panfrost/midgard: Add 64 bits float <-> int converters
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51 #include "midgard_quirks.h"
52
53 #include "disassemble.h"
54
55 static const struct debug_named_value debug_options[] = {
56 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
57 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
58 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
59 DEBUG_NAMED_VALUE_END
60 };
61
62 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
63
64 unsigned SHADER_DB_COUNT = 0;
65
66 int midgard_debug = 0;
67
68 #define DBG(fmt, ...) \
69 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
70 fprintf(stderr, "%s:%d: "fmt, \
71 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
72 static midgard_block *
73 create_empty_block(compiler_context *ctx)
74 {
75 midgard_block *blk = rzalloc(ctx, midgard_block);
76
77 blk->predecessors = _mesa_set_create(blk,
78 _mesa_hash_pointer,
79 _mesa_key_pointer_equal);
80
81 blk->source_id = ctx->block_source_count++;
82
83 return blk;
84 }
85
86 static void
87 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
88 {
89 assert(block);
90 assert(successor);
91
92 /* Deduplicate */
93 for (unsigned i = 0; i < block->nr_successors; ++i) {
94 if (block->successors[i] == successor)
95 return;
96 }
97
98 block->successors[block->nr_successors++] = successor;
99 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
100
101 /* Note the predecessor in the other direction */
102 _mesa_set_add(successor->predecessors, block);
103 }
104
105 static void
106 schedule_barrier(compiler_context *ctx)
107 {
108 midgard_block *temp = ctx->after_block;
109 ctx->after_block = create_empty_block(ctx);
110 ctx->block_count++;
111 list_addtail(&ctx->after_block->link, &ctx->blocks);
112 list_inithead(&ctx->after_block->instructions);
113 midgard_block_add_successor(ctx->current_block, ctx->after_block);
114 ctx->current_block = ctx->after_block;
115 ctx->after_block = temp;
116 }
117
118 /* Helpers to generate midgard_instruction's using macro magic, since every
119 * driver seems to do it that way */
120
121 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
122
123 #define M_LOAD_STORE(name, store) \
124 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
125 midgard_instruction i = { \
126 .type = TAG_LOAD_STORE_4, \
127 .mask = 0xF, \
128 .dest = ~0, \
129 .src = { ~0, ~0, ~0, ~0 }, \
130 .swizzle = SWIZZLE_IDENTITY_4, \
131 .load_store = { \
132 .op = midgard_op_##name, \
133 .address = address \
134 } \
135 }; \
136 \
137 if (store) \
138 i.src[0] = ssa; \
139 else \
140 i.dest = ssa; \
141 \
142 return i; \
143 }
144
145 #define M_LOAD(name) M_LOAD_STORE(name, false)
146 #define M_STORE(name) M_LOAD_STORE(name, true)
147
148 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
149 * the corresponding Midgard source */
150
151 static midgard_vector_alu_src
152 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
153 bool half, bool sext)
154 {
155 /* Figure out how many components there are so we can adjust.
156 * Specifically we want to broadcast the last channel so things like
157 * ball2/3 work.
158 */
159
160 if (broadcast_count && src) {
161 uint8_t last_component = src->swizzle[broadcast_count - 1];
162
163 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
164 src->swizzle[c] = last_component;
165 }
166 }
167
168 midgard_vector_alu_src alu_src = {
169 .rep_low = 0,
170 .rep_high = 0,
171 .half = half
172 };
173
174 if (is_int) {
175 alu_src.mod = midgard_int_normal;
176
177 /* Sign/zero-extend if needed */
178
179 if (half) {
180 alu_src.mod = sext ?
181 midgard_int_sign_extend
182 : midgard_int_zero_extend;
183 }
184
185 /* These should have been lowered away */
186 if (src)
187 assert(!(src->abs || src->negate));
188 } else {
189 if (src)
190 alu_src.mod = (src->abs << 0) | (src->negate << 1);
191 }
192
193 return alu_src;
194 }
195
196 /* load/store instructions have both 32-bit and 16-bit variants, depending on
197 * whether we are using vectors composed of highp or mediump. At the moment, we
198 * don't support half-floats -- this requires changes in other parts of the
199 * compiler -- therefore the 16-bit versions are commented out. */
200
201 //M_LOAD(ld_attr_16);
202 M_LOAD(ld_attr_32);
203 //M_LOAD(ld_vary_16);
204 M_LOAD(ld_vary_32);
205 M_LOAD(ld_ubo_int4);
206 M_LOAD(ld_int4);
207 M_STORE(st_int4);
208 M_LOAD(ld_color_buffer_32u);
209 //M_STORE(st_vary_16);
210 M_STORE(st_vary_32);
211 M_LOAD(ld_cubemap_coords);
212 M_LOAD(ld_compute_id);
213 M_LOAD(pack_colour);
214
215 static midgard_instruction
216 v_branch(bool conditional, bool invert)
217 {
218 midgard_instruction ins = {
219 .type = TAG_ALU_4,
220 .unit = ALU_ENAB_BRANCH,
221 .compact_branch = true,
222 .branch = {
223 .conditional = conditional,
224 .invert_conditional = invert
225 },
226 .dest = ~0,
227 .src = { ~0, ~0, ~0, ~0 },
228 };
229
230 return ins;
231 }
232
233 static midgard_branch_extended
234 midgard_create_branch_extended( midgard_condition cond,
235 midgard_jmp_writeout_op op,
236 unsigned dest_tag,
237 signed quadword_offset)
238 {
239 /* The condition code is actually a LUT describing a function to
240 * combine multiple condition codes. However, we only support a single
241 * condition code at the moment, so we just duplicate over a bunch of
242 * times. */
243
244 uint16_t duplicated_cond =
245 (cond << 14) |
246 (cond << 12) |
247 (cond << 10) |
248 (cond << 8) |
249 (cond << 6) |
250 (cond << 4) |
251 (cond << 2) |
252 (cond << 0);
253
254 midgard_branch_extended branch = {
255 .op = op,
256 .dest_tag = dest_tag,
257 .offset = quadword_offset,
258 .cond = duplicated_cond
259 };
260
261 return branch;
262 }
263
264 static void
265 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
266 {
267 ins->has_constants = true;
268 memcpy(&ins->constants, constants, 16);
269 }
270
271 static int
272 glsl_type_size(const struct glsl_type *type, bool bindless)
273 {
274 return glsl_count_attribute_slots(type, false);
275 }
276
277 /* Lower fdot2 to a vector multiplication followed by channel addition */
278 static void
279 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
280 {
281 if (alu->op != nir_op_fdot2)
282 return;
283
284 b->cursor = nir_before_instr(&alu->instr);
285
286 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
287 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
288
289 nir_ssa_def *product = nir_fmul(b, src0, src1);
290
291 nir_ssa_def *sum = nir_fadd(b,
292 nir_channel(b, product, 0),
293 nir_channel(b, product, 1));
294
295 /* Replace the fdot2 with this sum */
296 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
297 }
298
299 static int
300 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
301 {
302 /* This is way too meta */
303 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
304 unsigned idx_idx = is_store ? 1 : 0;
305
306 nir_src index = instr->src[idx_idx];
307 assert(nir_src_is_const(index));
308 uint32_t uindex = nir_src_as_uint(index);
309
310 return PAN_SYSVAL(SSBO, uindex);
311 }
312
313 static int
314 midgard_sysval_for_sampler(nir_intrinsic_instr *instr)
315 {
316 /* TODO: indirect samplers !!! */
317 nir_src index = instr->src[0];
318 assert(nir_src_is_const(index));
319 uint32_t uindex = nir_src_as_uint(index);
320
321 return PAN_SYSVAL(SAMPLER, uindex);
322 }
323
324 static int
325 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
326 {
327 switch (instr->intrinsic) {
328 case nir_intrinsic_load_viewport_scale:
329 return PAN_SYSVAL_VIEWPORT_SCALE;
330 case nir_intrinsic_load_viewport_offset:
331 return PAN_SYSVAL_VIEWPORT_OFFSET;
332 case nir_intrinsic_load_num_work_groups:
333 return PAN_SYSVAL_NUM_WORK_GROUPS;
334 case nir_intrinsic_load_ssbo:
335 case nir_intrinsic_store_ssbo:
336 return midgard_sysval_for_ssbo(instr);
337 case nir_intrinsic_load_sampler_lod_parameters_pan:
338 return midgard_sysval_for_sampler(instr);
339 default:
340 return ~0;
341 }
342 }
343
344 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
345 unsigned *dest)
346 {
347 nir_intrinsic_instr *intr;
348 nir_dest *dst = NULL;
349 nir_tex_instr *tex;
350 int sysval = -1;
351
352 bool is_store = false;
353
354 switch (instr->type) {
355 case nir_instr_type_intrinsic:
356 intr = nir_instr_as_intrinsic(instr);
357 sysval = midgard_nir_sysval_for_intrinsic(intr);
358 dst = &intr->dest;
359 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
360 break;
361 case nir_instr_type_tex:
362 tex = nir_instr_as_tex(instr);
363 if (tex->op != nir_texop_txs)
364 break;
365
366 sysval = PAN_SYSVAL(TEXTURE_SIZE,
367 PAN_TXS_SYSVAL_ID(tex->texture_index,
368 nir_tex_instr_dest_size(tex) -
369 (tex->is_array ? 1 : 0),
370 tex->is_array));
371 dst = &tex->dest;
372 break;
373 default:
374 break;
375 }
376
377 if (dest && dst && !is_store)
378 *dest = nir_dest_index(ctx, dst);
379
380 return sysval;
381 }
382
383 static void
384 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
385 {
386 int sysval;
387
388 sysval = sysval_for_instr(ctx, instr, NULL);
389 if (sysval < 0)
390 return;
391
392 /* We have a sysval load; check if it's already been assigned */
393
394 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
395 return;
396
397 /* It hasn't -- so assign it now! */
398
399 unsigned id = ctx->sysval_count++;
400 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
401 ctx->sysvals[id] = sysval;
402 }
403
404 static void
405 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
406 {
407 ctx->sysval_count = 0;
408
409 nir_foreach_function(function, shader) {
410 if (!function->impl) continue;
411
412 nir_foreach_block(block, function->impl) {
413 nir_foreach_instr_safe(instr, block) {
414 midgard_nir_assign_sysval_body(ctx, instr);
415 }
416 }
417 }
418 }
419
420 static bool
421 midgard_nir_lower_fdot2(nir_shader *shader)
422 {
423 bool progress = false;
424
425 nir_foreach_function(function, shader) {
426 if (!function->impl) continue;
427
428 nir_builder _b;
429 nir_builder *b = &_b;
430 nir_builder_init(b, function->impl);
431
432 nir_foreach_block(block, function->impl) {
433 nir_foreach_instr_safe(instr, block) {
434 if (instr->type != nir_instr_type_alu) continue;
435
436 nir_alu_instr *alu = nir_instr_as_alu(instr);
437 midgard_nir_lower_fdot2_body(b, alu);
438
439 progress |= true;
440 }
441 }
442
443 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
444
445 }
446
447 return progress;
448 }
449
450 /* Flushes undefined values to zero */
451
452 static void
453 optimise_nir(nir_shader *nir, unsigned quirks)
454 {
455 bool progress;
456 unsigned lower_flrp =
457 (nir->options->lower_flrp16 ? 16 : 0) |
458 (nir->options->lower_flrp32 ? 32 : 0) |
459 (nir->options->lower_flrp64 ? 64 : 0);
460
461 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
462 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
463
464 nir_lower_tex_options lower_tex_options = {
465 .lower_txs_lod = true,
466 .lower_txp = ~0,
467 .lower_tex_without_implicit_lod =
468 (quirks & MIDGARD_EXPLICIT_LOD),
469
470 /* TODO: we have native gradient.. */
471 .lower_txd = true,
472 };
473
474 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
475
476 /* Must lower fdot2 after tex is lowered */
477 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
478
479 /* T720 is broken. */
480
481 if (quirks & MIDGARD_BROKEN_LOD)
482 NIR_PASS_V(nir, midgard_nir_lod_errata);
483
484 do {
485 progress = false;
486
487 NIR_PASS(progress, nir, nir_lower_var_copies);
488 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
489
490 NIR_PASS(progress, nir, nir_copy_prop);
491 NIR_PASS(progress, nir, nir_opt_remove_phis);
492 NIR_PASS(progress, nir, nir_opt_dce);
493 NIR_PASS(progress, nir, nir_opt_dead_cf);
494 NIR_PASS(progress, nir, nir_opt_cse);
495 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
496 NIR_PASS(progress, nir, nir_opt_algebraic);
497 NIR_PASS(progress, nir, nir_opt_constant_folding);
498
499 if (lower_flrp != 0) {
500 bool lower_flrp_progress = false;
501 NIR_PASS(lower_flrp_progress,
502 nir,
503 nir_lower_flrp,
504 lower_flrp,
505 false /* always_precise */,
506 nir->options->lower_ffma);
507 if (lower_flrp_progress) {
508 NIR_PASS(progress, nir,
509 nir_opt_constant_folding);
510 progress = true;
511 }
512
513 /* Nothing should rematerialize any flrps, so we only
514 * need to do this lowering once.
