pan/midgard: Add units for more instructions
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static void
79 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
80 {
81 block->successors[block->nr_successors++] = successor;
82 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
83 }
84
85 /* Helpers to generate midgard_instruction's using macro magic, since every
86 * driver seems to do it that way */
87
88 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
89
90 #define M_LOAD_STORE(name, rname, uname) \
91 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
92 midgard_instruction i = { \
93 .type = TAG_LOAD_STORE_4, \
94 .mask = 0xF, \
95 .ssa_args = { \
96 .rname = ssa, \
97 .uname = -1, \
98 .src1 = -1 \
99 }, \
100 .load_store = { \
101 .op = midgard_op_##name, \
102 .swizzle = SWIZZLE_XYZW, \
103 .address = address \
104 } \
105 }; \
106 \
107 return i; \
108 }
109
110 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
111 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
112
113 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
114 * the corresponding Midgard source */
115
116 static midgard_vector_alu_src
117 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
118 bool half, bool sext)
119 {
120 if (!src) return blank_alu_src;
121
122 /* Figure out how many components there are so we can adjust the
123 * swizzle. Specifically we want to broadcast the last channel so
124 * things like ball2/3 work
125 */
126
127 if (broadcast_count) {
128 uint8_t last_component = src->swizzle[broadcast_count - 1];
129
130 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
131 src->swizzle[c] = last_component;
132 }
133 }
134
135 midgard_vector_alu_src alu_src = {
136 .rep_low = 0,
137 .rep_high = 0,
138 .half = half,
139 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
140 };
141
142 if (is_int) {
143 alu_src.mod = midgard_int_normal;
144
145 /* Sign/zero-extend if needed */
146
147 if (half) {
148 alu_src.mod = sext ?
149 midgard_int_sign_extend
150 : midgard_int_zero_extend;
151 }
152
153 /* These should have been lowered away */
154 assert(!(src->abs || src->negate));
155 } else {
156 alu_src.mod = (src->abs << 0) | (src->negate << 1);
157 }
158
159 return alu_src;
160 }
161
162 /* load/store instructions have both 32-bit and 16-bit variants, depending on
163 * whether we are using vectors composed of highp or mediump. At the moment, we
164 * don't support half-floats -- this requires changes in other parts of the
165 * compiler -- therefore the 16-bit versions are commented out. */
166
167 //M_LOAD(ld_attr_16);
168 M_LOAD(ld_attr_32);
169 //M_LOAD(ld_vary_16);
170 M_LOAD(ld_vary_32);
171 //M_LOAD(ld_uniform_16);
172 M_LOAD(ld_uniform_32);
173 M_LOAD(ld_color_buffer_8);
174 //M_STORE(st_vary_16);
175 M_STORE(st_vary_32);
176 M_LOAD(st_cubemap_coords);
177
178 static midgard_instruction
179 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
180 {
181 midgard_branch_cond branch = {
182 .op = op,
183 .dest_tag = tag,
184 .offset = offset,
185 .cond = cond
186 };
187
188 uint16_t compact;
189 memcpy(&compact, &branch, sizeof(branch));
190
191 midgard_instruction ins = {
192 .type = TAG_ALU_4,
193 .unit = ALU_ENAB_BR_COMPACT,
194 .prepacked_branch = true,
195 .compact_branch = true,
196 .br_compact = compact
197 };
198
199 if (op == midgard_jmp_writeout_op_writeout)
200 ins.writeout = true;
201
202 return ins;
203 }
204
205 static midgard_instruction
206 v_branch(bool conditional, bool invert)
207 {
208 midgard_instruction ins = {
209 .type = TAG_ALU_4,
210 .unit = ALU_ENAB_BRANCH,
211 .compact_branch = true,
212 .branch = {
213 .conditional = conditional,
214 .invert_conditional = invert
215 }
216 };
217
218 return ins;
219 }
220
221 static midgard_branch_extended
222 midgard_create_branch_extended( midgard_condition cond,
223 midgard_jmp_writeout_op op,
224 unsigned dest_tag,
225 signed quadword_offset)
226 {
227 /* The condition code is actually a LUT describing a function to
228 * combine multiple condition codes. However, we only support a single
229 * condition code at the moment, so we just duplicate over a bunch of
230 * times. */
231
232 uint16_t duplicated_cond =
233 (cond << 14) |
234 (cond << 12) |
235 (cond << 10) |
236 (cond << 8) |
237 (cond << 6) |
238 (cond << 4) |
239 (cond << 2) |
240 (cond << 0);
241
242 midgard_branch_extended branch = {
243 .op = op,
244 .dest_tag = dest_tag,
245 .offset = quadword_offset,
246 .cond = duplicated_cond
247 };
248
249 return branch;
250 }
251
252 static void
253 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
254 {
255 ins->has_constants = true;
256 memcpy(&ins->constants, constants, 16);
257 }
258
259 static int
260 glsl_type_size(const struct glsl_type *type, bool bindless)
261 {
262 return glsl_count_attribute_slots(type, false);
263 }
264
265 /* Lower fdot2 to a vector multiplication followed by channel addition */
266 static void
267 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
268 {
269 if (alu->op != nir_op_fdot2)
270 return;
271
272 b->cursor = nir_before_instr(&alu->instr);
273
274 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
275 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
276
277 nir_ssa_def *product = nir_fmul(b, src0, src1);
278
279 nir_ssa_def *sum = nir_fadd(b,
280 nir_channel(b, product, 0),
281 nir_channel(b, product, 1));
282
283 /* Replace the fdot2 with this sum */
284 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
285 }
286
287 static int
288 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
289 {
290 switch (instr->intrinsic) {
291 case nir_intrinsic_load_viewport_scale:
292 return PAN_SYSVAL_VIEWPORT_SCALE;
293 case nir_intrinsic_load_viewport_offset:
294 return PAN_SYSVAL_VIEWPORT_OFFSET;
295 default:
296 return -1;
297 }
298 }
299
300 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
301 unsigned *dest)
302 {
303 nir_intrinsic_instr *intr;
304 nir_dest *dst = NULL;
305 nir_tex_instr *tex;
306 int sysval = -1;
307
308 switch (instr->type) {
309 case nir_instr_type_intrinsic:
310 intr = nir_instr_as_intrinsic(instr);
311 sysval = midgard_nir_sysval_for_intrinsic(intr);
312 dst = &intr->dest;
313 break;
314 case nir_instr_type_tex:
315 tex = nir_instr_as_tex(instr);
316 if (tex->op != nir_texop_txs)
317 break;
318
319 sysval = PAN_SYSVAL(TEXTURE_SIZE,
320 PAN_TXS_SYSVAL_ID(tex->texture_index,
321 nir_tex_instr_dest_size(tex) -
322 (tex->is_array ? 1 : 0),
323 tex->is_array));
324 dst = &tex->dest;
325 break;
326 default:
327 break;
328 }
329
330 if (dest && dst)
331 *dest = nir_dest_index(ctx, dst);
332
333 return sysval;
334 }
335
336 static void
337 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
338 {
339 int sysval;
340
341 sysval = sysval_for_instr(ctx, instr, NULL);
342 if (sysval < 0)
343 return;
344
345 /* We have a sysval load; check if it's already been assigned */
346
347 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
348 return;
349
350 /* It hasn't -- so assign it now! */
351
352 unsigned id = ctx->sysval_count++;
353 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
354 ctx->sysvals[id] = sysval;
355 }
356
357 static void
358 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
359 {
360 ctx->sysval_count = 0;
361
362 nir_foreach_function(function, shader) {
363 if (!function->impl) continue;
364
365 nir_foreach_block(block, function->impl) {
366 nir_foreach_instr_safe(instr, block) {
367 midgard_nir_assign_sysval_body(ctx, instr);
368 }
369 }
370 }
371 }
372
373 static bool
374 midgard_nir_lower_fdot2(nir_shader *shader)
375 {
376 bool progress = false;
377
378 nir_foreach_function(function, shader) {
379 if (!function->impl) continue;
380
381 nir_builder _b;
382 nir_builder *b = &_b;
383 nir_builder_init(b, function->impl);
384
385 nir_foreach_block(block, function->impl) {
386 nir_foreach_instr_safe(instr, block) {
387 if (instr->type != nir_instr_type_alu) continue;
388
389 nir_alu_instr *alu = nir_instr_as_alu(instr);
390 midgard_nir_lower_fdot2_body(b, alu);
391
392 progress |= true;
393 }
394 }
395
396 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
397
398 }
399
400 return progress;
401 }
402
403 /* Flushes undefined values to zero */
404
405 static void
406 optimise_nir(nir_shader *nir)
407 {
408 bool progress;
409 unsigned lower_flrp =
410 (nir->options->lower_flrp16 ? 16 : 0) |
411 (nir->options->lower_flrp32 ? 32 : 0) |
412 (nir->options->lower_flrp64 ? 64 : 0);
413
414 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
415 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
416 NIR_PASS(progress, nir, nir_lower_idiv);
417
418 nir_lower_tex_options lower_tex_1st_pass_options = {
419 .lower_rect = true,
420 .lower_txp = ~0
421 };
422
423 nir_lower_tex_options lower_tex_2nd_pass_options = {
424 .lower_txs_lod = true,
425 };
426
427 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_1st_pass_options);
428 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_2nd_pass_options);
429
430 do {
431 progress = false;
432
433 NIR_PASS(progress, nir, nir_lower_var_copies);
434 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
435
436 NIR_PASS(progress, nir, nir_copy_prop);
437 NIR_PASS(progress, nir, nir_opt_dce);
438 NIR_PASS(progress, nir, nir_opt_dead_cf);
439 NIR_PASS(progress, nir, nir_opt_cse);
440 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
441 NIR_PASS(progress, nir, nir_opt_algebraic);
442 NIR_PASS(progress, nir, nir_opt_constant_folding);
443
444 if (lower_flrp != 0) {
445 bool lower_flrp_progress = false;
446 NIR_PASS(lower_flrp_progress,
447 nir,
448 nir_lower_flrp,
449 lower_flrp,
450 false /* always_precise */,
451 nir->options->lower_ffma);
452 if (lower_flrp_progress) {
453 NIR_PASS(progress, nir,
454 nir_opt_constant_folding);
455 progress = true;
456 }
457
458 /* Nothing should rematerialize any flrps, so we only
459 * need to do this lowering once.
