
2428 unsigned loc = var->data.driver_location;
2429 unsigned sz = glsl_type_size(var->type, FALSE);
2430
2431 for (int c = 0; c < sz; ++c) {
2432 program->varyings[loc + c] = var->data.location + c;
2433 max_varying = MAX2(max_varying, loc + c);
2434 }
2435 }
2436
2437 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2438 * (so we don't accidentally duplicate the epilogue since mesa/st has
2439 * messed with our I/O quite a bit already) */
2440
2441 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2442
2443 if (ctx->stage == MESA_SHADER_VERTEX) {
2444 NIR_PASS_V(nir, nir_lower_viewport_transform);
2445 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2446 }
2447
2448 NIR_PASS_V(nir, nir_lower_var_copies);
2449 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2450 NIR_PASS_V(nir, nir_split_var_copies);
2451 NIR_PASS_V(nir, nir_lower_var_copies);
2452 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2453 NIR_PASS_V(nir, nir_lower_var_copies);
2454 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2455
2456 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2457
2458 /* Optimisation passes */
2459
2460 optimise_nir(nir);
2461
2462 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2463 nir_print_shader(nir, stdout);
2464 }
2465
2466 /* Assign sysvals and counts, now that we're sure
2467 * (post-optimisation) */
2468
2469 midgard_nir_assign_sysvals(ctx, nir);
2470
2471 program->uniform_count = nir->num_uniforms;
2472 program->sysval_count = ctx->sysval_count;
2473 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2474
2475 nir_foreach_function(func, nir) {
2476 if (!func->impl)
2477 continue;
2478
2479 list_inithead(&ctx->blocks);
2480 ctx->block_count = 0;
2481 ctx->func = func;
2482
2483 emit_cf_list(ctx, &func->impl->body);
2484
2485 /* Emit empty exit block with successor */
2486
2487 struct midgard_block *semi_end = ctx->current_block;
2488
2489 struct midgard_block *end =
2490 emit_block(ctx, func->impl->end_block);
2491
2492 if (ctx->stage == MESA_SHADER_FRAGMENT)
2493 emit_fragment_epilogue(ctx);
2494
2495 midgard_block_add_successor(semi_end, end);
2496
2497 break; /* TODO: Multi-function shaders */
2498 }
2499
2500 util_dynarray_init(compiled, NULL);
2501
2502 /* Per-block lowering before opts */
2503
2504 mir_foreach_block(ctx, block) {
2505 inline_alu_constants(ctx, block);
2506 midgard_opt_promote_fmov(ctx, block);
2507 embedded_to_inline_constant(ctx, block);
2508 }
2509 /* MIR-level optimizations */
2510
2511 bool progress = false;
2512
2513 do {
2514 progress = false;
2515
2516 mir_foreach_block(ctx, block) {
2517 progress |= midgard_opt_pos_propagate(ctx, block);
2518 progress |= midgard_opt_copy_prop(ctx, block);
2519 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2520 progress |= midgard_opt_combine_projection(ctx, block);
2521 progress |= midgard_opt_varying_projection(ctx, block);
2522 progress |= midgard_opt_not_propagate(ctx, block);
2523 progress |= midgard_opt_fuse_src_invert(ctx, block);
2524 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2525 progress |= midgard_opt_csel_invert(ctx, block);
2526 }
2527 } while (progress);
2528
2529 mir_foreach_block(ctx, block) {
2530 midgard_lower_invert(ctx, block);
2531 midgard_lower_derivatives(ctx, block);
2532 }
2533
2534 /* Nested control-flow can result in dead branches at the end of the
2535 * block. This messes with our analysis and is just dead code, so cull
2536 * them */
2537 mir_foreach_block(ctx, block) {
2538 midgard_opt_cull_dead_branch(ctx, block);
2539 }
2540
2541 /* Ensure we were lowered */
2542 mir_foreach_instr_global(ctx, ins) {
2543 assert(!ins->invert);
2544 }
2545
2546 /* Schedule! */
2547 schedule_program(ctx);
2548
2549 /* Now that all the bundles are scheduled and we can calculate block
2550 * sizes, emit actual branch instructions rather than placeholders */
2551
2552 int br_block_idx = 0;
2553
2554 mir_foreach_block(ctx, block) {
2555 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2556 for (int c = 0; c < bundle->instruction_count; ++c) {
2557 midgard_instruction *ins = bundle->instructions[c];
2558
2559 if (!midgard_is_branch_unit(ins->unit)) continue;
2560
2561 if (ins->prepacked_branch) continue;
2562
2563 /* Parse some basic branch info */
2564 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2565 bool is_conditional = ins->branch.conditional;
2566 bool is_inverted = ins->branch.invert_conditional;
2567 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2568
2569 /* Determine the block we're jumping to */
2570 int target_number = ins->branch.target_block;
2571
2572 /* Report the destination tag */
2573 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2574
2575 /* Count up the number of quadwords we're
2576 * jumping over = number of quadwords until
2577 * (br_block_idx, target_number) */
2578
2579 int quadword_offset = 0;
2580
2581 if (is_discard) {
2582 /* Ignored */
2583 } else if (target_number > br_block_idx) {
2584 /* Jump forward */
2585
2586 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2587 midgard_block *blk = mir_get_block(ctx, idx);