515 */
516 lower_flrp = 0;
517 }
518
519 NIR_PASS(progress, nir, nir_opt_undef);
520 NIR_PASS(progress, nir, nir_undef_to_zero);
521
522 NIR_PASS(progress, nir, nir_opt_loop_unroll,
523 nir_var_shader_in |
524 nir_var_shader_out |
525 nir_var_function_temp);
526
527 NIR_PASS(progress, nir, nir_opt_vectorize);
528 } while (progress);
529
530 /* Must be run at the end to prevent creation of fsin/fcos ops */
531 NIR_PASS(progress, nir, midgard_nir_scale_trig);
532
533 do {
534 progress = false;
535
536 NIR_PASS(progress, nir, nir_opt_dce);
537 NIR_PASS(progress, nir, nir_opt_algebraic);
538 NIR_PASS(progress, nir, nir_opt_constant_folding);
539 NIR_PASS(progress, nir, nir_copy_prop);
540 } while (progress);
541
542 NIR_PASS(progress, nir, nir_opt_algebraic_late);
543
544 /* We implement booleans as 32-bit 0/~0 */
545 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
546
547 /* Now that booleans are lowered, we can run out late opts */
548 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
549
550 /* Lower mods for float ops only. Integer ops don't support modifiers
551 * (saturate doesn't make sense on integers, neg/abs require dedicated
552 * instructions) */
553
554 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
555 NIR_PASS(progress, nir, nir_copy_prop);
556 NIR_PASS(progress, nir, nir_opt_dce);
557
558 /* Take us out of SSA */
559 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
560 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
561
562 /* We are a vector architecture; write combine where possible */
563 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
564 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
565
566 NIR_PASS(progress, nir, nir_opt_dce);
567 }
568
569 /* Do not actually emit a load; instead, cache the constant for inlining */
570
571 static void
572 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
573 {
574 nir_ssa_def def = instr->def;
575
576 midgard_constants *consts = rzalloc(NULL, midgard_constants);
577
578 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
579
580 #define RAW_CONST_COPY(bits) \
581 nir_const_value_to_array(consts->u##bits, instr->value, \
582 instr->def.num_components, u##bits)
583
584 switch (instr->def.bit_size) {
585 case 64:
586 RAW_CONST_COPY(64);
587 break;
588 case 32:
589 RAW_CONST_COPY(32);
590 break;
591 case 16:
592 RAW_CONST_COPY(16);
593 break;
594 case 8:
595 RAW_CONST_COPY(8);
596 break;
597 default:
598 unreachable("Invalid bit_size for load_const instruction\n");
599 }
600
601 /* Shifted for SSA, +1 for off-by-one */
602 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
603 }
604
605 /* Normally constants are embedded implicitly, but for I/O and such we have to
606 * explicitly emit a move with the constant source */
607
608 static void
609 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
610 {
611 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
612
613 if (constant_value) {
614 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
615 attach_constants(ctx, &ins, constant_value, node + 1);
616 emit_mir_instruction(ctx, ins);
617 }
618 }
619
620 static bool
621 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
622 {
623 unsigned comp = src->swizzle[0];
624
625 for (unsigned c = 1; c < nr_components; ++c) {
626 if (src->swizzle[c] != comp)
627 return true;
628 }
629
630 return false;
631 }
632
633 #define ALU_CASE(nir, _op) \
634 case nir_op_##nir: \
635 op = midgard_alu_op_##_op; \
636 assert(src_bitsize == dst_bitsize); \
637 break;
638
639 #define ALU_CASE_BCAST(nir, _op, count) \
640 case nir_op_##nir: \
641 op = midgard_alu_op_##_op; \
642 broadcast_swizzle = count; \
643 assert(src_bitsize == dst_bitsize); \
644 break;
645 static bool
646 nir_is_fzero_constant(nir_src src)
647 {
648 if (!nir_src_is_const(src))
649 return false;
650
651 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
652 if (nir_src_comp_as_float(src, c) != 0.0)
653 return false;
654 }
655
656 return true;
657 }
658
659 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
660 * special treatment override this anyway. */
661
662 static midgard_reg_mode
663 reg_mode_for_nir(nir_alu_instr *instr)
664 {
665 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
666
667 switch (src_bitsize) {
668 case 8:
669 return midgard_reg_mode_8;
670 case 16:
671 return midgard_reg_mode_16;
672 case 32:
673 return midgard_reg_mode_32;
674 case 64:
675 return midgard_reg_mode_64;
676 default:
677 unreachable("Invalid bit size");
678 }
679 }
680
681 static void
682 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
683 {
684 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
685 * is handled elsewhere */
686
687 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
688 midgard_emit_derivatives(ctx, instr);
689 return;
690 }
691
692 bool is_ssa = instr->dest.dest.is_ssa;
693
694 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
695 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
696 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
697
698 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
699 * supported. A few do not and are commented for now. Also, there are a
700 * number of NIR ops which Midgard does not support and need to be
701 * lowered, also TODO. This switch block emits the opcode and calling
702 * convention of the Midgard instruction; actual packing is done in
703 * emit_alu below */
704
705 unsigned op;
706
707 /* Number of components valid to check for the instruction (the rest
708 * will be forced to the last), or 0 to use as-is. Relevant as
709 * ball-type instructions have a channel count in NIR but are all vec4
710 * in Midgard */
711
712 unsigned broadcast_swizzle = 0;
713
714 /* What register mode should we operate in? */
715 midgard_reg_mode reg_mode =
716 reg_mode_for_nir(instr);
717
718 /* Do we need a destination override? Used for inline
719 * type conversion */
720
721 midgard_dest_override dest_override =
722 midgard_dest_override_none;
723
724 /* Should we use a smaller respective source and sign-extend? */
725
726 bool half_1 = false, sext_1 = false;
727 bool half_2 = false, sext_2 = false;
728
729 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
730 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
731
732 switch (instr->op) {
733 ALU_CASE(fadd, fadd);
734 ALU_CASE(fmul, fmul);
735 ALU_CASE(fmin, fmin);
736 ALU_CASE(fmax, fmax);
737 ALU_CASE(imin, imin);
738 ALU_CASE(imax, imax);
739 ALU_CASE(umin, umin);
740 ALU_CASE(umax, umax);
741 ALU_CASE(ffloor, ffloor);
742 ALU_CASE(fround_even, froundeven);
743 ALU_CASE(ftrunc, ftrunc);
744 ALU_CASE(fceil, fceil);
745 ALU_CASE(fdot3, fdot3);
746 ALU_CASE(fdot4, fdot4);
747 ALU_CASE(iadd, iadd);
748 ALU_CASE(isub, isub);
749 ALU_CASE(imul, imul);
750
751 /* Zero shoved as second-arg */
752 ALU_CASE(iabs, iabsdiff);
753
754 ALU_CASE(mov, imov);
755
756 ALU_CASE(feq32, feq);
757 ALU_CASE(fne32, fne);
758 ALU_CASE(flt32, flt);
759 ALU_CASE(ieq32, ieq);
760 ALU_CASE(ine32, ine);
761 ALU_CASE(ilt32, ilt);
762 ALU_CASE(ult32, ult);
763
764 /* We don't have a native b2f32 instruction. Instead, like many
765 * GPUs, we exploit booleans as 0/~0 for false/true, and
766 * correspondingly AND
767 * by 1.0 to do the type conversion. For the moment, prime us
768 * to emit:
769 *
770 * iand [whatever], #0
771 *
772 * At the end of emit_alu (as MIR), we'll fix-up the constant
773 */
774
775 ALU_CASE(b2f32, iand);
776 ALU_CASE(b2i32, iand);
777
778 /* Likewise, we don't have a dedicated f2b32 instruction, but
779 * we can do a "not equal to 0.0" test. */
780
781 ALU_CASE(f2b32, fne);
782 ALU_CASE(i2b32, ine);
783
784 ALU_CASE(frcp, frcp);
785 ALU_CASE(frsq, frsqrt);
786 ALU_CASE(fsqrt, fsqrt);
787 ALU_CASE(fexp2, fexp2);
788 ALU_CASE(flog2, flog2);
789
790 ALU_CASE(f2i64, f2i_rtz);
791 ALU_CASE(f2u64, f2u_rtz);
792 ALU_CASE(i2f64, i2f_rtz);
793 ALU_CASE(u2f64, u2f_rtz);
794
795 ALU_CASE(f2i32, f2i_rtz);
796 ALU_CASE(f2u32, f2u_rtz);
797 ALU_CASE(i2f32, i2f_rtz);
798 ALU_CASE(u2f32, u2f_rtz);
799
800 ALU_CASE(f2i16, f2i_rtz);
801 ALU_CASE(f2u16, f2u_rtz);
802 ALU_CASE(i2f16, i2f_rtz);
803 ALU_CASE(u2f16, u2f_rtz);
804
805 ALU_CASE(fsin, fsin);
806 ALU_CASE(fcos, fcos);
807
808 /* We'll set invert */
809 ALU_CASE(inot, imov);
810 ALU_CASE(iand, iand);
811 ALU_CASE(ior, ior);
812 ALU_CASE(ixor, ixor);
813 ALU_CASE(ishl, ishl);
814 ALU_CASE(ishr, iasr);
815 ALU_CASE(ushr, ilsr);
816
817 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
818 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
819 ALU_CASE(b32all_fequal4, fball_eq);
820
821 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
822 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
823 ALU_CASE(b32any_fnequal4, fbany_neq);
824
825 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
826 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
827 ALU_CASE(b32all_iequal4, iball_eq);
828
829 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
830 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
831 ALU_CASE(b32any_inequal4, ibany_neq);
832
833 /* Source mods will be shoved in later */
834 ALU_CASE(fabs, fmov);
835 ALU_CASE(fneg, fmov);
836 ALU_CASE(fsat, fmov);
837
838 /* For size conversion, we use a move. Ideally though we would squash
839 * these ops together; maybe that has to happen after in NIR as part of
840 * propagation...? An earlier algebraic pass ensured we step down by
841 * only / exactly one size. If stepping down, we use a dest override to
842 * reduce the size; if stepping up, we use a larger-sized move with a
843 * half source and a sign/zero-extension modifier */
844
845 case nir_op_i2i8:
846 case nir_op_i2i16:
847 case nir_op_i2i32:
848 case nir_op_i2i64:
849 /* If we end up upscale, we'll need a sign-extend on the
850 * operand (the second argument) */
851