460 */
461 lower_flrp = 0;
462 }
463
464 NIR_PASS(progress, nir, nir_opt_undef);
465 NIR_PASS(progress, nir, nir_undef_to_zero);
466
467 NIR_PASS(progress, nir, nir_opt_loop_unroll,
468 nir_var_shader_in |
469 nir_var_shader_out |
470 nir_var_function_temp);
471
472 NIR_PASS(progress, nir, nir_opt_vectorize);
473 } while (progress);
474
475 /* Must be run at the end to prevent creation of fsin/fcos ops */
476 NIR_PASS(progress, nir, midgard_nir_scale_trig);
477
478 do {
479 progress = false;
480
481 NIR_PASS(progress, nir, nir_opt_dce);
482 NIR_PASS(progress, nir, nir_opt_algebraic);
483 NIR_PASS(progress, nir, nir_opt_constant_folding);
484 NIR_PASS(progress, nir, nir_copy_prop);
485 } while (progress);
486
487 NIR_PASS(progress, nir, nir_opt_algebraic_late);
488
489 /* We implement booleans as 32-bit 0/~0 */
490 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
491
492 /* Now that booleans are lowered, we can run out late opts */
493 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
494
495 /* Lower mods for float ops only. Integer ops don't support modifiers
496 * (saturate doesn't make sense on integers, neg/abs require dedicated
497 * instructions) */
498
499 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
500 NIR_PASS(progress, nir, nir_copy_prop);
501 NIR_PASS(progress, nir, nir_opt_dce);
502
503 /* Take us out of SSA */
504 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
505 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
506
507 /* We are a vector architecture; write combine where possible */
508 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
509 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
510
511 NIR_PASS(progress, nir, nir_opt_dce);
512 }
513
514 /* Do not actually emit a load; instead, cache the constant for inlining */
515
516 static void
517 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
518 {
519 nir_ssa_def def = instr->def;
520
521 float *v = rzalloc_array(NULL, float, 4);
522 nir_const_load_to_arr(v, instr, f32);
523
524 /* Shifted for SSA, +1 for off-by-one */
525 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
526 }
527
528 /* Normally constants are embedded implicitly, but for I/O and such we have to
529 * explicitly emit a move with the constant source */
530
531 static void
532 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
533 {
534 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
535
536 if (constant_value) {
537 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, to);
538 attach_constants(ctx, &ins, constant_value, node + 1);
539 emit_mir_instruction(ctx, ins);
540 }
541 }
542
543 static bool
544 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
545 {
546 unsigned comp = src->swizzle[0];
547
548 for (unsigned c = 1; c < nr_components; ++c) {
549 if (src->swizzle[c] != comp)
550 return true;
551 }
552
553 return false;
554 }
555
556 /* Midgard puts scalar conditionals in r31.w; move an arbitrary source (the
557 * output of a conditional test) into that register */
558
559 static void
560 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
561 {
562 int condition = nir_src_index(ctx, src);
563
564 /* Source to swizzle the desired component into w */
565
566 const midgard_vector_alu_src alu_src = {
567 .swizzle = SWIZZLE(component, component, component, component),
568 };
569
570 /* There is no boolean move instruction. Instead, we simulate a move by
571 * ANDing the condition with itself to get it into r31.w */
572
573 midgard_instruction ins = {
574 .type = TAG_ALU_4,
575
576 /* We need to set the conditional as close as possible */
577 .precede_break = true,
578 .unit = for_branch ? UNIT_SMUL : UNIT_SADD,
579 .mask = 1 << COMPONENT_W,
580
581 .ssa_args = {
582 .src0 = condition,
583 .src1 = condition,
584 .dest = SSA_FIXED_REGISTER(31),
585 },
586
587 .alu = {
588 .op = midgard_alu_op_iand,
589 .outmod = midgard_outmod_int_wrap,
590 .reg_mode = midgard_reg_mode_32,
591 .dest_override = midgard_dest_override_none,
592 .src1 = vector_alu_srco_unsigned(alu_src),
593 .src2 = vector_alu_srco_unsigned(alu_src)
594 },
595 };
596
597 emit_mir_instruction(ctx, ins);
598 }
599
600 /* Or, for mixed conditions (with csel_v), here's a vector version using all of
601 * r31 instead */
602
603 static void
604 emit_condition_mixed(compiler_context *ctx, nir_alu_src *src, unsigned nr_comp)
605 {
606 int condition = nir_src_index(ctx, &src->src);
607
608 /* Source to swizzle the desired component into w */
609
610 const midgard_vector_alu_src alu_src = {
611 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle),
612 };
613
614 /* There is no boolean move instruction. Instead, we simulate a move by
615 * ANDing the condition with itself to get it into r31.w */
616
617 midgard_instruction ins = {
618 .type = TAG_ALU_4,
619 .precede_break = true,
620 .mask = mask_of(nr_comp),
621 .ssa_args = {
622 .src0 = condition,
623 .src1 = condition,
624 .dest = SSA_FIXED_REGISTER(31),
625 },
626 .alu = {
627 .op = midgard_alu_op_iand,
628 .outmod = midgard_outmod_int_wrap,
629 .reg_mode = midgard_reg_mode_32,
630 .dest_override = midgard_dest_override_none,
631 .src1 = vector_alu_srco_unsigned(alu_src),
632 .src2 = vector_alu_srco_unsigned(alu_src)
633 },
634 };
635
636 emit_mir_instruction(ctx, ins);
637 }
638
639
640
641 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
642 * pinning to eliminate this move in all known cases */
643
644 static void
645 emit_indirect_offset(compiler_context *ctx, nir_src *src)
646 {
647 int offset = nir_src_index(ctx, src);
648
649 midgard_instruction ins = {
650 .type = TAG_ALU_4,
651 .mask = 1 << COMPONENT_W,
652 .ssa_args = {
653 .src0 = SSA_UNUSED_1,
654 .src1 = offset,
655 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
656 },
657 .alu = {
658 .op = midgard_alu_op_imov,
659 .outmod = midgard_outmod_int_wrap,
660 .reg_mode = midgard_reg_mode_32,
661 .dest_override = midgard_dest_override_none,
662 .src1 = vector_alu_srco_unsigned(zero_alu_src),
663 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
664 },
665 };
666
667 emit_mir_instruction(ctx, ins);
668 }
669
670 #define ALU_CASE(nir, _op) \
671 case nir_op_##nir: \
672 op = midgard_alu_op_##_op; \
673 assert(src_bitsize == dst_bitsize); \
674 break;
675
676 #define ALU_CASE_BCAST(nir, _op, count) \
677 case nir_op_##nir: \
678 op = midgard_alu_op_##_op; \
679 broadcast_swizzle = count; \
680 assert(src_bitsize == dst_bitsize); \
681 break;
682 static bool
683 nir_is_fzero_constant(nir_src src)
684 {
685 if (!nir_src_is_const(src))
686 return false;
687
688 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
689 if (nir_src_comp_as_float(src, c) != 0.0)
690 return false;
691 }
692
693 return true;
694 }
695
696 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
697 * special treatment override this anyway. */
698
699 static midgard_reg_mode
700 reg_mode_for_nir(nir_alu_instr *instr)
701 {
702 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
703
704 switch (src_bitsize) {
705 case 8:
706 return midgard_reg_mode_8;
707 case 16:
708 return midgard_reg_mode_16;
709 case 32:
710 return midgard_reg_mode_32;
711 case 64:
712 return midgard_reg_mode_64;
713 default:
714 unreachable("Invalid bit size");
715 }
716 }
717
718 static void
719 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
720 {
721 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
722 * is handled elsewhere */
723
724 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
725 midgard_emit_derivatives(ctx, instr);
726 return;
727 }
728
729 bool is_ssa = instr->dest.dest.is_ssa;
730
731 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
732 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
733 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
734
735 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
736 * supported. A few do not and are commented for now. Also, there are a
737 * number of NIR ops which Midgard does not support and need to be
738 * lowered, also TODO. This switch block emits the opcode and calling
739 * convention of the Midgard instruction; actual packing is done in
740 * emit_alu below */
741
742 unsigned op;
743
744 /* Number of components valid to check for the instruction (the rest
745 * will be forced to the last), or 0 to use as-is. Relevant as
746 * ball-type instructions have a channel count in NIR but are all vec4
747 * in Midgard */
748
749 unsigned broadcast_swizzle = 0;
750
751 /* What register mode should we operate in? */
752 midgard_reg_mode reg_mode =
753 reg_mode_for_nir(instr);
754
755 /* Do we need a destination override? Used for inline
756 * type conversion */
757
758 midgard_dest_override dest_override =
759 midgard_dest_override_none;
760
761 /* Should we use a smaller respective source and sign-extend? */
762
763 bool half_1 = false, sext_1 = false;
764 bool half_2 = false, sext_2 = false;
765