2588 assert(blk);
2589
2590 quadword_offset += blk->quadword_count;
2591 }
2592 } else {
2593 /* Jump backwards */
2594
2595 for (int idx = br_block_idx; idx >= target_number; --idx) {
2596 midgard_block *blk = mir_get_block(ctx, idx);
2597 assert(blk);
2598
2599 quadword_offset -= blk->quadword_count;
2600 }
2601 }
2602
2603 /* Unconditional extended branches (far jumps)
2604 * have issues, so we always use a conditional
2605 * branch, setting the condition to always for
2606 * unconditional. For compact unconditional
2607 * branches, cond isn't used so it doesn't
2608 * matter what we pick. */
2609
2610 midgard_condition cond =
2611 !is_conditional ? midgard_condition_always :
2612 is_inverted ? midgard_condition_false :
2613 midgard_condition_true;
2614
2615 midgard_jmp_writeout_op op =
2616 is_discard ? midgard_jmp_writeout_op_discard :
2617 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2618 midgard_jmp_writeout_op_branch_cond;
2619
2620 if (!is_compact) {
2621 midgard_branch_extended branch =
2622 midgard_create_branch_extended(
2623 cond, op,
2624 dest_tag,
2625 quadword_offset);
2626
2627 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2628 } else if (is_conditional || is_discard) {
2629 midgard_branch_cond branch = {
2630 .op = op,
2631 .dest_tag = dest_tag,
2632 .offset = quadword_offset,
2633 .cond = cond
2634 };
2635
2636 assert(branch.offset == quadword_offset);
2637
2638 memcpy(&ins->br_compact, &branch, sizeof(branch));
2639 } else {
2640 assert(op == midgard_jmp_writeout_op_branch_uncond);
2641
2642 midgard_branch_uncond branch = {
2643 .op = op,
2644 .dest_tag = dest_tag,
2645 .offset = quadword_offset,
2646 .unknown = 1
2647 };
2648
2649 assert(branch.offset == quadword_offset);
2650
2651 memcpy(&ins->br_compact, &branch, sizeof(branch));
2652 }
2653 }
2654 }
2655
2656 ++br_block_idx;
2657 }
2658
2659 /* Emit flat binary from the instruction arrays. Iterate each block in
2660 * sequence. Save instruction boundaries such that lookahead tags can
2661 * be assigned easily */
2662
2663 /* Cache _all_ bundles in source order for lookahead across failed branches */
2664
2665 int bundle_count = 0;
2666 mir_foreach_block(ctx, block) {
2667 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2668 }
2669 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2670 int bundle_idx = 0;
2671 mir_foreach_block(ctx, block) {
2672 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2673 source_order_bundles[bundle_idx++] = bundle;
2674 }
2675 }
2676
2677 int current_bundle = 0;
2678
2679 /* Midgard prefetches instruction types, so during emission we
2680 * need to lookahead. Unless this is the last instruction, in
2681 * which we return 1. Or if this is the second to last and the
2682 * last is an ALU, then it's also 1... */
2683
2684 mir_foreach_block(ctx, block) {
2685 mir_foreach_bundle_in_block(block, bundle) {
2686 int lookahead = 1;
2687
2688 if (current_bundle + 1 < bundle_count) {
2689 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2690
2691 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2692 lookahead = 1;
2693 } else {
2694 lookahead = next;
2695 }
2696 }
2697
2698 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2699 ++current_bundle;
2700 }
2701
2702 /* TODO: Free deeper */
2703 //util_dynarray_fini(&block->instructions);
2704 }
2705
2706 free(source_order_bundles);
2707
2708 /* Report the very first tag executed */
2709 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2710
2711 /* Deal with off-by-one related to the fencepost problem */
2712 program->work_register_count = ctx->work_registers + 1;
2713 program->uniform_cutoff = ctx->uniform_cutoff;
2714
2715 program->blend_patch_offset = ctx->blend_constant_offset;
2716 program->tls_size = ctx->tls_size;
2717
2718 if (midgard_debug & MIDGARD_DBG_SHADERS)
2719 disassemble_midgard(program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2720
2721 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2722 unsigned nr_bundles = 0, nr_ins = 0;
2723
2724 /* Count instructions and bundles */
2725
2726 mir_foreach_block(ctx, block) {
2727 nr_bundles += util_dynarray_num_elements(
2728 &block->bundles, midgard_bundle);
2729
2730 mir_foreach_bundle_in_block(block, bun)
2731 nr_ins += bun->instruction_count;
2732 }
2733
2734 /* Calculate thread count. There are certain cutoffs by
2735 * register count for thread count */
2736
2737 unsigned nr_registers = program->work_register_count;
2738
2739 unsigned nr_threads =
2740 (nr_registers <= 4) ? 4 :
2741 (nr_registers <= 8) ? 2 :
2742 1;
2743
2744 /* Dump stats */
2745
2746 fprintf(stderr, "shader%d - %s shader: "
2747 "%u inst, %u bundles, %u quadwords, "
2748 "%u registers, %u threads, %u loops, "
2749 "%u:%u spills:fills\n",
2750 SHADER_DB_COUNT++,
2751 gl_shader_stage_name(ctx->stage),
2752 nr_ins, nr_bundles, ctx->quadword_count,
2753 nr_registers, nr_threads,
2754 ctx->loop_count,
2755 ctx->spills, ctx->fills);
2756 }
2757
2758 ralloc_free(ctx);
2759
2760 return 0;
2761 }