852 sext_2 = true;
853 /* fallthrough */
854 case nir_op_u2u8:
855 case nir_op_u2u16:
856 case nir_op_u2u32:
857 case nir_op_u2u64:
858 case nir_op_f2f16:
859 case nir_op_f2f32:
860 case nir_op_f2f64: {
861 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
862 instr->op == nir_op_f2f64)
863 op = midgard_alu_op_fmov;
864 else
865 op = midgard_alu_op_imov;
866
867 if (dst_bitsize == (src_bitsize * 2)) {
868 /* Converting up */
869 half_2 = true;
870
871 /* Use a greater register mode */
872 reg_mode++;
873 } else if (src_bitsize == (dst_bitsize * 2)) {
874 /* Converting down */
875 dest_override = midgard_dest_override_lower;
876 }
877
878 break;
879 }
880
881 /* For greater-or-equal, we lower to less-or-equal and flip the
882 * arguments */
883
884 case nir_op_fge:
885 case nir_op_fge32:
886 case nir_op_ige32:
887 case nir_op_uge32: {
888 op =
889 instr->op == nir_op_fge ? midgard_alu_op_fle :
890 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
891 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
892 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
893 0;
894
895 /* Swap via temporary */
896 nir_alu_src temp = instr->src[1];
897 instr->src[1] = instr->src[0];
898 instr->src[0] = temp;
899
900 break;
901 }
902
903 case nir_op_b32csel: {
904 /* Midgard features both fcsel and icsel, depending on
905 * the type of the arguments/output. However, as long
906 * as we're careful we can _always_ use icsel and
907 * _never_ need fcsel, since the latter does additional
908 * floating-point-specific processing whereas the
909 * former just moves bits on the wire. It's not obvious
910 * why these are separate opcodes, save for the ability
911 * to do things like sat/pos/abs/neg for free */
912
913 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
914 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
915
916 /* The condition is the first argument; move the other
917 * arguments up one to be a binary instruction for
918 * Midgard with the condition last */
919
920 nir_alu_src temp = instr->src[2];
921
922 instr->src[2] = instr->src[0];
923 instr->src[0] = instr->src[1];
924 instr->src[1] = temp;
925
926 break;
927 }
928
929 default:
930 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
931 assert(0);
932 return;
933 }
934
935 /* Midgard can perform certain modifiers on output of an ALU op */
936 unsigned outmod;
937
938 if (midgard_is_integer_out_op(op)) {
939 outmod = midgard_outmod_int_wrap;
940 } else {
941 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
942 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
943 }
944
945 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
946
947 if (instr->op == nir_op_fmax) {
948 if (nir_is_fzero_constant(instr->src[0].src)) {
949 op = midgard_alu_op_fmov;
950 nr_inputs = 1;
951 outmod = midgard_outmod_pos;
952 instr->src[0] = instr->src[1];
953 } else if (nir_is_fzero_constant(instr->src[1].src)) {
954 op = midgard_alu_op_fmov;
955 nr_inputs = 1;
956 outmod = midgard_outmod_pos;
957 }
958 }
959
960 /* Fetch unit, quirks, etc information */
961 unsigned opcode_props = alu_opcode_props[op].props;
962 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
963
964 /* src0 will always exist afaik, but src1 will not for 1-argument
965 * instructions. The latter can only be fetched if the instruction
966 * needs it, or else we may segfault. */
967
968 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
969 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
970 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
971 assert(nr_inputs <= 3);
972
973 /* Rather than use the instruction generation helpers, we do it
974 * ourselves here to avoid the mess */
975
976 midgard_instruction ins = {
977 .type = TAG_ALU_4,
978 .src = {
979 quirk_flipped_r24 ? ~0 : src0,
980 quirk_flipped_r24 ? src0 : src1,
981 src2,
982 ~0
983 },
984 .dest = dest,
985 };
986
987 nir_alu_src *nirmods[3] = { NULL };
988
989 if (nr_inputs >= 2) {
990 nirmods[0] = &instr->src[0];
991 nirmods[1] = &instr->src[1];
992 } else if (nr_inputs == 1) {
993 nirmods[quirk_flipped_r24] = &instr->src[0];
994 } else {
995 assert(0);
996 }
997
998 if (nr_inputs == 3)
999 nirmods[2] = &instr->src[2];
1000
1001 /* These were lowered to a move, so apply the corresponding mod */
1002
1003 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1004 nir_alu_src *s = nirmods[quirk_flipped_r24];
1005
1006 if (instr->op == nir_op_fneg)
1007 s->negate = !s->negate;
1008
1009 if (instr->op == nir_op_fabs)
1010 s->abs = !s->abs;
1011 }
1012
1013 bool is_int = midgard_is_integer_op(op);
1014
1015 ins.mask = mask_of(nr_components);
1016
1017 midgard_vector_alu alu = {
1018 .op = op,
1019 .reg_mode = reg_mode,
1020 .dest_override = dest_override,
1021 .outmod = outmod,
1022
1023 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1024 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1025 };
1026
1027 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1028
1029 if (!is_ssa)
1030 ins.mask &= instr->dest.write_mask;
1031
1032 for (unsigned m = 0; m < 3; ++m) {
1033 if (!nirmods[m])
1034 continue;
1035
1036 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
1037 ins.swizzle[m][c] = nirmods[m]->swizzle[c];
1038
1039 /* Replicate. TODO: remove when vec16 lands */
1040 for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
1041 ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
1042 }
1043
1044 if (nr_inputs == 3) {
1045 /* Conditions can't have mods */
1046 assert(!nirmods[2]->abs);
1047 assert(!nirmods[2]->negate);
1048 }
1049
1050 ins.alu = alu;
1051
1052 /* Late fixup for emulated instructions */
1053
1054 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1055 /* Presently, our second argument is an inline #0 constant.
1056 * Switch over to an embedded 1.0 constant (that can't fit
1057 * inline, since we're 32-bit, not 16-bit like the inline
1058 * constants) */
1059
1060 ins.has_inline_constant = false;
1061 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1062 ins.has_constants = true;
1063
1064 if (instr->op == nir_op_b2f32)
1065 ins.constants.f32[0] = 1.0f;
1066 else
1067 ins.constants.i32[0] = 1;
1068
1069 for (unsigned c = 0; c < 16; ++c)
1070 ins.swizzle[1][c] = 0;
1071 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1072 /* Lots of instructions need a 0 plonked in */
1073 ins.has_inline_constant = false;
1074 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1075 ins.has_constants = true;
1076 ins.constants.u32[0] = 0;
1077
1078 for (unsigned c = 0; c < 16; ++c)
1079 ins.swizzle[1][c] = 0;
1080 } else if (instr->op == nir_op_inot) {
1081 ins.invert = true;
1082 }
1083
1084 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1085 /* To avoid duplicating the lookup tables (probably), true LUT
1086 * instructions can only operate as if they were scalars. Lower
1087 * them here by changing the component. */
1088
1089 unsigned orig_mask = ins.mask;
1090
1091 for (int i = 0; i < nr_components; ++i) {
1092 /* Mask the associated component, dropping the
1093 * instruction if needed */
1094
1095 ins.mask = 1 << i;
1096 ins.mask &= orig_mask;
1097
1098 if (!ins.mask)
1099 continue;
1100
1101 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1102 ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
1103
1104 emit_mir_instruction(ctx, ins);
1105 }
1106 } else {
1107 emit_mir_instruction(ctx, ins);
1108 }
1109 }
1110
1111 #undef ALU_CASE
1112
1113 static void
1114 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1115 {
1116 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1117 unsigned nir_mask = 0;
1118 unsigned dsize = 0;
1119
1120 if (is_read) {
1121 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1122 dsize = nir_dest_bit_size(intr->dest);
1123 } else {
1124 nir_mask = nir_intrinsic_write_mask(intr);
1125 dsize = 32;
1126 }
1127
1128 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1129 unsigned bytemask = mir_to_bytemask(mir_mode_for_destsize(dsize), nir_mask);
1130 mir_set_bytemask(ins, bytemask);
1131
1132 if (dsize == 64)
1133 ins->load_64 = true;
1134 }
1135
1136 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1137 * optimized) versions of UBO #0 */
1138
1139 static midgard_instruction *
1140 emit_ubo_read(
1141 compiler_context *ctx,
1142 nir_instr *instr,
1143 unsigned dest,
1144 unsigned offset,
1145 nir_src *indirect_offset,
1146 unsigned indirect_shift,
1147 unsigned index)
1148 {
1149 /* TODO: half-floats */
1150
1151 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1152 ins.constants.u32[0] = offset;
1153
1154 if (instr->type == nir_instr_type_intrinsic)
1155 mir_set_intr_mask(instr, &ins, true);
1156
1157 if (indirect_offset) {
1158 ins.src[2] = nir_src_index(ctx, indirect_offset);
1159 ins.load_store.arg_2 = (indirect_shift << 5);
1160 } else {
1161 ins.load_store.arg_2 = 0x1E;
1162 }
1163
1164 ins.load_store.arg_1 = index;
1165
1166 return emit_mir_instruction(ctx, ins);
1167 }
1168
1169 /* SSBO reads are like UBO reads if you squint */
1170
1171 static void
1172 emit_ssbo_access(
1173 compiler_context *ctx,
1174 nir_instr *instr,
1175 bool is_read,
1176 unsigned srcdest,
1177 unsigned offset,
1178 nir_src *indirect_offset,
1179 unsigned index)
1180 {
1181 /* TODO: types */
1182
1183 midgard_instruction ins;
1184
1185 if (is_read)
1186 ins = m_ld_int4(srcdest, offset);
1187 else
1188 ins = m_st_int4(srcdest, offset);
1189
1190 /* SSBO reads use a generic memory read interface, so we need the
1191 * address of the SSBO as the first argument. This is a sysval. */
1192
1193 unsigned addr = make_compiler_temp(ctx);
1194 emit_sysval_read(ctx, instr, addr, 2);
1195
1196 /* The source array:
1197 *
1198 * src[0] = store ? value : unused
1199 * src[1] = arg_1
1200 * src[2] = arg_2
1201 *
1202 * We would like arg_1 = the address and
1203 * arg_2 = the offset.