766 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
767 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
768
769 switch (instr->op) {
770 ALU_CASE(fadd, fadd);
771 ALU_CASE(fmul, fmul);
772 ALU_CASE(fmin, fmin);
773 ALU_CASE(fmax, fmax);
774 ALU_CASE(imin, imin);
775 ALU_CASE(imax, imax);
776 ALU_CASE(umin, umin);
777 ALU_CASE(umax, umax);
778 ALU_CASE(ffloor, ffloor);
779 ALU_CASE(fround_even, froundeven);
780 ALU_CASE(ftrunc, ftrunc);
781 ALU_CASE(fceil, fceil);
782 ALU_CASE(fdot3, fdot3);
783 ALU_CASE(fdot4, fdot4);
784 ALU_CASE(iadd, iadd);
785 ALU_CASE(isub, isub);
786 ALU_CASE(imul, imul);
787
788 /* Zero shoved as second-arg */
789 ALU_CASE(iabs, iabsdiff);
790
791 ALU_CASE(mov, imov);
792
793 ALU_CASE(feq32, feq);
794 ALU_CASE(fne32, fne);
795 ALU_CASE(flt32, flt);
796 ALU_CASE(ieq32, ieq);
797 ALU_CASE(ine32, ine);
798 ALU_CASE(ilt32, ilt);
799 ALU_CASE(ult32, ult);
800
801 /* We don't have a native b2f32 instruction. Instead, like many
802 * GPUs, we exploit booleans as 0/~0 for false/true, and
803 * correspondingly AND
804 * by 1.0 to do the type conversion. For the moment, prime us
805 * to emit:
806 *
807 * iand [whatever], #0
808 *
809 * At the end of emit_alu (as MIR), we'll fix-up the constant
810 */
811
812 ALU_CASE(b2f32, iand);
813 ALU_CASE(b2i32, iand);
814
815 /* Likewise, we don't have a dedicated f2b32 instruction, but
816 * we can do a "not equal to 0.0" test. */
817
818 ALU_CASE(f2b32, fne);
819 ALU_CASE(i2b32, ine);
820
821 ALU_CASE(frcp, frcp);
822 ALU_CASE(frsq, frsqrt);
823 ALU_CASE(fsqrt, fsqrt);
824 ALU_CASE(fexp2, fexp2);
825 ALU_CASE(flog2, flog2);
826
827 ALU_CASE(f2i32, f2i_rtz);
828 ALU_CASE(f2u32, f2u_rtz);
829 ALU_CASE(i2f32, i2f_rtz);
830 ALU_CASE(u2f32, u2f_rtz);
831
832 ALU_CASE(f2i16, f2i_rtz);
833 ALU_CASE(f2u16, f2u_rtz);
834 ALU_CASE(i2f16, i2f_rtz);
835 ALU_CASE(u2f16, u2f_rtz);
836
837 ALU_CASE(fsin, fsin);
838 ALU_CASE(fcos, fcos);
839
840 /* We'll set invert */
841 ALU_CASE(inot, imov);
842 ALU_CASE(iand, iand);
843 ALU_CASE(ior, ior);
844 ALU_CASE(ixor, ixor);
845 ALU_CASE(ishl, ishl);
846 ALU_CASE(ishr, iasr);
847 ALU_CASE(ushr, ilsr);
848
849 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
850 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
851 ALU_CASE(b32all_fequal4, fball_eq);
852
853 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
854 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
855 ALU_CASE(b32any_fnequal4, fbany_neq);
856
857 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
858 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
859 ALU_CASE(b32all_iequal4, iball_eq);
860
861 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
862 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
863 ALU_CASE(b32any_inequal4, ibany_neq);
864
865 /* Source mods will be shoved in later */
866 ALU_CASE(fabs, fmov);
867 ALU_CASE(fneg, fmov);
868 ALU_CASE(fsat, fmov);
869
870 /* For size conversion, we use a move. Ideally though we would squash
871 * these ops together; maybe that has to happen after in NIR as part of
872 * propagation...? An earlier algebraic pass ensured we step down by
873 * only / exactly one size. If stepping down, we use a dest override to
874 * reduce the size; if stepping up, we use a larger-sized move with a
875 * half source and a sign/zero-extension modifier */
876
877 case nir_op_i2i8:
878 case nir_op_i2i16:
879 case nir_op_i2i32:
880 /* If we end up upscale, we'll need a sign-extend on the
881 * operand (the second argument) */
882
883 sext_2 = true;
884 case nir_op_u2u8:
885 case nir_op_u2u16:
886 case nir_op_u2u32: {
887 op = midgard_alu_op_imov;
888
889 if (dst_bitsize == (src_bitsize * 2)) {
890 /* Converting up */
891 half_2 = true;
892
893 /* Use a greater register mode */
894 reg_mode++;
895 } else if (src_bitsize == (dst_bitsize * 2)) {
896 /* Converting down */
897 dest_override = midgard_dest_override_lower;
898 }
899
900 break;
901 }
902
903 case nir_op_f2f16: {
904 assert(src_bitsize == 32);
905
906 op = midgard_alu_op_fmov;
907 dest_override = midgard_dest_override_lower;
908 break;
909 }
910
911 case nir_op_f2f32: {
912 assert(src_bitsize == 16);
913
914 op = midgard_alu_op_fmov;
915 half_2 = true;
916 reg_mode++;
917 break;
918 }
919
920
921 /* For greater-or-equal, we lower to less-or-equal and flip the
922 * arguments */
923
924 case nir_op_fge:
925 case nir_op_fge32:
926 case nir_op_ige32:
927 case nir_op_uge32: {
928 op =
929 instr->op == nir_op_fge ? midgard_alu_op_fle :
930 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
931 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
932 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
933 0;
934
935 /* Swap via temporary */
936 nir_alu_src temp = instr->src[1];
937 instr->src[1] = instr->src[0];
938 instr->src[0] = temp;
939
940 break;
941 }
942
943 case nir_op_b32csel: {
944 /* Midgard features both fcsel and icsel, depending on
945 * the type of the arguments/output. However, as long
946 * as we're careful we can _always_ use icsel and
947 * _never_ need fcsel, since the latter does additional
948 * floating-point-specific processing whereas the
949 * former just moves bits on the wire. It's not obvious
950 * why these are separate opcodes, save for the ability
951 * to do things like sat/pos/abs/neg for free */
952
953 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
954 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
955
956 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
957 nr_inputs = 2;
958
959 /* Emit the condition into r31 */
960
961 if (mixed)
962 emit_condition_mixed(ctx, &instr->src[0], nr_components);
963 else
964 emit_condition(ctx, &instr->src[0].src, false, instr->src[0].swizzle[0]);
965
966 /* The condition is the first argument; move the other
967 * arguments up one to be a binary instruction for
968 * Midgard */
969
970 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
971 break;
972 }
973
974 default:
975 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
976 assert(0);
977 return;
978 }
979
980 /* Midgard can perform certain modifiers on output of an ALU op */
981 unsigned outmod;
982
983 if (midgard_is_integer_out_op(op)) {
984 outmod = midgard_outmod_int_wrap;
985 } else {
986 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
987 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
988 }
989
990 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
991
992 if (instr->op == nir_op_fmax) {
993 if (nir_is_fzero_constant(instr->src[0].src)) {
994 op = midgard_alu_op_fmov;
995 nr_inputs = 1;
996 outmod = midgard_outmod_pos;
997 instr->src[0] = instr->src[1];
998 } else if (nir_is_fzero_constant(instr->src[1].src)) {
999 op = midgard_alu_op_fmov;
1000 nr_inputs = 1;
1001 outmod = midgard_outmod_pos;
1002 }
1003 }
1004
1005 /* Fetch unit, quirks, etc information */
1006 unsigned opcode_props = alu_opcode_props[op].props;
1007 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1008
1009 /* src0 will always exist afaik, but src1 will not for 1-argument
1010 * instructions. The latter can only be fetched if the instruction
1011 * needs it, or else we may segfault. */
1012
1013 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1014 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1015
1016 /* Rather than use the instruction generation helpers, we do it
1017 * ourselves here to avoid the mess */
1018
1019 midgard_instruction ins = {
1020 .type = TAG_ALU_4,
1021 .ssa_args = {
1022 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1023 .src1 = quirk_flipped_r24 ? src0 : src1,
1024 .dest = dest,
1025 }
1026 };
1027
1028 nir_alu_src *nirmods[2] = { NULL };
1029
1030 if (nr_inputs == 2) {
1031 nirmods[0] = &instr->src[0];
1032 nirmods[1] = &instr->src[1];
1033 } else if (nr_inputs == 1) {
1034 nirmods[quirk_flipped_r24] = &instr->src[0];
1035 } else {
1036 assert(0);
1037 }
1038
1039 /* These were lowered to a move, so apply the corresponding mod */
1040
1041 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1042 nir_alu_src *s = nirmods[quirk_flipped_r24];
1043
1044 if (instr->op == nir_op_fneg)
1045 s->negate = !s->negate;
1046
1047 if (instr->op == nir_op_fabs)
1048 s->abs = !s->abs;
1049 }
1050
1051 bool is_int = midgard_is_integer_op(op);
1052
1053 ins.mask = mask_of(nr_components);
1054
1055 midgard_vector_alu alu = {
1056 .op = op,
1057 .reg_mode = reg_mode,
1058 .dest_override = dest_override,
1059 .outmod = outmod,
1060
1061 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1062 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1063 };
1064
1065 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1066
1067 if (!is_ssa)
1068 ins.mask &= instr->dest.write_mask;
1069
1070 ins.alu = alu;
1071
1072 /* Late fixup for emulated instructions */
1073
1074 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1075 /* Presently, our second argument is an inline #0 constant.