1204 */
1205
1206 ins.src[1] = addr;
1207
1208 /* TODO: What is this? It looks superficially like a shift << 5, but
1209 * arg_1 doesn't take a shift Should it be E0 or A0? We also need the
1210 * indirect offset. */
1211
1212 if (indirect_offset) {
1213 ins.load_store.arg_1 |= 0xE0;
1214 ins.src[2] = nir_src_index(ctx, indirect_offset);
1215 } else {
1216 ins.load_store.arg_2 = 0x7E;
1217 }
1218
1219 /* TODO: Bounds check */
1220
1221 /* Finally, we emit the direct offset */
1222
1223 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1224 ins.load_store.address = (offset >> 9);
1225 mir_set_intr_mask(instr, &ins, is_read);
1226
1227 emit_mir_instruction(ctx, ins);
1228 }
1229
1230 static void
1231 emit_varying_read(
1232 compiler_context *ctx,
1233 unsigned dest, unsigned offset,
1234 unsigned nr_comp, unsigned component,
1235 nir_src *indirect_offset, nir_alu_type type, bool flat)
1236 {
1237 /* XXX: Half-floats? */
1238 /* TODO: swizzle, mask */
1239
1240 midgard_instruction ins = m_ld_vary_32(dest, offset);
1241 ins.mask = mask_of(nr_comp);
1242
1243 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1244 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1245
1246 midgard_varying_parameter p = {
1247 .is_varying = 1,
1248 .interpolation = midgard_interp_default,
1249 .flat = flat,
1250 };
1251
1252 unsigned u;
1253 memcpy(&u, &p, sizeof(p));
1254 ins.load_store.varying_parameters = u;
1255
1256 if (indirect_offset)
1257 ins.src[2] = nir_src_index(ctx, indirect_offset);
1258 else
1259 ins.load_store.arg_2 = 0x1E;
1260
1261 ins.load_store.arg_1 = 0x9E;
1262
1263 /* Use the type appropriate load */
1264 switch (type) {
1265 case nir_type_uint:
1266 case nir_type_bool:
1267 ins.load_store.op = midgard_op_ld_vary_32u;
1268 break;
1269 case nir_type_int:
1270 ins.load_store.op = midgard_op_ld_vary_32i;
1271 break;
1272 case nir_type_float:
1273 ins.load_store.op = midgard_op_ld_vary_32;
1274 break;
1275 default:
1276 unreachable("Attempted to load unknown type");
1277 break;
1278 }
1279
1280 emit_mir_instruction(ctx, ins);
1281 }
1282
1283 static void
1284 emit_attr_read(
1285 compiler_context *ctx,
1286 unsigned dest, unsigned offset,
1287 unsigned nr_comp, nir_alu_type t)
1288 {
1289 midgard_instruction ins = m_ld_attr_32(dest, offset);
1290 ins.load_store.arg_1 = 0x1E;
1291 ins.load_store.arg_2 = 0x1E;
1292 ins.mask = mask_of(nr_comp);
1293
1294 /* Use the type appropriate load */
1295 switch (t) {
1296 case nir_type_uint:
1297 case nir_type_bool:
1298 ins.load_store.op = midgard_op_ld_attr_32u;
1299 break;
1300 case nir_type_int:
1301 ins.load_store.op = midgard_op_ld_attr_32i;
1302 break;
1303 case nir_type_float:
1304 ins.load_store.op = midgard_op_ld_attr_32;
1305 break;
1306 default:
1307 unreachable("Attempted to load unknown type");
1308 break;
1309 }
1310
1311 emit_mir_instruction(ctx, ins);
1312 }
1313
1314 void
1315 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1316 unsigned nr_components)
1317 {
1318 unsigned dest = 0;
1319
1320 /* Figure out which uniform this is */
1321 int sysval = sysval_for_instr(ctx, instr, &dest);
1322 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1323
1324 if (dest_override >= 0)
1325 dest = dest_override;
1326
1327 /* Sysvals are prefix uniforms */
1328 unsigned uniform = ((uintptr_t) val) - 1;
1329
1330 /* Emit the read itself -- this is never indirect */
1331 midgard_instruction *ins =
1332 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0, 0);
1333
1334 ins->mask = mask_of(nr_components);
1335 }
1336
1337 static unsigned
1338 compute_builtin_arg(nir_op op)
1339 {
1340 switch (op) {
1341 case nir_intrinsic_load_work_group_id:
1342 return 0x14;
1343 case nir_intrinsic_load_local_invocation_id:
1344 return 0x10;
1345 default:
1346 unreachable("Invalid compute paramater loaded");
1347 }
1348 }
1349
1350 static void
1351 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1352 {
1353 emit_explicit_constant(ctx, src, src);
1354
1355 struct midgard_instruction ins =
1356 v_branch(false, false);
1357
1358 ins.writeout = true;
1359
1360 /* Add dependencies */
1361 ins.src[0] = src;
1362 ins.constants.u32[0] = rt * 0x100;
1363
1364 /* Emit the branch */
1365 midgard_instruction *br = emit_mir_instruction(ctx, ins);
1366 schedule_barrier(ctx);
1367
1368 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1369 assert(!ctx->writeout_branch[rt]);
1370 ctx->writeout_branch[rt] = br;
1371
1372 /* Push our current location = current block count - 1 = where we'll
1373 * jump to. Maybe a bit too clever for my own good */
1374
1375 br->branch.target_block = ctx->block_count - 1;
1376 }
1377
1378 static void
1379 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1380 {
1381 unsigned reg = nir_dest_index(ctx, &instr->dest);
1382 midgard_instruction ins = m_ld_compute_id(reg, 0);
1383 ins.mask = mask_of(3);
1384 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1385 emit_mir_instruction(ctx, ins);
1386 }
1387
1388 static unsigned
1389 vertex_builtin_arg(nir_op op)
1390 {
1391 switch (op) {
1392 case nir_intrinsic_load_vertex_id:
1393 return PAN_VERTEX_ID;
1394 case nir_intrinsic_load_instance_id:
1395 return PAN_INSTANCE_ID;
1396 default:
1397 unreachable("Invalid vertex builtin");
1398 }
1399 }
1400
1401 static void
1402 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1403 {
1404 unsigned reg = nir_dest_index(ctx, &instr->dest);
1405 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1406 }
1407
1408 static void
1409 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1410 {
1411 unsigned offset = 0, reg;
1412
1413 switch (instr->intrinsic) {
1414 case nir_intrinsic_discard_if:
1415 case nir_intrinsic_discard: {
1416 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1417 struct midgard_instruction discard = v_branch(conditional, false);
1418 discard.branch.target_type = TARGET_DISCARD;
1419
1420 if (conditional)
1421 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1422
1423 emit_mir_instruction(ctx, discard);
1424 schedule_barrier(ctx);
1425
1426 break;
1427 }
1428
1429 case nir_intrinsic_load_uniform:
1430 case nir_intrinsic_load_ubo:
1431 case nir_intrinsic_load_ssbo:
1432 case nir_intrinsic_load_input:
1433 case nir_intrinsic_load_interpolated_input: {
1434 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1435 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1436 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1437 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1438 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1439
1440 /* Get the base type of the intrinsic */
1441 /* TODO: Infer type? Does it matter? */
1442 nir_alu_type t =
1443 (is_ubo || is_ssbo) ? nir_type_uint :
1444 (is_interp) ? nir_type_float :
1445 nir_intrinsic_type(instr);
1446
1447 t = nir_alu_type_get_base_type(t);
1448
1449 if (!(is_ubo || is_ssbo)) {
1450 offset = nir_intrinsic_base(instr);
1451 }
1452
1453 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1454
1455 nir_src *src_offset = nir_get_io_offset_src(instr);
1456
1457 bool direct = nir_src_is_const(*src_offset);
1458 nir_src *indirect_offset = direct ? NULL : src_offset;
1459
1460 if (direct)
1461 offset += nir_src_as_uint(*src_offset);
1462
1463 /* We may need to apply a fractional offset */
1464 int component = (is_flat || is_interp) ?
1465 nir_intrinsic_component(instr) : 0;
1466 reg = nir_dest_index(ctx, &instr->dest);
1467
1468 if (is_uniform && !ctx->is_blend) {
1469 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 4, 0);
1470 } else if (is_ubo) {
1471 nir_src index = instr->src[0];
1472
1473 /* TODO: Is indirect block number possible? */
1474 assert(nir_src_is_const(index));
1475
1476 uint32_t uindex = nir_src_as_uint(index) + 1;
1477 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1478 } else if (is_ssbo) {
1479 nir_src index = instr->src[0];
1480 assert(nir_src_is_const(index));
1481 uint32_t uindex = nir_src_as_uint(index);
1482
1483 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1484 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1485 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t, is_flat);
1486 } else if (ctx->is_blend) {
1487 /* For blend shaders, load the input color, which is
1488 * preloaded to r0 */
1489
1490 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1491 emit_mir_instruction(ctx, move);
1492 schedule_barrier(ctx);
1493 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1494 emit_attr_read(ctx, reg, offset, nr_comp, t);
1495 } else {
1496 DBG("Unknown load\n");
1497 assert(0);
1498 }
1499
1500 break;
1501 }
1502
1503 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1504 case nir_intrinsic_load_barycentric_pixel:
1505 break;
1506
1507 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1508
1509 case nir_intrinsic_load_raw_output_pan:
1510 case nir_intrinsic_load_output_u8_as_fp16_pan:
1511 reg = nir_dest_index(ctx, &instr->dest);
1512 assert(ctx->is_blend);
1513
1514 /* T720 and below use different blend opcodes with slightly
1515 * different semantics than T760 and up */
1516
1517 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1518 bool old_blend = ctx->quirks & MIDGARD_OLD_BLEND;
1519
1520 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1521 ld.load_store.op = old_blend ?