1076 * Switch over to an embedded 1.0 constant (that can't fit
1077 * inline, since we're 32-bit, not 16-bit like the inline
1078 * constants) */
1079
1080 ins.ssa_args.inline_constant = false;
1081 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1082 ins.has_constants = true;
1083
1084 if (instr->op == nir_op_b2f32) {
1085 ins.constants[0] = 1.0f;
1086 } else {
1087 /* Type pun it into place */
1088 uint32_t one = 0x1;
1089 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1090 }
1091
1092 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1093 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1094 /* Lots of instructions need a 0 plonked in */
1095 ins.ssa_args.inline_constant = false;
1096 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1097 ins.has_constants = true;
1098 ins.constants[0] = 0.0f;
1099 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1100 } else if (instr->op == nir_op_inot) {
1101 ins.invert = true;
1102 }
1103
1104 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1105 /* To avoid duplicating the lookup tables (probably), true LUT
1106 * instructions can only operate as if they were scalars. Lower
1107 * them here by changing the component. */
1108
1109 uint8_t original_swizzle[4];
1110 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1111 unsigned orig_mask = ins.mask;
1112
1113 for (int i = 0; i < nr_components; ++i) {
1114 /* Mask the associated component, dropping the
1115 * instruction if needed */
1116
1117 ins.mask = 1 << i;
1118 ins.mask &= orig_mask;
1119
1120 if (!ins.mask)
1121 continue;
1122
1123 for (int j = 0; j < 4; ++j)
1124 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1125
1126 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, false));
1127 emit_mir_instruction(ctx, ins);
1128 }
1129 } else {
1130 emit_mir_instruction(ctx, ins);
1131 }
1132 }
1133
1134 #undef ALU_CASE
1135
1136 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1137 * optimized) versions of UBO #0 */
1138
1139 void
1140 emit_ubo_read(
1141 compiler_context *ctx,
1142 unsigned dest,
1143 unsigned offset,
1144 nir_src *indirect_offset,
1145 unsigned index)
1146 {
1147 /* TODO: half-floats */
1148
1149 midgard_instruction ins = m_ld_uniform_32(dest, offset);
1150
1151 /* TODO: Don't split */
1152 ins.load_store.varying_parameters = (offset & 7) << 7;
1153 ins.load_store.address = offset >> 3;
1154
1155 if (indirect_offset) {
1156 emit_indirect_offset(ctx, indirect_offset);
1157 ins.load_store.unknown = 0x8700 | index; /* xxx: what is this? */
1158 } else {
1159 ins.load_store.unknown = 0x1E00 | index; /* xxx: what is this? */
1160 }
1161
1162 emit_mir_instruction(ctx, ins);
1163 }
1164
1165 static void
1166 emit_varying_read(
1167 compiler_context *ctx,
1168 unsigned dest, unsigned offset,
1169 unsigned nr_comp, unsigned component,
1170 nir_src *indirect_offset, nir_alu_type type)
1171 {
1172 /* XXX: Half-floats? */
1173 /* TODO: swizzle, mask */
1174
1175 midgard_instruction ins = m_ld_vary_32(dest, offset);
1176 ins.mask = mask_of(nr_comp);
1177 ins.load_store.swizzle = SWIZZLE_XYZW >> (2 * component);
1178
1179 midgard_varying_parameter p = {
1180 .is_varying = 1,
1181 .interpolation = midgard_interp_default,
1182 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1183 };
1184
1185 unsigned u;
1186 memcpy(&u, &p, sizeof(p));
1187 ins.load_store.varying_parameters = u;
1188
1189 if (indirect_offset) {
1190 /* We need to add in the dynamic index, moved to r27.w */
1191 emit_indirect_offset(ctx, indirect_offset);
1192 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1193 } else {
1194 /* Just a direct load */
1195 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1196 }
1197
1198 /* Use the type appropriate load */
1199 switch (type) {
1200 case nir_type_uint:
1201 case nir_type_bool:
1202 ins.load_store.op = midgard_op_ld_vary_32u;
1203 break;
1204 case nir_type_int:
1205 ins.load_store.op = midgard_op_ld_vary_32i;
1206 break;
1207 case nir_type_float:
1208 ins.load_store.op = midgard_op_ld_vary_32;
1209 break;
1210 default:
1211 unreachable("Attempted to load unknown type");
1212 break;
1213 }
1214
1215 emit_mir_instruction(ctx, ins);
1216 }
1217
1218 static void
1219 emit_sysval_read(compiler_context *ctx, nir_instr *instr)
1220 {
1221 unsigned dest = 0;
1222
1223 /* Figure out which uniform this is */
1224 int sysval = sysval_for_instr(ctx, instr, &dest);
1225 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1226
1227 /* Sysvals are prefix uniforms */
1228 unsigned uniform = ((uintptr_t) val) - 1;
1229
1230 /* Emit the read itself -- this is never indirect */
1231 emit_ubo_read(ctx, dest, uniform, NULL, 0);
1232 }
1233
1234 static void
1235 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1236 {
1237 unsigned offset = 0, reg;
1238
1239 switch (instr->intrinsic) {
1240 case nir_intrinsic_discard_if:
1241 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1242
1243 /* fallthrough */
1244
1245 case nir_intrinsic_discard: {
1246 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1247 struct midgard_instruction discard = v_branch(conditional, false);
1248 discard.branch.target_type = TARGET_DISCARD;
1249 emit_mir_instruction(ctx, discard);
1250 break;
1251 }
1252
1253 case nir_intrinsic_load_uniform:
1254 case nir_intrinsic_load_ubo:
1255 case nir_intrinsic_load_input: {
1256 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1257 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1258
1259 /* Get the base type of the intrinsic */
1260 /* TODO: Infer type? Does it matter? */
1261 nir_alu_type t =
1262 is_ubo ? nir_type_uint : nir_intrinsic_type(instr);
1263 t = nir_alu_type_get_base_type(t);
1264
1265 if (!is_ubo) {
1266 offset = nir_intrinsic_base(instr);
1267 }
1268
1269 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1270
1271 nir_src *src_offset = nir_get_io_offset_src(instr);
1272
1273 bool direct = nir_src_is_const(*src_offset);
1274
1275 if (direct)
1276 offset += nir_src_as_uint(*src_offset);
1277
1278 /* We may need to apply a fractional offset */
1279 int component = instr->intrinsic == nir_intrinsic_load_input ?
1280 nir_intrinsic_component(instr) : 0;
1281 reg = nir_dest_index(ctx, &instr->dest);
1282
1283 if (is_uniform && !ctx->is_blend) {
1284 emit_ubo_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL, 0);
1285 } else if (is_ubo) {
1286 nir_src index = instr->src[0];
1287
1288 /* We don't yet support indirect UBOs. For indirect
1289 * block numbers (if that's possible), we don't know
1290 * enough about the hardware yet. For indirect sources,
1291 * we know what we need but we need to add some NIR
1292 * support for lowering correctly with respect to
1293 * 128-bit reads */
1294
1295 assert(nir_src_is_const(index));
1296 assert(nir_src_is_const(*src_offset));
1297
1298 /* TODO: Alignment */
1299 assert((offset & 0xF) == 0);
1300
1301 uint32_t uindex = nir_src_as_uint(index) + 1;
1302 emit_ubo_read(ctx, reg, offset / 16, NULL, uindex);
1303 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1304 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1305 } else if (ctx->is_blend) {
1306 /* For blend shaders, load the input color, which is
1307 * preloaded to r0 */
1308
1309 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), blank_alu_src, reg);
1310 emit_mir_instruction(ctx, move);
1311 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1312 midgard_instruction ins = m_ld_attr_32(reg, offset);
1313 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1314 ins.mask = mask_of(nr_comp);
1315
1316 /* Use the type appropriate load */
1317 switch (t) {
1318 case nir_type_uint:
1319 case nir_type_bool:
1320 ins.load_store.op = midgard_op_ld_attr_32u;
1321 break;
1322 case nir_type_int:
1323 ins.load_store.op = midgard_op_ld_attr_32i;
1324 break;
1325 case nir_type_float:
1326 ins.load_store.op = midgard_op_ld_attr_32;
1327 break;
1328 default:
1329 unreachable("Attempted to load unknown type");
1330 break;
1331 }
1332
1333 emit_mir_instruction(ctx, ins);
1334 } else {
1335 DBG("Unknown load\n");
1336 assert(0);
1337 }
1338
1339 break;
1340 }
1341
1342 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1343
1344 case nir_intrinsic_load_raw_output_pan:
1345 reg = nir_dest_index(ctx, &instr->dest);
1346 assert(ctx->is_blend);
1347
1348 midgard_instruction ins = m_ld_color_buffer_8(reg, 0);
1349 emit_mir_instruction(ctx, ins);
1350 break;
1351
1352 case nir_intrinsic_load_blend_const_color_rgba: {
1353 assert(ctx->is_blend);
1354 reg = nir_dest_index(ctx, &instr->dest);
1355
1356 /* Blend constants are embedded directly in the shader and
1357 * patched in, so we use some magic routing */
1358
1359 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1360 ins.has_constants = true;
1361 ins.has_blend_constant = true;
1362 emit_mir_instruction(ctx, ins);
1363 break;
1364 }
1365
1366 case nir_intrinsic_store_output:
1367 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1368
1369 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1370
1371 reg = nir_src_index(ctx, &instr->src[0]);
1372
1373 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1374 /* gl_FragColor is not emitted with load/store
1375 * instructions. Instead, it gets plonked into
1376 * r0 at the end of the shader and we do the
1377 * framebuffer writeout dance. TODO: Defer
1378 * writes */
1379
1380 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1381 emit_mir_instruction(ctx, move);
1382
1383 /* Save the index we're writing to for later reference
1384 * in the epilogue */
1385
1386 ctx->fragment_output = reg;
1387 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1388 /* We should have been vectorized, though we don't
1389 * currently check that st_vary is emitted only once
1390 * per slot (this is relevant, since there's not a mask
1391 * parameter available on the store [set to 0 by the
1392 * blob]). We do respect the component by adjusting the
1393 * swizzle. If this is a constant source, we'll need to
1394 * emit that explicitly. */
1395
1396 emit_explicit_constant(ctx, reg, reg);
1397
1398 unsigned component = nir_intrinsic_component(instr);
1399
1400 midgard_instruction st = m_st_vary_32(reg, offset);
1401 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1402 st.load_store.swizzle = SWIZZLE_XYZW << (2*component);
1403 emit_mir_instruction(ctx, st);
1404 } else {
1405 DBG("Unknown store\n");
1406 assert(0);
1407 }
1408
1409 break;
1410
1411 /* Special case of store_output for lowered blend shaders */
1412 case nir_intrinsic_store_raw_output_pan:
1413 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1414 reg = nir_src_index(ctx, &instr->src[0]);
1415
1416 midgard_instruction move = v_mov(reg, blank_alu_src, SSA_FIXED_REGISTER(0));
1417 emit_mir_instruction(ctx, move);
1418 ctx->fragment_output = reg;
1419
1420 break;
1421
1422 case nir_intrinsic_load_alpha_ref_float:
1423 assert(instr->dest.is_ssa);
1424
1425 float ref_value = ctx->alpha_ref;
1426
1427 /* See emit_load_const */
1428 float *v = ralloc_array(NULL, float, 4);
1429 memcpy(v, &ref_value, sizeof(float));
1430 _mesa_hash_table_u64_insert(ctx->ssa_constants, (instr->dest.ssa.index << 1) + 1, v);
1431 break;
1432
1433 case nir_intrinsic_load_viewport_scale:
1434 case nir_intrinsic_load_viewport_offset:
1435 emit_sysval_read(ctx, &instr->instr);
1436 break;
1437
1438 default:
1439 printf ("Unhandled intrinsic\n");
1440 assert(0);
1441 break;
1442 }
1443 }
1444
1445 static unsigned
1446 midgard_tex_format(enum glsl_sampler_dim dim)
1447 {
1448 switch (dim) {
1449 case GLSL_SAMPLER_DIM_1D:
1450 case GLSL_SAMPLER_DIM_BUF:
1451 return MALI_TEX_1D;
1452
1453 case GLSL_SAMPLER_DIM_2D:
1454 case GLSL_SAMPLER_DIM_EXTERNAL:
1455 return MALI_TEX_2D;
1456
1457 case GLSL_SAMPLER_DIM_3D:
1458 return MALI_TEX_3D;
1459
1460 case GLSL_SAMPLER_DIM_CUBE:
1461 return MALI_TEX_CUBE;
1462
1463 default:
1464 DBG("Unknown sampler dim type\n");
1465 assert(0);
1466 return 0;
1467 }
1468 }
1469
1470 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1471 * was successful */
1472
1473 static bool
1474 pan_attach_constant_bias(
1475 compiler_context *ctx,
1476 nir_src lod,
1477 midgard_texture_word *word)
1478 {
1479 /* To attach as constant, it has to *be* constant */
1480
1481 if (!nir_src_is_const(lod))
1482 return false;
1483
1484 float f = nir_src_as_float(lod);
1485
1486 /* Break into fixed-point */
1487 signed lod_int = f;
1488 float lod_frac = f - lod_int;
1489
1490 /* Carry over negative fractions */
1491 if (lod_frac < 0.0) {
1492 lod_int--;
1493 lod_frac += 1.0;
1494 }
1495
1496 /* Encode */
1497 word->bias = float_to_ubyte(lod_frac);
1498 word->bias_int = lod_int;
1499
1500 return true;
1501 }
1502
1503 static enum mali_sampler_type
1504 midgard_sampler_type(nir_alu_type t) {
1505 switch (nir_alu_type_get_base_type(t))
1506 {
1507 case nir_type_float:
1508 return MALI_SAMPLER_FLOAT;
1509 case nir_type_int:
1510 return MALI_SAMPLER_SIGNED;
1511 case nir_type_uint:
1512 return MALI_SAMPLER_UNSIGNED;
1513 default:
1514 unreachable("Unknown sampler type");
1515 }
1516 }
1517
1518 static void
1519 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1520 unsigned midgard_texop)
1521 {
1522 /* TODO */
1523 //assert (!instr->sampler);
1524 //assert (!instr->texture_array_size);
1525
1526 int texture_index = instr->texture_index;
1527 int sampler_index = texture_index;
1528
1529 /* No helper to build texture words -- we do it all here */
1530 midgard_instruction ins = {
1531 .type = TAG_TEXTURE_4,
1532 .mask = 0xF,
1533 .ssa_args = {
1534 .dest = nir_dest_index(ctx, &instr->dest),
1535 .src0 = -1,
1536 .src1 = -1,
1537 },
1538 .texture = {
1539 .op = midgard_texop,
1540 .format = midgard_tex_format(instr->sampler_dim),
1541 .texture_handle = texture_index,
1542 .sampler_handle = sampler_index,
1543 .swizzle = SWIZZLE_XYZW,
1544 .in_reg_swizzle = SWIZZLE_XYZW,
1545
1546 /* TODO: half */
1547 .in_reg_full = 1,
1548 .out_full = 1,
1549
1550 .sampler_type = midgard_sampler_type(instr->dest_type),
1551 }
1552 };
1553
1554 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1555 int index = nir_src_index(ctx, &instr->src[i].src);
1556 midgard_vector_alu_src alu_src = blank_alu_src;
1557
1558 switch (instr->src[i].src_type) {
1559 case nir_tex_src_coord: {
1560 emit_explicit_constant(ctx, index, index);
1561
1562 /* Texelfetch coordinates uses all four elements
1563 * (xyz/index) regardless of texture dimensionality,
1564 * which means it's necessary to zero the unused
1565 * components to keep everything happy */
1566
1567 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1568 unsigned old_index = index;
1569
1570 index = make_compiler_temp(ctx);
1571
1572 /* mov index, old_index */
1573 midgard_instruction mov = v_mov(old_index, blank_alu_src, index);
1574 mov.mask = 0x3;
1575 emit_mir_instruction(ctx, mov);
1576
1577 /* mov index.zw, #0 */
1578 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT),
1579 blank_alu_src, index);
1580 mov.has_constants = true;
1581 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1582 emit_mir_instruction(ctx, mov);
1583 }
1584
1585 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1586 /* texelFetch is undefined on samplerCube */
1587 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1588
1589 /* For cubemaps, we use a special ld/st op to
1590 * select the face and copy the xy into the
1591 * texture register */
1592
1593 unsigned temp = make_compiler_temp(ctx);
1594
1595 midgard_instruction st = m_st_cubemap_coords(temp, 0);
1596 st.ssa_args.src0 = index;
1597 st.load_store.unknown = 0x24; /* XXX: What is this? */
1598 st.mask = 0x3; /* xy */
1599 st.load_store.swizzle = alu_src.swizzle;
1600 emit_mir_instruction(ctx, st);
1601
1602 ins.ssa_args.src0 = temp;
1603 } else {
1604 ins.ssa_args.src0 = index;
1605 }
1606
1607 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1608 /* Array component in w but NIR wants it in z */
1609 ins.texture.in_reg_swizzle = SWIZZLE_XYZZ;
1610 }
1611
1612 break;
1613 }
1614
1615 case nir_tex_src_bias:
1616 case nir_tex_src_lod: {
1617 /* Try as a constant if we can */
1618
1619 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1620 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1621 break;
1622
1623 ins.texture.lod_register = true;
1624 ins.ssa_args.src1 = index;
1625 emit_explicit_constant(ctx, index, index);
1626
1627 break;
1628 };
1629
1630 default:
1631 unreachable("Unknown texture source type\n");
1632 }
1633 }
1634
1635 emit_mir_instruction(ctx, ins);
1636
1637 /* Used for .cont and .last hinting */
1638 ctx->texture_op_count++;
1639 }
1640
1641 static void
1642 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1643 {
1644 /* Fixup op, since only textureLod is permitted in VS but NIR can give
1645 * generic tex in some cases (which confuses the hardware) */
1646
1647 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1648
1649 if (is_vertex && instr->op == nir_texop_tex)
1650 instr->op = nir_texop_txl;
1651
1652 switch (instr->op) {
1653 case nir_texop_tex:
1654 case nir_texop_txb:
1655 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1656 break;
1657 case nir_texop_txl:
1658 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1659 break;
1660 case nir_texop_txf:
1661 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1662 break;
1663 case nir_texop_txs:
1664 emit_sysval_read(ctx, &instr->instr);
1665 break;
1666 default:
1667 unreachable("Unhanlded texture op");
1668 }
1669 }
1670
1671 static void
1672 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1673 {
1674 switch (instr->type) {
1675 case nir_jump_break: {
1676 /* Emit a branch out of the loop */
1677 struct midgard_instruction br = v_branch(false, false);
1678 br.branch.target_type = TARGET_BREAK;
1679 br.branch.target_break = ctx->current_loop_depth;
1680 emit_mir_instruction(ctx, br);
1681 break;
1682 }
1683
1684 default:
1685 DBG("Unknown jump type %d\n", instr->type);
1686 break;
1687 }
1688 }
1689
1690 static void
1691 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1692 {
1693 switch (instr->type) {
1694 case nir_instr_type_load_const:
1695 emit_load_const(ctx, nir_instr_as_load_const(instr));
1696 break;
1697
1698 case nir_instr_type_intrinsic:
1699 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1700 break;
1701
1702 case nir_instr_type_alu:
1703 emit_alu(ctx, nir_instr_as_alu(instr));
1704 break;
1705
1706 case nir_instr_type_tex:
1707 emit_tex(ctx, nir_instr_as_tex(instr));
1708 break;
1709
1710 case nir_instr_type_jump:
1711 emit_jump(ctx, nir_instr_as_jump(instr));
1712 break;
1713
1714 case nir_instr_type_ssa_undef:
1715 /* Spurious */
1716 break;
1717
1718 default:
1719 DBG("Unhandled instruction type\n");
1720 break;
1721 }
1722 }
1723
1724
1725 /* ALU instructions can inline or embed constants, which decreases register
1726 * pressure and saves space. */
1727
1728 #define CONDITIONAL_ATTACH(src) { \
1729 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
1730 \
1731 if (entry) { \
1732 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
1733 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1734 } \
1735 }
1736
1737 static void
1738 inline_alu_constants(compiler_context *ctx)
1739 {
1740 mir_foreach_instr(ctx, alu) {
1741 /* Other instructions cannot inline constants */
1742 if (alu->type != TAG_ALU_4) continue;
1743
1744 /* If there is already a constant here, we can do nothing */
1745 if (alu->has_constants) continue;
1746
1747 /* It makes no sense to inline constants on a branch */
1748 if (alu->compact_branch || alu->prepacked_branch) continue;
1749
1750 CONDITIONAL_ATTACH(src0);
1751
1752 if (!alu->has_constants) {
1753 CONDITIONAL_ATTACH(src1)
1754 } else if (!alu->inline_constant) {
1755 /* Corner case: _two_ vec4 constants, for instance with a
1756 * csel. For this case, we can only use a constant
1757 * register for one, we'll have to emit a move for the
1758 * other. Note, if both arguments are constants, then
1759 * necessarily neither argument depends on the value of
1760 * any particular register. As the destination register
1761 * will be wiped, that means we can spill the constant
1762 * to the destination register.