1522 midgard_op_ld_color_buffer_u8_as_fp16_old :
1523 midgard_op_ld_color_buffer_u8_as_fp16;
1524
1525 if (old_blend) {
1526 ld.load_store.address = 1;
1527 ld.load_store.arg_2 = 0x1E;
1528 }
1529
1530 for (unsigned c = 2; c < 16; ++c)
1531 ld.swizzle[0][c] = 0;
1532 }
1533
1534 emit_mir_instruction(ctx, ld);
1535 break;
1536
1537 case nir_intrinsic_load_blend_const_color_rgba: {
1538 assert(ctx->is_blend);
1539 reg = nir_dest_index(ctx, &instr->dest);
1540
1541 /* Blend constants are embedded directly in the shader and
1542 * patched in, so we use some magic routing */
1543
1544 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1545 ins.has_constants = true;
1546 ins.has_blend_constant = true;
1547 emit_mir_instruction(ctx, ins);
1548 break;
1549 }
1550
1551 case nir_intrinsic_store_output:
1552 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1553
1554 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1555
1556 reg = nir_src_index(ctx, &instr->src[0]);
1557
1558 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1559 emit_fragment_store(ctx, reg, offset);
1560 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1561 /* We should have been vectorized, though we don't
1562 * currently check that st_vary is emitted only once
1563 * per slot (this is relevant, since there's not a mask
1564 * parameter available on the store [set to 0 by the
1565 * blob]). We do respect the component by adjusting the
1566 * swizzle. If this is a constant source, we'll need to
1567 * emit that explicitly. */
1568
1569 emit_explicit_constant(ctx, reg, reg);
1570
1571 unsigned dst_component = nir_intrinsic_component(instr);
1572 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1573
1574 midgard_instruction st = m_st_vary_32(reg, offset);
1575 st.load_store.arg_1 = 0x9E;
1576 st.load_store.arg_2 = 0x1E;
1577
1578 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1579 case nir_type_uint:
1580 case nir_type_bool:
1581 st.load_store.op = midgard_op_st_vary_32u;
1582 break;
1583 case nir_type_int:
1584 st.load_store.op = midgard_op_st_vary_32i;
1585 break;
1586 case nir_type_float:
1587 st.load_store.op = midgard_op_st_vary_32;
1588 break;
1589 default:
1590 unreachable("Attempted to store unknown type");
1591 break;
1592 }
1593
1594 /* nir_intrinsic_component(store_intr) encodes the
1595 * destination component start. Source component offset
1596 * adjustment is taken care of in
1597 * install_registers_instr(), when offset_swizzle() is
1598 * called.
1599 */
1600 unsigned src_component = COMPONENT_X;
1601
1602 assert(nr_comp > 0);
1603 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1604 st.swizzle[0][i] = src_component;
1605 if (i >= dst_component && i < dst_component + nr_comp - 1)
1606 src_component++;
1607 }
1608
1609 emit_mir_instruction(ctx, st);
1610 } else {
1611 DBG("Unknown store\n");
1612 assert(0);
1613 }
1614
1615 break;
1616
1617 /* Special case of store_output for lowered blend shaders */
1618 case nir_intrinsic_store_raw_output_pan:
1619 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1620 reg = nir_src_index(ctx, &instr->src[0]);
1621
1622 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1623 /* Suppose reg = qr0.xyzw. That means 4 8-bit ---> 1 32-bit. So
1624 * reg = r0.x. We want to splatter. So we can do a 32-bit move
1625 * of:
1626 *
1627 * imov r0.xyzw, r0.xxxx
1628 */
1629
1630 unsigned expanded = make_compiler_temp(ctx);
1631
1632 midgard_instruction splatter = v_mov(reg, expanded);
1633
1634 for (unsigned c = 0; c < 16; ++c)
1635 splatter.swizzle[1][c] = 0;
1636
1637 emit_mir_instruction(ctx, splatter);
1638 emit_fragment_store(ctx, expanded, ctx->blend_rt);
1639 } else
1640 emit_fragment_store(ctx, reg, ctx->blend_rt);
1641
1642 break;
1643
1644 case nir_intrinsic_store_ssbo:
1645 assert(nir_src_is_const(instr->src[1]));
1646
1647 bool direct_offset = nir_src_is_const(instr->src[2]);
1648 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1649 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1650 reg = nir_src_index(ctx, &instr->src[0]);
1651
1652 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1653
1654 emit_explicit_constant(ctx, reg, reg);
1655 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1656 break;
1657
1658 case nir_intrinsic_load_viewport_scale:
1659 case nir_intrinsic_load_viewport_offset:
1660 case nir_intrinsic_load_num_work_groups:
1661 case nir_intrinsic_load_sampler_lod_parameters_pan:
1662 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1663 break;
1664
1665 case nir_intrinsic_load_work_group_id:
1666 case nir_intrinsic_load_local_invocation_id:
1667 emit_compute_builtin(ctx, instr);
1668 break;
1669
1670 case nir_intrinsic_load_vertex_id:
1671 case nir_intrinsic_load_instance_id:
1672 emit_vertex_builtin(ctx, instr);
1673 break;
1674
1675 default:
1676 printf ("Unhandled intrinsic\n");
1677 assert(0);
1678 break;
1679 }
1680 }
1681
1682 static unsigned
1683 midgard_tex_format(enum glsl_sampler_dim dim)
1684 {
1685 switch (dim) {
1686 case GLSL_SAMPLER_DIM_1D:
1687 case GLSL_SAMPLER_DIM_BUF:
1688 return MALI_TEX_1D;
1689
1690 case GLSL_SAMPLER_DIM_2D:
1691 case GLSL_SAMPLER_DIM_EXTERNAL:
1692 case GLSL_SAMPLER_DIM_RECT:
1693 return MALI_TEX_2D;
1694
1695 case GLSL_SAMPLER_DIM_3D:
1696 return MALI_TEX_3D;
1697
1698 case GLSL_SAMPLER_DIM_CUBE:
1699 return MALI_TEX_CUBE;
1700
1701 default:
1702 DBG("Unknown sampler dim type\n");
1703 assert(0);
1704 return 0;
1705 }
1706 }
1707
1708 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1709 * was successful */
1710
1711 static bool
1712 pan_attach_constant_bias(
1713 compiler_context *ctx,
1714 nir_src lod,
1715 midgard_texture_word *word)
1716 {
1717 /* To attach as constant, it has to *be* constant */
1718
1719 if (!nir_src_is_const(lod))
1720 return false;
1721
1722 float f = nir_src_as_float(lod);
1723
1724 /* Break into fixed-point */
1725 signed lod_int = f;
1726 float lod_frac = f - lod_int;
1727
1728 /* Carry over negative fractions */
1729 if (lod_frac < 0.0) {
1730 lod_int--;
1731 lod_frac += 1.0;
1732 }
1733
1734 /* Encode */
1735 word->bias = float_to_ubyte(lod_frac);
1736 word->bias_int = lod_int;
1737
1738 return true;
1739 }
1740
1741 static enum mali_sampler_type
1742 midgard_sampler_type(nir_alu_type t) {
1743 switch (nir_alu_type_get_base_type(t))
1744 {
1745 case nir_type_float:
1746 return MALI_SAMPLER_FLOAT;
1747 case nir_type_int:
1748 return MALI_SAMPLER_SIGNED;
1749 case nir_type_uint:
1750 return MALI_SAMPLER_UNSIGNED;
1751 default:
1752 unreachable("Unknown sampler type");
1753 }
1754 }
1755
1756 static void
1757 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1758 unsigned midgard_texop)
1759 {
1760 /* TODO */
1761 //assert (!instr->sampler);
1762 //assert (!instr->texture_array_size);
1763
1764 int texture_index = instr->texture_index;
1765 int sampler_index = texture_index;
1766
1767 /* No helper to build texture words -- we do it all here */
1768 midgard_instruction ins = {
1769 .type = TAG_TEXTURE_4,
1770 .mask = 0xF,
1771 .dest = nir_dest_index(ctx, &instr->dest),
1772 .src = { ~0, ~0, ~0, ~0 },
1773 .swizzle = SWIZZLE_IDENTITY_4,
1774 .texture = {
1775 .op = midgard_texop,
1776 .format = midgard_tex_format(instr->sampler_dim),
1777 .texture_handle = texture_index,
1778 .sampler_handle = sampler_index,
1779
1780 /* TODO: half */
1781 .in_reg_full = 1,
1782 .out_full = 1,
1783
1784 .sampler_type = midgard_sampler_type(instr->dest_type),
1785 .shadow = instr->is_shadow,
1786 }
1787 };
1788
1789 /* We may need a temporary for the coordinate */
1790
1791 bool needs_temp_coord =
1792 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
1793 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
1794 (instr->is_shadow);
1795
1796 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
1797
1798 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1799 int index = nir_src_index(ctx, &instr->src[i].src);
1800 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1801
1802 switch (instr->src[i].src_type) {
1803 case nir_tex_src_coord: {
1804 emit_explicit_constant(ctx, index, index);
1805
1806 unsigned coord_mask = mask_of(instr->coord_components);
1807
1808 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
1809
1810 if (flip_zw)
1811 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
1812
1813 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1814 /* texelFetch is undefined on samplerCube */
1815 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1816
1817 /* For cubemaps, we use a special ld/st op to
1818 * select the face and copy the xy into the
1819 * texture register */
1820
1821 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
1822 ld.src[1] = index;
1823 ld.mask = 0x3; /* xy */
1824 ld.load_store.arg_1 = 0x20;
1825 ld.swizzle[1][3] = COMPONENT_X;
1826 emit_mir_instruction(ctx, ld);
1827
1828 /* xyzw -> xyxx */
1829 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1830 ins.swizzle[1][3] = COMPONENT_X;
1831 } else if (needs_temp_coord) {
1832 /* mov coord_temp, coords */
1833 midgard_instruction mov = v_mov(index, coords);
1834 mov.mask = coord_mask;
1835
1836 if (flip_zw)
1837 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
1838
1839 emit_mir_instruction(ctx, mov);
1840 } else {
1841 coords = index;
1842 }
1843
1844 ins.src[1] = coords;
1845
1846 /* Texelfetch coordinates uses all four elements
1847 * (xyz/index) regardless of texture dimensionality,
1848 * which means it's necessary to zero the unused
1849 * components to keep everything happy */
1850
1851 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1852 /* mov index.zw, #0, or generalized */
1853 midgard_instruction mov =
1854 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
1855 mov.has_constants = true;
1856 mov.mask = coord_mask ^ 0xF;
1857 emit_mir_instruction(ctx, mov);
1858 }
1859
1860 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1861 /* Array component in w but NIR wants it in z,
1862 * but if we have a temp coord we already fixed
1863 * that up */
1864
1865 if (nr_components == 3) {
1866 ins.swizzle[1][2] = COMPONENT_Z;