1763 */
1764
1765 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
1766 unsigned scratch = alu->ssa_args.dest;
1767
1768 if (entry) {
1769 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
1770 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
1771
1772 /* Force a break XXX Defer r31 writes */
1773 ins.unit = UNIT_VLUT;
1774
1775 /* Set the source */
1776 alu->ssa_args.src1 = scratch;
1777
1778 /* Inject us -before- the last instruction which set r31 */
1779 mir_insert_instruction_before(mir_prev_op(alu), ins);
1780 }
1781 }
1782 }
1783 }
1784
1785 /* Midgard supports two types of constants, embedded constants (128-bit) and
1786 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1787 * constants can be demoted to inline constants, for space savings and
1788 * sometimes a performance boost */
1789
1790 static void
1791 embedded_to_inline_constant(compiler_context *ctx)
1792 {
1793 mir_foreach_instr(ctx, ins) {
1794 if (!ins->has_constants) continue;
1795
1796 if (ins->ssa_args.inline_constant) continue;
1797
1798 /* Blend constants must not be inlined by definition */
1799 if (ins->has_blend_constant) continue;
1800
1801 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1802 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1803 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1804
1805 if (!(is_16 || is_32))
1806 continue;
1807
1808 /* src1 cannot be an inline constant due to encoding
1809 * restrictions. So, if possible we try to flip the arguments
1810 * in that case */
1811
1812 int op = ins->alu.op;
1813
1814 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1815 switch (op) {
1816 /* These ops require an operational change to flip
1817 * their arguments TODO */
1818 case midgard_alu_op_flt:
1819 case midgard_alu_op_fle:
1820 case midgard_alu_op_ilt:
1821 case midgard_alu_op_ile:
1822 case midgard_alu_op_fcsel:
1823 case midgard_alu_op_icsel:
1824 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
1825 default:
1826 break;
1827 }
1828
1829 if (alu_opcode_props[op].props & OP_COMMUTES) {
1830 /* Flip the SSA numbers */
1831 ins->ssa_args.src0 = ins->ssa_args.src1;
1832 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1833
1834 /* And flip the modifiers */
1835
1836 unsigned src_temp;
1837
1838 src_temp = ins->alu.src2;
1839 ins->alu.src2 = ins->alu.src1;
1840 ins->alu.src1 = src_temp;
1841 }
1842 }
1843
1844 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
1845 /* Extract the source information */
1846
1847 midgard_vector_alu_src *src;
1848 int q = ins->alu.src2;
1849 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
1850 src = m;
1851
1852 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
1853 int component = src->swizzle & 3;
1854
1855 /* Scale constant appropriately, if we can legally */
1856 uint16_t scaled_constant = 0;
1857
1858 if (midgard_is_integer_op(op) || is_16) {
1859 unsigned int *iconstants = (unsigned int *) ins->constants;
1860 scaled_constant = (uint16_t) iconstants[component];
1861
1862 /* Constant overflow after resize */
1863 if (scaled_constant != iconstants[component])
1864 continue;
1865 } else {
1866 float original = (float) ins->constants[component];
1867 scaled_constant = _mesa_float_to_half(original);
1868
1869 /* Check for loss of precision. If this is
1870 * mediump, we don't care, but for a highp
1871 * shader, we need to pay attention. NIR
1872 * doesn't yet tell us which mode we're in!
1873 * Practically this prevents most constants
1874 * from being inlined, sadly. */
1875
1876 float fp32 = _mesa_half_to_float(scaled_constant);
1877
1878 if (fp32 != original)
1879 continue;
1880 }
1881
1882 /* We don't know how to handle these with a constant */
1883
1884 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
1885 DBG("Bailing inline constant...\n");
1886 continue;
1887 }
1888
1889 /* Make sure that the constant is not itself a
1890 * vector by checking if all accessed values
1891 * (by the swizzle) are the same. */
1892
1893 uint32_t *cons = (uint32_t *) ins->constants;
1894 uint32_t value = cons[component];
1895
1896 bool is_vector = false;
1897 unsigned mask = effective_writemask(&ins->alu, ins->mask);
1898
1899 for (int c = 1; c < 4; ++c) {
1900 /* We only care if this component is actually used */
1901 if (!(mask & (1 << c)))
1902 continue;
1903
1904 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
1905
1906 if (test != value) {
1907 is_vector = true;
1908 break;
1909 }
1910 }
1911
1912 if (is_vector)
1913 continue;
1914
1915 /* Get rid of the embedded constant */
1916 ins->has_constants = false;
1917 ins->ssa_args.src1 = SSA_UNUSED_0;
1918 ins->ssa_args.inline_constant = true;
1919 ins->inline_constant = scaled_constant;
1920 }
1921 }
1922 }
1923
1924 /* Dead code elimination for branches at the end of a block - only one branch
1925 * per block is legal semantically */
1926
1927 static void
1928 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
1929 {
1930 bool branched = false;
1931
1932 mir_foreach_instr_in_block_safe(block, ins) {
1933 if (!midgard_is_branch_unit(ins->unit)) continue;
1934
1935 /* We ignore prepacked branches since the fragment epilogue is
1936 * just generally special */
1937 if (ins->prepacked_branch) continue;
1938
1939 /* Discards are similarly special and may not correspond to the
1940 * end of a block */
1941
1942 if (ins->branch.target_type == TARGET_DISCARD) continue;
1943
1944 if (branched) {
1945 /* We already branched, so this is dead */
1946 mir_remove_instruction(ins);
1947 }
1948
1949 branched = true;
1950 }
1951 }
1952
1953 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
1954 * the move can be propagated away entirely */
1955
1956 static bool
1957 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
1958 {
1959 /* Nothing to do */
1960 if (comp == midgard_outmod_none)
1961 return true;
1962
1963 if (*outmod == midgard_outmod_none) {
1964 *outmod = comp;
1965 return true;
1966 }
1967
1968 /* TODO: Compose rules */
1969 return false;
1970 }
1971
1972 static bool
1973 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
1974 {
1975 bool progress = false;
1976
1977 mir_foreach_instr_in_block_safe(block, ins) {
1978 if (ins->type != TAG_ALU_4) continue;
1979 if (ins->alu.op != midgard_alu_op_fmov) continue;
1980 if (ins->alu.outmod != midgard_outmod_pos) continue;
1981
1982 /* TODO: Registers? */
1983 unsigned src = ins->ssa_args.src1;
1984 if (src & IS_REG) continue;
1985 assert(!mir_has_multiple_writes(ctx, src));
1986
1987 /* There might be a source modifier, too */
1988 if (mir_nontrivial_source2_mod(ins)) continue;
1989
1990 /* Backpropagate the modifier */
1991 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
1992 if (v->type != TAG_ALU_4) continue;
1993 if (v->ssa_args.dest != src) continue;
1994
1995 /* Can we even take a float outmod? */
1996 if (midgard_is_integer_out_op(v->alu.op)) continue;
1997
1998 midgard_outmod_float temp = v->alu.outmod;
1999 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2000
2001 /* Throw in the towel.. */
2002 if (!progress) break;
2003
2004 /* Otherwise, transfer the modifier */
2005 v->alu.outmod = temp;
2006 ins->alu.outmod = midgard_outmod_none;
2007
2008 break;
2009 }
2010 }
2011
2012 return progress;
2013 }
2014
2015 static void
2016 emit_fragment_epilogue(compiler_context *ctx)
2017 {
2018 emit_explicit_constant(ctx, ctx->fragment_output, SSA_FIXED_REGISTER(0));
2019
2020 /* Perform the actual fragment writeout. We have two writeout/branch
2021 * instructions, forming a loop until writeout is successful as per the
2022 * docs. TODO: gl_FragDepth */
2023
2024 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
2025 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
2026 }
2027
2028 static midgard_block *
2029 emit_block(compiler_context *ctx, nir_block *block)
2030 {
2031 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
2032 list_addtail(&this_block->link, &ctx->blocks);
2033
2034 this_block->is_scheduled = false;
2035 ++ctx->block_count;
2036
2037 ctx->texture_index[0] = -1;
2038 ctx->texture_index[1] = -1;
2039
2040 /* Add us as a successor to the block we are following */
2041 if (ctx->current_block)
2042 midgard_block_add_successor(ctx->current_block, this_block);
2043
2044 /* Set up current block */
2045 list_inithead(&this_block->instructions);
2046 ctx->current_block = this_block;
2047
2048 nir_foreach_instr(instr, block) {
2049 emit_instr(ctx, instr);
2050 ++ctx->instruction_count;
2051 }
2052
2053 inline_alu_constants(ctx);