1867 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
1868 } else if (nr_components == 2) {
1869 ins.swizzle[1][2] =
1870 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1871 ins.swizzle[1][3] = COMPONENT_X;
1872 } else
1873 unreachable("Invalid texture 2D components");
1874 }
1875
1876 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1877 /* We zeroed */
1878 ins.swizzle[1][2] = COMPONENT_Z;
1879 ins.swizzle[1][3] = COMPONENT_W;
1880 }
1881
1882 break;
1883 }
1884
1885 case nir_tex_src_bias:
1886 case nir_tex_src_lod: {
1887 /* Try as a constant if we can */
1888
1889 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1890 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1891 break;
1892
1893 ins.texture.lod_register = true;
1894 ins.src[2] = index;
1895
1896 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1897 ins.swizzle[2][c] = COMPONENT_X;
1898
1899 emit_explicit_constant(ctx, index, index);
1900
1901 break;
1902 };
1903
1904 case nir_tex_src_offset: {
1905 ins.texture.offset_register = true;
1906 ins.src[3] = index;
1907
1908 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1909 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
1910
1911 emit_explicit_constant(ctx, index, index);
1912 break;
1913 };
1914
1915 case nir_tex_src_comparator: {
1916 unsigned comp = COMPONENT_Z;
1917
1918 /* mov coord_temp.foo, coords */
1919 midgard_instruction mov = v_mov(index, coords);
1920 mov.mask = 1 << comp;
1921
1922 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
1923 mov.swizzle[1][i] = COMPONENT_X;
1924
1925 emit_mir_instruction(ctx, mov);
1926 break;
1927 }
1928
1929 default:
1930 unreachable("Unknown texture source type\n");
1931 }
1932 }
1933
1934 emit_mir_instruction(ctx, ins);
1935
1936 /* Used for .cont and .last hinting */
1937 ctx->texture_op_count++;
1938 }
1939
1940 static void
1941 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1942 {
1943 switch (instr->op) {
1944 case nir_texop_tex:
1945 case nir_texop_txb:
1946 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1947 break;
1948 case nir_texop_txl:
1949 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1950 break;
1951 case nir_texop_txf:
1952 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1953 break;
1954 case nir_texop_txs:
1955 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1956 break;
1957 default:
1958 unreachable("Unhanlded texture op");
1959 }
1960 }
1961
1962 static void
1963 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1964 {
1965 switch (instr->type) {
1966 case nir_jump_break: {
1967 /* Emit a branch out of the loop */
1968 struct midgard_instruction br = v_branch(false, false);
1969 br.branch.target_type = TARGET_BREAK;
1970 br.branch.target_break = ctx->current_loop_depth;
1971 emit_mir_instruction(ctx, br);
1972 break;
1973 }
1974
1975 default:
1976 DBG("Unknown jump type %d\n", instr->type);
1977 break;
1978 }
1979 }
1980
1981 static void
1982 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1983 {
1984 switch (instr->type) {
1985 case nir_instr_type_load_const:
1986 emit_load_const(ctx, nir_instr_as_load_const(instr));
1987 break;
1988
1989 case nir_instr_type_intrinsic:
1990 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1991 break;
1992
1993 case nir_instr_type_alu:
1994 emit_alu(ctx, nir_instr_as_alu(instr));
1995 break;
1996
1997 case nir_instr_type_tex:
1998 emit_tex(ctx, nir_instr_as_tex(instr));
1999 break;
2000
2001 case nir_instr_type_jump:
2002 emit_jump(ctx, nir_instr_as_jump(instr));
2003 break;
2004
2005 case nir_instr_type_ssa_undef:
2006 /* Spurious */
2007 break;
2008
2009 default:
2010 DBG("Unhandled instruction type\n");
2011 break;
2012 }
2013 }
2014
2015
2016 /* ALU instructions can inline or embed constants, which decreases register
2017 * pressure and saves space. */
2018
2019 #define CONDITIONAL_ATTACH(idx) { \
2020 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2021 \
2022 if (entry) { \
2023 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2024 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2025 } \
2026 }
2027
2028 static void
2029 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2030 {
2031 mir_foreach_instr_in_block(block, alu) {
2032 /* Other instructions cannot inline constants */
2033 if (alu->type != TAG_ALU_4) continue;
2034 if (alu->compact_branch) continue;
2035
2036 /* If there is already a constant here, we can do nothing */
2037 if (alu->has_constants) continue;
2038
2039 CONDITIONAL_ATTACH(0);
2040
2041 if (!alu->has_constants) {
2042 CONDITIONAL_ATTACH(1)
2043 } else if (!alu->inline_constant) {
2044 /* Corner case: _two_ vec4 constants, for instance with a
2045 * csel. For this case, we can only use a constant
2046 * register for one, we'll have to emit a move for the
2047 * other. Note, if both arguments are constants, then
2048 * necessarily neither argument depends on the value of
2049 * any particular register. As the destination register
2050 * will be wiped, that means we can spill the constant
2051 * to the destination register.
2052 */
2053
2054 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2055 unsigned scratch = alu->dest;
2056
2057 if (entry) {
2058 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2059 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2060
2061 /* Set the source */
2062 alu->src[1] = scratch;
2063
2064 /* Inject us -before- the last instruction which set r31 */
2065 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2066 }
2067 }
2068 }
2069 }
2070
2071 /* Being a little silly with the names, but returns the op that is the bitwise
2072 * inverse of the op with the argument switched. I.e. (f and g are
2073 * contrapositives):
2074 *
2075 * f(a, b) = ~g(b, a)
2076 *
2077 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
2078 *
2079 * f(a, b) = ~g(b, a)
2080 * ~f(a, b) = g(b, a)
2081 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
2082 * f(a, b) = h(a, b)
2083 *
2084 * Thus we define this function in pairs.
2085 */
2086
2087 static inline midgard_alu_op
2088 mir_contrapositive(midgard_alu_op op)
2089 {
2090 switch (op) {
2091 case midgard_alu_op_flt:
2092 return midgard_alu_op_fle;
2093 case midgard_alu_op_fle:
2094 return midgard_alu_op_flt;
2095
2096 case midgard_alu_op_ilt:
2097 return midgard_alu_op_ile;
2098 case midgard_alu_op_ile:
2099 return midgard_alu_op_ilt;
2100
2101 default:
2102 unreachable("No known contrapositive");
2103 }
2104 }
2105
2106 /* Midgard supports two types of constants, embedded constants (128-bit) and
2107 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2108 * constants can be demoted to inline constants, for space savings and
2109 * sometimes a performance boost */
2110
2111 static void
2112 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2113 {
2114 mir_foreach_instr_in_block(block, ins) {
2115 if (!ins->has_constants) continue;
2116 if (ins->has_inline_constant) continue;
2117
2118 /* Blend constants must not be inlined by definition */
2119 if (ins->has_blend_constant) continue;
2120
2121 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2122 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2123 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2124
2125 if (!(is_16 || is_32))
2126 continue;
2127
2128 /* src1 cannot be an inline constant due to encoding
2129 * restrictions. So, if possible we try to flip the arguments
2130 * in that case */
2131
2132 int op = ins->alu.op;
2133
2134 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2135 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2136
2137 switch (op) {
2138 /* Conditionals can be inverted */
2139 case midgard_alu_op_flt:
2140 case midgard_alu_op_ilt:
2141 case midgard_alu_op_fle:
2142 case midgard_alu_op_ile:
2143 ins->alu.op = mir_contrapositive(ins->alu.op);
2144 ins->invert = true;
2145 flip = true;
2146 break;
2147
2148 case midgard_alu_op_fcsel:
2149 case midgard_alu_op_icsel:
2150 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2151 default:
2152 break;
2153 }
2154
2155 if (flip)
2156 mir_flip(ins);
2157 }
2158
2159 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2160 /* Extract the source information */
2161
2162 midgard_vector_alu_src *src;
2163 int q = ins->alu.src2;
2164 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2165 src = m;
2166
2167 /* Component is from the swizzle. Take a nonzero component */
2168 assert(ins->mask);
2169 unsigned first_comp = ffs(ins->mask) - 1;
2170 unsigned component = ins->swizzle[1][first_comp];
2171
2172 /* Scale constant appropriately, if we can legally */
2173 uint16_t scaled_constant = 0;
2174
2175 if (is_16) {
2176 scaled_constant = ins->constants.u16[component];
2177 } else if (midgard_is_integer_op(op)) {
2178 scaled_constant = ins->constants.u32[component];
2179
2180 /* Constant overflow after resize */
2181 if (scaled_constant != ins->constants.u32[component])
2182 continue;
2183 } else {
2184 float original = ins->constants.f32[component];
2185 scaled_constant = _mesa_float_to_half(original);
2186
2187 /* Check for loss of precision. If this is
2188 * mediump, we don't care, but for a highp
2189 * shader, we need to pay attention. NIR
2190 * doesn't yet tell us which mode we're in!
2191 * Practically this prevents most constants
2192 * from being inlined, sadly. */
2193
2194 float fp32 = _mesa_half_to_float(scaled_constant);
2195
2196 if (fp32 != original)
2197 continue;
2198 }
2199
2200 /* We don't know how to handle these with a constant */
2201
2202 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2203 DBG("Bailing inline constant...\n");
2204 continue;
2205 }
2206
2207 /* Make sure that the constant is not itself a vector
2208 * by checking if all accessed values are the same. */
2209
2210 const midgard_constants *cons = &ins->constants;
2211 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2212
2213 bool is_vector = false;
2214 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2215
2216 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2217 /* We only care if this component is actually used */
2218 if (!(mask & (1 << c)))
2219 continue;
2220
2221 uint32_t test = is_16 ?