2054 embedded_to_inline_constant(ctx);
2055
2056 /* Append fragment shader epilogue (value writeout) */
2057 if (ctx->stage == MESA_SHADER_FRAGMENT) {
2058 if (block == nir_impl_last_block(ctx->func->impl)) {
2059 emit_fragment_epilogue(ctx);
2060 }
2061 }
2062
2063 if (block == nir_start_block(ctx->func->impl))
2064 ctx->initial_block = this_block;
2065
2066 if (block == nir_impl_last_block(ctx->func->impl))
2067 ctx->final_block = this_block;
2068
2069 /* Allow the next control flow to access us retroactively, for
2070 * branching etc */
2071 ctx->current_block = this_block;
2072
2073 /* Document the fallthrough chain */
2074 ctx->previous_source_block = this_block;
2075
2076 return this_block;
2077 }
2078
2079 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2080
2081 static void
2082 emit_if(struct compiler_context *ctx, nir_if *nif)
2083 {
2084 /* Conditional branches expect the condition in r31.w; emit a move for
2085 * that in the _previous_ block (which is the current block). */
2086 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
2087
2088 /* Speculatively emit the branch, but we can't fill it in until later */
2089 EMIT(branch, true, true);
2090 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2091
2092 /* Emit the two subblocks */
2093 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2094
2095 /* Emit a jump from the end of the then block to the end of the else */
2096 EMIT(branch, false, false);
2097 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2098
2099 /* Emit second block, and check if it's empty */
2100
2101 int else_idx = ctx->block_count;
2102 int count_in = ctx->instruction_count;
2103 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2104 int after_else_idx = ctx->block_count;
2105
2106 /* Now that we have the subblocks emitted, fix up the branches */
2107
2108 assert(then_block);
2109 assert(else_block);
2110
2111 if (ctx->instruction_count == count_in) {
2112 /* The else block is empty, so don't emit an exit jump */
2113 mir_remove_instruction(then_exit);
2114 then_branch->branch.target_block = after_else_idx;
2115 } else {
2116 then_branch->branch.target_block = else_idx;
2117 then_exit->branch.target_block = after_else_idx;
2118 }
2119 }
2120
2121 static void
2122 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2123 {
2124 /* Remember where we are */
2125 midgard_block *start_block = ctx->current_block;
2126
2127 /* Allocate a loop number, growing the current inner loop depth */
2128 int loop_idx = ++ctx->current_loop_depth;
2129
2130 /* Get index from before the body so we can loop back later */
2131 int start_idx = ctx->block_count;
2132
2133 /* Emit the body itself */
2134 emit_cf_list(ctx, &nloop->body);
2135
2136 /* Branch back to loop back */
2137 struct midgard_instruction br_back = v_branch(false, false);
2138 br_back.branch.target_block = start_idx;
2139 emit_mir_instruction(ctx, br_back);
2140
2141 /* Mark down that branch in the graph. Note that we're really branching
2142 * to the block *after* we started in. TODO: Why doesn't the branch
2143 * itself have an off-by-one then...? */
2144 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
2145
2146 /* Find the index of the block about to follow us (note: we don't add
2147 * one; blocks are 0-indexed so we get a fencepost problem) */
2148 int break_block_idx = ctx->block_count;
2149
2150 /* Fix up the break statements we emitted to point to the right place,
2151 * now that we can allocate a block number for them */
2152
2153 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2154 mir_foreach_instr_in_block(block, ins) {
2155 if (ins->type != TAG_ALU_4) continue;
2156 if (!ins->compact_branch) continue;
2157 if (ins->prepacked_branch) continue;
2158
2159 /* We found a branch -- check the type to see if we need to do anything */
2160 if (ins->branch.target_type != TARGET_BREAK) continue;
2161
2162 /* It's a break! Check if it's our break */
2163 if (ins->branch.target_break != loop_idx) continue;
2164
2165 /* Okay, cool, we're breaking out of this loop.
2166 * Rewrite from a break to a goto */
2167
2168 ins->branch.target_type = TARGET_GOTO;
2169 ins->branch.target_block = break_block_idx;
2170 }
2171 }
2172
2173 /* Now that we've finished emitting the loop, free up the depth again
2174 * so we play nice with recursion amid nested loops */
2175 --ctx->current_loop_depth;
2176
2177 /* Dump loop stats */
2178 ++ctx->loop_count;
2179 }
2180
2181 static midgard_block *
2182 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2183 {
2184 midgard_block *start_block = NULL;
2185
2186 foreach_list_typed(nir_cf_node, node, node, list) {
2187 switch (node->type) {
2188 case nir_cf_node_block: {
2189 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2190
2191 if (!start_block)
2192 start_block = block;
2193
2194 break;
2195 }
2196
2197 case nir_cf_node_if:
2198 emit_if(ctx, nir_cf_node_as_if(node));
2199 break;
2200
2201 case nir_cf_node_loop:
2202 emit_loop(ctx, nir_cf_node_as_loop(node));
2203 break;
2204
2205 case nir_cf_node_function:
2206 assert(0);
2207 break;
2208 }
2209 }
2210
2211 return start_block;
2212 }
2213
2214 /* Due to lookahead, we need to report the first tag executed in the command
2215 * stream and in branch targets. An initial block might be empty, so iterate
2216 * until we find one that 'works' */
2217
2218 static unsigned
2219 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2220 {
2221 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2222
2223 unsigned first_tag = 0;
2224
2225 do {
2226 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
2227
2228 if (initial_bundle) {
2229 first_tag = initial_bundle->tag;
2230 break;
2231 }
2232
2233 /* Initial block is empty, try the next block */
2234 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
2235 } while(initial_block != NULL);
2236
2237 assert(first_tag);
2238 return first_tag;
2239 }
2240
2241 int
2242 midgard_compile_shader_nir(struct midgard_screen *screen, nir_shader *nir, midgard_program *program, bool is_blend)
2243 {
2244 struct util_dynarray *compiled = &program->compiled;
2245
2246 midgard_debug = debug_get_option_midgard_debug();
2247
2248 compiler_context ictx = {
2249 .nir = nir,
2250 .screen = screen,
2251 .stage = nir->info.stage,
2252 .temp_alloc = 0,
2253
2254 .is_blend = is_blend,
2255 .blend_constant_offset = 0,
2256
2257 .alpha_ref = program->alpha_ref
2258 };
2259
2260 compiler_context *ctx = &ictx;
2261
2262 /* Start off with a safe cutoff, allowing usage of all 16 work
2263 * registers. Later, we'll promote uniform reads to uniform registers
2264 * if we determine it is beneficial to do so */
2265 ctx->uniform_cutoff = 8;
2266
2267 /* Initialize at a global (not block) level hash tables */
2268
2269 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2270 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2271 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2272
2273 /* Record the varying mapping for the command stream's bookkeeping */
2274
2275 struct exec_list *varyings =
2276 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2277
2278 unsigned max_varying = 0;
2279 nir_foreach_variable(var, varyings) {
2280 unsigned loc = var->data.driver_location;
2281 unsigned sz = glsl_type_size(var->type, FALSE);
2282
2283 for (int c = 0; c < sz; ++c) {
2284 program->varyings[loc + c] = var->data.location + c;
2285 max_varying = MAX2(max_varying, loc + c);
2286 }
2287 }
2288
2289 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2290 * (so we don't accidentally duplicate the epilogue since mesa/st has
2291 * messed with our I/O quite a bit already) */
2292
2293 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2294
2295 if (ctx->stage == MESA_SHADER_VERTEX) {
2296 NIR_PASS_V(nir, nir_lower_viewport_transform);
2297 NIR_PASS_V(nir, nir_clamp_psiz, 1.0, 1024.0);
2298 }
2299
2300 NIR_PASS_V(nir, nir_lower_var_copies);
2301 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2302 NIR_PASS_V(nir, nir_split_var_copies);
2303 NIR_PASS_V(nir, nir_lower_var_copies);
2304 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2305 NIR_PASS_V(nir, nir_lower_var_copies);
2306 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2307
2308 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2309
2310 /* Optimisation passes */
2311
2312 optimise_nir(nir);
2313
2314 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2315 nir_print_shader(nir, stdout);
2316 }
2317
2318 /* Assign sysvals and counts, now that we're sure
2319 * (post-optimisation) */