2222 cons->u16[ins->swizzle[1][c]] :
2223 cons->u32[ins->swizzle[1][c]];
2224
2225 if (test != value) {
2226 is_vector = true;
2227 break;
2228 }
2229 }
2230
2231 if (is_vector)
2232 continue;
2233
2234 /* Get rid of the embedded constant */
2235 ins->has_constants = false;
2236 ins->src[1] = ~0;
2237 ins->has_inline_constant = true;
2238 ins->inline_constant = scaled_constant;
2239 }
2240 }
2241 }
2242
2243 /* Dead code elimination for branches at the end of a block - only one branch
2244 * per block is legal semantically */
2245
2246 static void
2247 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2248 {
2249 bool branched = false;
2250
2251 mir_foreach_instr_in_block_safe(block, ins) {
2252 if (!midgard_is_branch_unit(ins->unit)) continue;
2253
2254 if (branched)
2255 mir_remove_instruction(ins);
2256
2257 branched = true;
2258 }
2259 }
2260
2261 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2262 * the move can be propagated away entirely */
2263
2264 static bool
2265 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2266 {
2267 /* Nothing to do */
2268 if (comp == midgard_outmod_none)
2269 return true;
2270
2271 if (*outmod == midgard_outmod_none) {
2272 *outmod = comp;
2273 return true;
2274 }
2275
2276 /* TODO: Compose rules */
2277 return false;
2278 }
2279
2280 static bool
2281 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2282 {
2283 bool progress = false;
2284
2285 mir_foreach_instr_in_block_safe(block, ins) {
2286 if (ins->type != TAG_ALU_4) continue;
2287 if (ins->alu.op != midgard_alu_op_fmov) continue;
2288 if (ins->alu.outmod != midgard_outmod_pos) continue;
2289
2290 /* TODO: Registers? */
2291 unsigned src = ins->src[1];
2292 if (src & IS_REG) continue;
2293
2294 /* There might be a source modifier, too */
2295 if (mir_nontrivial_source2_mod(ins)) continue;
2296
2297 /* Backpropagate the modifier */
2298 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2299 if (v->type != TAG_ALU_4) continue;
2300 if (v->dest != src) continue;
2301
2302 /* Can we even take a float outmod? */
2303 if (midgard_is_integer_out_op(v->alu.op)) continue;
2304
2305 midgard_outmod_float temp = v->alu.outmod;
2306 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2307
2308 /* Throw in the towel.. */
2309 if (!progress) break;
2310
2311 /* Otherwise, transfer the modifier */
2312 v->alu.outmod = temp;
2313 ins->alu.outmod = midgard_outmod_none;
2314
2315 break;
2316 }
2317 }
2318
2319 return progress;
2320 }
2321
2322 static unsigned
2323 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2324 {
2325 /* Loop to ourselves */
2326
2327 struct midgard_instruction ins = v_branch(false, false);
2328 ins.writeout = true;
2329 ins.branch.target_block = ctx->block_count - 1;
2330 ins.constants.u32[0] = rt * 0x100;
2331 emit_mir_instruction(ctx, ins);
2332
2333 ctx->current_block->epilogue = true;
2334 schedule_barrier(ctx);
2335 return ins.branch.target_block;
2336 }
2337
2338 static midgard_block *
2339 emit_block(compiler_context *ctx, nir_block *block)
2340 {
2341 midgard_block *this_block = ctx->after_block;
2342 ctx->after_block = NULL;
2343
2344 if (!this_block)
2345 this_block = create_empty_block(ctx);
2346
2347 list_addtail(&this_block->link, &ctx->blocks);
2348
2349 this_block->is_scheduled = false;
2350 ++ctx->block_count;
2351
2352 /* Set up current block */
2353 list_inithead(&this_block->instructions);
2354 ctx->current_block = this_block;
2355
2356 nir_foreach_instr(instr, block) {
2357 emit_instr(ctx, instr);
2358 ++ctx->instruction_count;
2359 }
2360
2361 return this_block;
2362 }
2363
2364 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2365
2366 static void
2367 emit_if(struct compiler_context *ctx, nir_if *nif)
2368 {
2369 midgard_block *before_block = ctx->current_block;
2370
2371 /* Speculatively emit the branch, but we can't fill it in until later */
2372 EMIT(branch, true, true);
2373 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2374 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2375
2376 /* Emit the two subblocks. */
2377 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2378 midgard_block *end_then_block = ctx->current_block;
2379
2380 /* Emit a jump from the end of the then block to the end of the else */
2381 EMIT(branch, false, false);
2382 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2383
2384 /* Emit second block, and check if it's empty */
2385
2386 int else_idx = ctx->block_count;
2387 int count_in = ctx->instruction_count;
2388 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2389 midgard_block *end_else_block = ctx->current_block;
2390 int after_else_idx = ctx->block_count;
2391
2392 /* Now that we have the subblocks emitted, fix up the branches */
2393
2394 assert(then_block);
2395 assert(else_block);
2396
2397 if (ctx->instruction_count == count_in) {
2398 /* The else block is empty, so don't emit an exit jump */
2399 mir_remove_instruction(then_exit);
2400 then_branch->branch.target_block = after_else_idx;
2401 } else {
2402 then_branch->branch.target_block = else_idx;
2403 then_exit->branch.target_block = after_else_idx;
2404 }
2405
2406 /* Wire up the successors */
2407
2408 ctx->after_block = create_empty_block(ctx);
2409
2410 midgard_block_add_successor(before_block, then_block);
2411 midgard_block_add_successor(before_block, else_block);
2412
2413 midgard_block_add_successor(end_then_block, ctx->after_block);
2414 midgard_block_add_successor(end_else_block, ctx->after_block);
2415 }
2416
2417 static void
2418 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2419 {
2420 /* Remember where we are */
2421 midgard_block *start_block = ctx->current_block;
2422
2423 /* Allocate a loop number, growing the current inner loop depth */
2424 int loop_idx = ++ctx->current_loop_depth;
2425
2426 /* Get index from before the body so we can loop back later */
2427 int start_idx = ctx->block_count;
2428
2429 /* Emit the body itself */
2430 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2431
2432 /* Branch back to loop back */
2433 struct midgard_instruction br_back = v_branch(false, false);
2434 br_back.branch.target_block = start_idx;
2435 emit_mir_instruction(ctx, br_back);
2436
2437 /* Mark down that branch in the graph. */
2438 midgard_block_add_successor(start_block, loop_block);
2439 midgard_block_add_successor(ctx->current_block, loop_block);
2440
2441 /* Find the index of the block about to follow us (note: we don't add
2442 * one; blocks are 0-indexed so we get a fencepost problem) */
2443 int break_block_idx = ctx->block_count;
2444
2445 /* Fix up the break statements we emitted to point to the right place,
2446 * now that we can allocate a block number for them */
2447 ctx->after_block = create_empty_block(ctx);
2448
2449 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2450 mir_foreach_instr_in_block(block, ins) {
2451 if (ins->type != TAG_ALU_4) continue;
2452 if (!ins->compact_branch) continue;
2453
2454 /* We found a branch -- check the type to see if we need to do anything */
2455 if (ins->branch.target_type != TARGET_BREAK) continue;
2456
2457 /* It's a break! Check if it's our break */
2458 if (ins->branch.target_break != loop_idx) continue;
2459
2460 /* Okay, cool, we're breaking out of this loop.
2461 * Rewrite from a break to a goto */
2462
2463 ins->branch.target_type = TARGET_GOTO;
2464 ins->branch.target_block = break_block_idx;
2465
2466 midgard_block_add_successor(block, ctx->after_block);
2467 }
2468 }
2469
2470 /* Now that we've finished emitting the loop, free up the depth again
2471 * so we play nice with recursion amid nested loops */
2472 --ctx->current_loop_depth;
2473
2474 /* Dump loop stats */
2475 ++ctx->loop_count;
2476 }
2477
2478 static midgard_block *
2479 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2480 {
2481 midgard_block *start_block = NULL;
2482
2483 foreach_list_typed(nir_cf_node, node, node, list) {
2484 switch (node->type) {
2485 case nir_cf_node_block: {
2486 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2487
2488 if (!start_block)
2489 start_block = block;
2490
2491 break;
2492 }
2493
2494 case nir_cf_node_if:
2495 emit_if(ctx, nir_cf_node_as_if(node));
2496 break;
2497
2498 case nir_cf_node_loop:
2499 emit_loop(ctx, nir_cf_node_as_loop(node));
2500 break;
2501
2502 case nir_cf_node_function:
2503 assert(0);
2504 break;
2505 }
2506 }
2507
2508 return start_block;
2509 }
2510
2511 /* Due to lookahead, we need to report the first tag executed in the command
2512 * stream and in branch targets. An initial block might be empty, so iterate
2513 * until we find one that 'works' */
2514
2515 static unsigned
2516 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2517 {
2518 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2519
2520 unsigned first_tag = 0;
2521
2522 mir_foreach_block_from(ctx, initial_block, v) {
2523 if (v->quadword_count) {
2524 midgard_bundle *initial_bundle =
2525 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2526
2527 first_tag = initial_bundle->tag;
2528 break;
2529 }
2530 }
2531
2532 return first_tag;
2533 }
2534
2535 static unsigned
2536 pan_format_from_nir_base(nir_alu_type base)
2537 {
2538 switch (base) {
2539 case nir_type_int:
2540 return MALI_FORMAT_SINT;
2541 case nir_type_uint:
2542 case nir_type_bool:
2543 return MALI_FORMAT_UINT;
2544 case nir_type_float:
2545 return MALI_CHANNEL_FLOAT;
2546 default:
2547 unreachable("Invalid base");
2548 }
2549 }
2550
2551 static unsigned
2552 pan_format_from_nir_size(nir_alu_type base, unsigned size)
2553 {
2554 if (base == nir_type_float) {
2555 switch (size) {
2556 case 16: return MALI_FORMAT_SINT;
2557 case 32: return MALI_FORMAT_UNORM;
2558 default:
2559 unreachable("Invalid float size for format");
2560 }
2561 } else {
2562 switch (size) {
2563 case 1:
2564 case 8: return MALI_CHANNEL_8;
2565 case 16: return MALI_CHANNEL_16;
2566 case 32: return MALI_CHANNEL_32;
2567 default:
2568 unreachable("Invalid int size for format");
2569 }
2570 }
2571 }
2572
2573 static enum mali_format
2574 pan_format_from_glsl(const struct glsl_type *type)
2575 {
2576 enum glsl_base_type glsl_base = glsl_get_base_type(glsl_without_array(type));
2577 nir_alu_type t = nir_get_nir_type_for_glsl_base_type(glsl_base);
2578
2579 unsigned base = nir_alu_type_get_base_type(t);
2580 unsigned size = nir_alu_type_get_type_size(t);
2581
2582 return pan_format_from_nir_base(base) |
2583 pan_format_from_nir_size(base, size) |
2584 MALI_NR_CHANNELS(4);
2585 }
2586
2587 /* For each fragment writeout instruction, generate a writeout loop to
2588 * associate with it */
2589
2590 static void
2591 mir_add_writeout_loops(compiler_context *ctx)
2592 {
2593 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2594 midgard_instruction *br = ctx->writeout_branch[rt];
2595 if (!br) continue;
2596
2597 unsigned popped = br->branch.target_block;
2598 midgard_block_add_successor(mir_get_block(ctx, popped - 1), ctx->current_block);
2599 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2600
2601 /* If we have more RTs, we'll need to restore back after our
2602 * loop terminates */
2603
2604 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2605 midgard_instruction uncond = v_branch(false, false);
2606 uncond.branch.target_block = popped;
2607 emit_mir_instruction(ctx, uncond);
2608 midgard_block_add_successor(ctx->current_block, mir_get_block(ctx, popped));