2320
2321 midgard_nir_assign_sysvals(ctx, nir);
2322
2323 program->uniform_count = nir->num_uniforms;
2324 program->sysval_count = ctx->sysval_count;
2325 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2326
2327 nir_foreach_function(func, nir) {
2328 if (!func->impl)
2329 continue;
2330
2331 list_inithead(&ctx->blocks);
2332 ctx->block_count = 0;
2333 ctx->func = func;
2334
2335 emit_cf_list(ctx, &func->impl->body);
2336 emit_block(ctx, func->impl->end_block);
2337
2338 break; /* TODO: Multi-function shaders */
2339 }
2340
2341 util_dynarray_init(compiled, NULL);
2342
2343 /* MIR-level optimizations */
2344
2345 bool progress = false;
2346
2347 do {
2348 progress = false;
2349
2350 mir_foreach_block(ctx, block) {
2351 progress |= midgard_opt_pos_propagate(ctx, block);
2352 progress |= midgard_opt_copy_prop(ctx, block);
2353 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2354 progress |= midgard_opt_combine_projection(ctx, block);
2355 progress |= midgard_opt_varying_projection(ctx, block);
2356 }
2357 } while (progress);
2358
2359 mir_foreach_block(ctx, block) {
2360 midgard_lower_invert(ctx, block);
2361 midgard_lower_derivatives(ctx, block);
2362 }
2363
2364 /* Nested control-flow can result in dead branches at the end of the
2365 * block. This messes with our analysis and is just dead code, so cull
2366 * them */
2367 mir_foreach_block(ctx, block) {
2368 midgard_opt_cull_dead_branch(ctx, block);
2369 }
2370
2371 /* Ensure we were lowered */
2372 mir_foreach_instr_global(ctx, ins) {
2373 assert(!ins->invert);
2374 }
2375
2376 /* Schedule! */
2377 schedule_program(ctx);
2378
2379 /* Now that all the bundles are scheduled and we can calculate block
2380 * sizes, emit actual branch instructions rather than placeholders */
2381
2382 int br_block_idx = 0;
2383
2384 mir_foreach_block(ctx, block) {
2385 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2386 for (int c = 0; c < bundle->instruction_count; ++c) {
2387 midgard_instruction *ins = bundle->instructions[c];
2388
2389 if (!midgard_is_branch_unit(ins->unit)) continue;
2390
2391 if (ins->prepacked_branch) continue;
2392
2393 /* Parse some basic branch info */
2394 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2395 bool is_conditional = ins->branch.conditional;
2396 bool is_inverted = ins->branch.invert_conditional;
2397 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2398
2399 /* Determine the block we're jumping to */
2400 int target_number = ins->branch.target_block;
2401
2402 /* Report the destination tag */
2403 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2404
2405 /* Count up the number of quadwords we're
2406 * jumping over = number of quadwords until
2407 * (br_block_idx, target_number) */
2408
2409 int quadword_offset = 0;
2410
2411 if (is_discard) {
2412 /* Jump to the end of the shader. We
2413 * need to include not only the
2414 * following blocks, but also the
2415 * contents of our current block (since
2416 * discard can come in the middle of
2417 * the block) */
2418
2419 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
2420
2421 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
2422 quadword_offset += quadword_size(bun->tag);
2423 }
2424
2425 mir_foreach_block_from(ctx, blk, b) {
2426 quadword_offset += b->quadword_count;
2427 }
2428
2429 } else if (target_number > br_block_idx) {
2430 /* Jump forward */
2431
2432 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2433 midgard_block *blk = mir_get_block(ctx, idx);
2434 assert(blk);
2435
2436 quadword_offset += blk->quadword_count;
2437 }
2438 } else {
2439 /* Jump backwards */
2440
2441 for (int idx = br_block_idx; idx >= target_number; --idx) {
2442 midgard_block *blk = mir_get_block(ctx, idx);
2443 assert(blk);
2444
2445 quadword_offset -= blk->quadword_count;
2446 }
2447 }
2448
2449 /* Unconditional extended branches (far jumps)
2450 * have issues, so we always use a conditional
2451 * branch, setting the condition to always for
2452 * unconditional. For compact unconditional
2453 * branches, cond isn't used so it doesn't
2454 * matter what we pick. */
2455
2456 midgard_condition cond =
2457 !is_conditional ? midgard_condition_always :
2458 is_inverted ? midgard_condition_false :
2459 midgard_condition_true;
2460
2461 midgard_jmp_writeout_op op =
2462 is_discard ? midgard_jmp_writeout_op_discard :
2463 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2464 midgard_jmp_writeout_op_branch_cond;
2465
2466 if (!is_compact) {
2467 midgard_branch_extended branch =
2468 midgard_create_branch_extended(
2469 cond, op,
2470 dest_tag,
2471 quadword_offset);
2472
2473 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2474 } else if (is_conditional || is_discard) {
2475 midgard_branch_cond branch = {
2476 .op = op,
2477 .dest_tag = dest_tag,
2478 .offset = quadword_offset,
2479 .cond = cond
2480 };
2481
2482 assert(branch.offset == quadword_offset);
2483
2484 memcpy(&ins->br_compact, &branch, sizeof(branch));
2485 } else {
2486 assert(op == midgard_jmp_writeout_op_branch_uncond);
2487
2488 midgard_branch_uncond branch = {
2489 .op = op,
2490 .dest_tag = dest_tag,
2491 .offset = quadword_offset,
2492 .unknown = 1
2493 };
2494
2495 assert(branch.offset == quadword_offset);
2496
2497 memcpy(&ins->br_compact, &branch, sizeof(branch));
2498 }
2499 }
2500 }
2501
2502 ++br_block_idx;
2503 }
2504
2505 /* Emit flat binary from the instruction arrays. Iterate each block in
2506 * sequence. Save instruction boundaries such that lookahead tags can
2507 * be assigned easily */
2508
2509 /* Cache _all_ bundles in source order for lookahead across failed branches */
2510
2511 int bundle_count = 0;
2512 mir_foreach_block(ctx, block) {
2513 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2514 }
2515 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2516 int bundle_idx = 0;
2517 mir_foreach_block(ctx, block) {
2518 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2519 source_order_bundles[bundle_idx++] = bundle;
2520 }
2521 }
2522
2523 int current_bundle = 0;
2524
2525 /* Midgard prefetches instruction types, so during emission we
2526 * need to lookahead. Unless this is the last instruction, in
2527 * which we return 1. Or if this is the second to last and the
2528 * last is an ALU, then it's also 1... */
2529
2530 mir_foreach_block(ctx, block) {
2531 mir_foreach_bundle_in_block(block, bundle) {
2532 int lookahead = 1;
2533
2534 if (current_bundle + 1 < bundle_count) {
2535 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2536
2537 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2538 lookahead = 1;
2539 } else {
2540 lookahead = next;
2541 }
2542 }
2543
2544 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2545 ++current_bundle;
2546 }
2547
2548 /* TODO: Free deeper */
2549 //util_dynarray_fini(&block->instructions);
2550 }
2551
2552 free(source_order_bundles);
2553
2554 /* Report the very first tag executed */
2555 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2556
2557 /* Deal with off-by-one related to the fencepost problem */
2558 program->work_register_count = ctx->work_registers + 1;
2559 program->uniform_cutoff = ctx->uniform_cutoff;
2560
2561 program->blend_patch_offset = ctx->blend_constant_offset;
2562 program->tls_size = ctx->tls_size;
2563
2564 if (midgard_debug & MIDGARD_DBG_SHADERS)
2565 disassemble_midgard(program->compiled.data, program->compiled.size);
2566
2567 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2568 unsigned nr_bundles = 0, nr_ins = 0, nr_quadwords = 0;
2569
2570 /* Count instructions and bundles */
2571
2572 mir_foreach_instr_global(ctx, ins) {
2573 nr_ins++;
2574 }
2575
2576 mir_foreach_block(ctx, block) {
2577 nr_bundles += util_dynarray_num_elements(
2578 &block->bundles, midgard_bundle);
2579
2580 nr_quadwords += block->quadword_count;
2581 }
2582
2583 /* Calculate thread count. There are certain cutoffs by
2584 * register count for thread count */
2585
2586 unsigned nr_registers = program->work_register_count;
2587
2588 unsigned nr_threads =
2589 (nr_registers <= 4) ? 4 :
2590 (nr_registers <= 8) ? 2 :
2591 1;
2592
2593 /* Dump stats */
2594
2595 fprintf(stderr, "shader%d - %s shader: "
2596 "%u inst, %u bundles, %u quadwords, "
2597 "%u registers, %u threads, %u loops, "
2598 "%d:%d spills:fills\n",
2599 SHADER_DB_COUNT++,
2600 gl_shader_stage_name(ctx->stage),
2601 nr_ins, nr_bundles, nr_quadwords,
2602 nr_registers, nr_threads,
2603 ctx->loop_count,
2604 ctx->spills, ctx->fills);
2605 }
2606
2607
2608 return 0;
2609 }