2609 schedule_barrier(ctx);
2610 } else {
2611 /* We're last, so we can terminate here */
2612 br->last_writeout = true;
2613 }
2614 }
2615 }
2616
2617 int
2618 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
2619 {
2620 struct util_dynarray *compiled = &program->compiled;
2621
2622 midgard_debug = debug_get_option_midgard_debug();
2623
2624 /* TODO: Bound against what? */
2625 compiler_context *ctx = rzalloc(NULL, compiler_context);
2626
2627 ctx->nir = nir;
2628 ctx->stage = nir->info.stage;
2629 ctx->is_blend = is_blend;
2630 ctx->alpha_ref = program->alpha_ref;
2631 ctx->blend_rt = blend_rt;
2632 ctx->quirks = midgard_get_quirks(gpu_id);
2633
2634 /* Start off with a safe cutoff, allowing usage of all 16 work
2635 * registers. Later, we'll promote uniform reads to uniform registers
2636 * if we determine it is beneficial to do so */
2637 ctx->uniform_cutoff = 8;
2638
2639 /* Initialize at a global (not block) level hash tables */
2640
2641 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2642 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2643 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2644
2645 /* Record the varying mapping for the command stream's bookkeeping */
2646
2647 struct exec_list *varyings =
2648 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2649
2650 unsigned max_varying = 0;
2651 nir_foreach_variable(var, varyings) {
2652 unsigned loc = var->data.driver_location;
2653 unsigned sz = glsl_type_size(var->type, FALSE);
2654
2655 for (int c = 0; c < sz; ++c) {
2656 program->varyings[loc + c] = var->data.location + c;
2657 program->varying_type[loc + c] = pan_format_from_glsl(var->type);
2658 max_varying = MAX2(max_varying, loc + c);
2659 }
2660 }
2661
2662 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2663 * (so we don't accidentally duplicate the epilogue since mesa/st has
2664 * messed with our I/O quite a bit already) */
2665
2666 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2667
2668 if (ctx->stage == MESA_SHADER_VERTEX) {
2669 NIR_PASS_V(nir, nir_lower_viewport_transform);
2670 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2671 }
2672
2673 NIR_PASS_V(nir, nir_lower_var_copies);
2674 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2675 NIR_PASS_V(nir, nir_split_var_copies);
2676 NIR_PASS_V(nir, nir_lower_var_copies);
2677 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2678 NIR_PASS_V(nir, nir_lower_var_copies);
2679 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2680
2681 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2682
2683 /* Optimisation passes */
2684
2685 optimise_nir(nir, ctx->quirks);
2686
2687 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2688 nir_print_shader(nir, stdout);
2689 }
2690
2691 /* Assign sysvals and counts, now that we're sure
2692 * (post-optimisation) */
2693
2694 midgard_nir_assign_sysvals(ctx, nir);
2695
2696 program->uniform_count = nir->num_uniforms;
2697 program->sysval_count = ctx->sysval_count;
2698 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2699
2700 nir_foreach_function(func, nir) {
2701 if (!func->impl)
2702 continue;
2703
2704 list_inithead(&ctx->blocks);
2705 ctx->block_count = 0;
2706 ctx->func = func;
2707
2708 emit_cf_list(ctx, &func->impl->body);
2709 break; /* TODO: Multi-function shaders */
2710 }
2711
2712 util_dynarray_init(compiled, NULL);
2713
2714 /* Per-block lowering before opts */
2715
2716 mir_foreach_block(ctx, block) {
2717 inline_alu_constants(ctx, block);
2718 midgard_opt_promote_fmov(ctx, block);
2719 embedded_to_inline_constant(ctx, block);
2720 }
2721 /* MIR-level optimizations */
2722
2723 bool progress = false;
2724
2725 do {
2726 progress = false;
2727
2728 mir_foreach_block(ctx, block) {
2729 progress |= midgard_opt_pos_propagate(ctx, block);
2730 progress |= midgard_opt_copy_prop(ctx, block);
2731 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2732 progress |= midgard_opt_combine_projection(ctx, block);
2733 progress |= midgard_opt_varying_projection(ctx, block);
2734 progress |= midgard_opt_not_propagate(ctx, block);
2735 progress |= midgard_opt_fuse_src_invert(ctx, block);
2736 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2737 progress |= midgard_opt_csel_invert(ctx, block);
2738 progress |= midgard_opt_drop_cmp_invert(ctx, block);
2739 progress |= midgard_opt_invert_branch(ctx, block);
2740 }
2741 } while (progress);
2742
2743 mir_foreach_block(ctx, block) {
2744 midgard_lower_invert(ctx, block);
2745 midgard_lower_derivatives(ctx, block);
2746 }
2747
2748 /* Nested control-flow can result in dead branches at the end of the
2749 * block. This messes with our analysis and is just dead code, so cull
2750 * them */
2751 mir_foreach_block(ctx, block) {
2752 midgard_opt_cull_dead_branch(ctx, block);
2753 }
2754
2755 /* Ensure we were lowered */
2756 mir_foreach_instr_global(ctx, ins) {
2757 assert(!ins->invert);
2758 }
2759
2760 if (ctx->stage == MESA_SHADER_FRAGMENT)
2761 mir_add_writeout_loops(ctx);
2762
2763 /* Schedule! */
2764 midgard_schedule_program(ctx);
2765 mir_ra(ctx);
2766
2767 /* Now that all the bundles are scheduled and we can calculate block
2768 * sizes, emit actual branch instructions rather than placeholders */
2769
2770 int br_block_idx = 0;
2771
2772 mir_foreach_block(ctx, block) {
2773 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2774 for (int c = 0; c < bundle->instruction_count; ++c) {
2775 midgard_instruction *ins = bundle->instructions[c];
2776
2777 if (!midgard_is_branch_unit(ins->unit)) continue;
2778
2779 /* Parse some basic branch info */
2780 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2781 bool is_conditional = ins->branch.conditional;
2782 bool is_inverted = ins->branch.invert_conditional;
2783 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2784 bool is_writeout = ins->writeout;
2785
2786 /* Determine the block we're jumping to */
2787 int target_number = ins->branch.target_block;
2788
2789 /* Report the destination tag */
2790 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2791
2792 /* Count up the number of quadwords we're
2793 * jumping over = number of quadwords until
2794 * (br_block_idx, target_number) */
2795
2796 int quadword_offset = 0;
2797
2798 if (is_discard) {
2799 /* Ignored */
2800 } else if (target_number > br_block_idx) {
2801 /* Jump forward */
2802
2803 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2804 midgard_block *blk = mir_get_block(ctx, idx);
2805 assert(blk);
2806
2807 quadword_offset += blk->quadword_count;
2808 }
2809 } else {
2810 /* Jump backwards */
2811
2812 for (int idx = br_block_idx; idx >= target_number; --idx) {
2813 midgard_block *blk = mir_get_block(ctx, idx);
2814 assert(blk);
2815
2816 quadword_offset -= blk->quadword_count;
2817 }
2818 }
2819
2820 /* Unconditional extended branches (far jumps)
2821 * have issues, so we always use a conditional
2822 * branch, setting the condition to always for
2823 * unconditional. For compact unconditional
2824 * branches, cond isn't used so it doesn't
2825 * matter what we pick. */
2826
2827 midgard_condition cond =
2828 !is_conditional ? midgard_condition_always :
2829 is_inverted ? midgard_condition_false :
2830 midgard_condition_true;
2831
2832 midgard_jmp_writeout_op op =
2833 is_discard ? midgard_jmp_writeout_op_discard :
2834 is_writeout ? midgard_jmp_writeout_op_writeout :
2835 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2836 midgard_jmp_writeout_op_branch_cond;
2837
2838 if (!is_compact) {
2839 midgard_branch_extended branch =
2840 midgard_create_branch_extended(
2841 cond, op,
2842 dest_tag,
2843 quadword_offset);
2844
2845 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2846 } else if (is_conditional || is_discard) {
2847 midgard_branch_cond branch = {
2848 .op = op,
2849 .dest_tag = dest_tag,
2850 .offset = quadword_offset,
2851 .cond = cond
2852 };
2853
2854 assert(branch.offset == quadword_offset);
2855
2856 memcpy(&ins->br_compact, &branch, sizeof(branch));
2857 } else {
2858 assert(op == midgard_jmp_writeout_op_branch_uncond);
2859
2860 midgard_branch_uncond branch = {
2861 .op = op,
2862 .dest_tag = dest_tag,
2863 .offset = quadword_offset,
2864 .unknown = 1
2865 };
2866
2867 assert(branch.offset == quadword_offset);
2868
2869 memcpy(&ins->br_compact, &branch, sizeof(branch));
2870 }
2871 }
2872 }
2873
2874 ++br_block_idx;
2875 }
2876
2877 /* Emit flat binary from the instruction arrays. Iterate each block in
2878 * sequence. Save instruction boundaries such that lookahead tags can
2879 * be assigned easily */
2880
2881 /* Cache _all_ bundles in source order for lookahead across failed branches */
2882
2883 int bundle_count = 0;
2884 mir_foreach_block(ctx, block) {
2885 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2886 }
2887 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2888 int bundle_idx = 0;
2889 mir_foreach_block(ctx, block) {
2890 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2891 source_order_bundles[bundle_idx++] = bundle;
2892 }
2893 }
2894
2895 int current_bundle = 0;
2896
2897 /* Midgard prefetches instruction types, so during emission we
2898 * need to lookahead. Unless this is the last instruction, in
2899 * which we return 1. */
2900
2901 mir_foreach_block(ctx, block) {
2902 mir_foreach_bundle_in_block(block, bundle) {
2903 int lookahead = 1;
2904
2905 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
2906 lookahead = source_order_bundles[current_bundle + 1]->tag;
2907
2908 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2909 ++current_bundle;
2910 }
2911
2912 /* TODO: Free deeper */
2913 //util_dynarray_fini(&block->instructions);
2914 }
2915
2916 free(source_order_bundles);
2917
2918 /* Report the very first tag executed */
2919 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2920
2921 /* Deal with off-by-one related to the fencepost problem */
2922 program->work_register_count = ctx->work_registers + 1;
2923 program->uniform_cutoff = ctx->uniform_cutoff;
2924
2925 program->blend_patch_offset = ctx->blend_constant_offset;
2926 program->tls_size = ctx->tls_size;
2927
2928 if (midgard_debug & MIDGARD_DBG_SHADERS)
2929 disassemble_midgard(program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2930
2931 if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
2932 unsigned nr_bundles = 0, nr_ins = 0;
2933
2934 /* Count instructions and bundles */
2935
2936 mir_foreach_block(ctx, block) {
2937 nr_bundles += util_dynarray_num_elements(
2938 &block->bundles, midgard_bundle);
2939
2940 mir_foreach_bundle_in_block(block, bun)
2941 nr_ins += bun->instruction_count;
2942 }
2943
2944 /* Calculate thread count. There are certain cutoffs by
2945 * register count for thread count */
2946
2947 unsigned nr_registers = program->work_register_count;
2948
2949 unsigned nr_threads =
2950 (nr_registers <= 4) ? 4 :
2951 (nr_registers <= 8) ? 2 :
2952 1;
2953
2954 /* Dump stats */
2955
2956 fprintf(stderr, "shader%d - %s shader: "
2957 "%u inst, %u bundles, %u quadwords, "
2958 "%u registers, %u threads, %u loops, "
2959 "%u:%u spills:fills\n",
2960 SHADER_DB_COUNT++,
2961 gl_shader_stage_name(ctx->stage),
2962 nr_ins, nr_bundles, ctx->quadword_count,
2963 nr_registers, nr_threads,
2964 ctx->loop_count,
2965 ctx->spills, ctx->fills);
2966 }
2967
2968 ralloc_free(ctx);
2969
2970 return 0;
2971 }