pan/midgard: Handle nir_intrinsic_load_barycentric_centroid
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51 #include "midgard_quirks.h"
52
53 #include "disassemble.h"
54
55 static const struct debug_named_value debug_options[] = {
56 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
57 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
58 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
59 DEBUG_NAMED_VALUE_END
60 };
61
62 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
63
64 unsigned SHADER_DB_COUNT = 0;
65
66 int midgard_debug = 0;
67
68 #define DBG(fmt, ...) \
69 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
70 fprintf(stderr, "%s:%d: "fmt, \
71 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
72 static midgard_block *
73 create_empty_block(compiler_context *ctx)
74 {
75 midgard_block *blk = rzalloc(ctx, midgard_block);
76
77 blk->predecessors = _mesa_set_create(blk,
78 _mesa_hash_pointer,
79 _mesa_key_pointer_equal);
80
81 blk->source_id = ctx->block_source_count++;
82
83 return blk;
84 }
85
86 static void
87 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
88 {
89 assert(block);
90 assert(successor);
91
92 /* Deduplicate */
93 for (unsigned i = 0; i < block->nr_successors; ++i) {
94 if (block->successors[i] == successor)
95 return;
96 }
97
98 block->successors[block->nr_successors++] = successor;
99 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
100
101 /* Note the predecessor in the other direction */
102 _mesa_set_add(successor->predecessors, block);
103 }
104
105 static void
106 schedule_barrier(compiler_context *ctx)
107 {
108 midgard_block *temp = ctx->after_block;
109 ctx->after_block = create_empty_block(ctx);
110 ctx->block_count++;
111 list_addtail(&ctx->after_block->link, &ctx->blocks);
112 list_inithead(&ctx->after_block->instructions);
113 midgard_block_add_successor(ctx->current_block, ctx->after_block);
114 ctx->current_block = ctx->after_block;
115 ctx->after_block = temp;
116 }
117
118 /* Helpers to generate midgard_instruction's using macro magic, since every
119 * driver seems to do it that way */
120
121 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
122
123 #define M_LOAD_STORE(name, store) \
124 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
125 midgard_instruction i = { \
126 .type = TAG_LOAD_STORE_4, \
127 .mask = 0xF, \
128 .dest = ~0, \
129 .src = { ~0, ~0, ~0, ~0 }, \
130 .swizzle = SWIZZLE_IDENTITY_4, \
131 .load_store = { \
132 .op = midgard_op_##name, \
133 .address = address \
134 } \
135 }; \
136 \
137 if (store) \
138 i.src[0] = ssa; \
139 else \
140 i.dest = ssa; \
141 \
142 return i; \
143 }
144
145 #define M_LOAD(name) M_LOAD_STORE(name, false)
146 #define M_STORE(name) M_LOAD_STORE(name, true)
147
148 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
149 * the corresponding Midgard source */
150
151 static midgard_vector_alu_src
152 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
153 bool half, bool sext)
154 {
155 /* Figure out how many components there are so we can adjust.
156 * Specifically we want to broadcast the last channel so things like
157 * ball2/3 work.
158 */
159
160 if (broadcast_count && src) {
161 uint8_t last_component = src->swizzle[broadcast_count - 1];
162
163 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
164 src->swizzle[c] = last_component;
165 }
166 }
167
168 midgard_vector_alu_src alu_src = {
169 .rep_low = 0,
170 .rep_high = 0,
171 .half = half
172 };
173
174 if (is_int) {
175 alu_src.mod = midgard_int_normal;
176
177 /* Sign/zero-extend if needed */
178
179 if (half) {
180 alu_src.mod = sext ?
181 midgard_int_sign_extend
182 : midgard_int_zero_extend;
183 }
184
185 /* These should have been lowered away */
186 if (src)
187 assert(!(src->abs || src->negate));
188 } else {
189 if (src)
190 alu_src.mod = (src->abs << 0) | (src->negate << 1);
191 }
192
193 return alu_src;
194 }
195
196 /* load/store instructions have both 32-bit and 16-bit variants, depending on
197 * whether we are using vectors composed of highp or mediump. At the moment, we
198 * don't support half-floats -- this requires changes in other parts of the
199 * compiler -- therefore the 16-bit versions are commented out. */
200
201 //M_LOAD(ld_attr_16);
202 M_LOAD(ld_attr_32);
203 //M_LOAD(ld_vary_16);
204 M_LOAD(ld_vary_32);
205 M_LOAD(ld_ubo_int4);
206 M_LOAD(ld_int4);
207 M_STORE(st_int4);
208 M_LOAD(ld_color_buffer_32u);
209 //M_STORE(st_vary_16);
210 M_STORE(st_vary_32);
211 M_LOAD(ld_cubemap_coords);
212 M_LOAD(ld_compute_id);
213
214 static midgard_instruction
215 v_branch(bool conditional, bool invert)
216 {
217 midgard_instruction ins = {
218 .type = TAG_ALU_4,
219 .unit = ALU_ENAB_BRANCH,
220 .compact_branch = true,
221 .branch = {
222 .conditional = conditional,
223 .invert_conditional = invert
224 },
225 .dest = ~0,
226 .src = { ~0, ~0, ~0, ~0 },
227 };
228
229 return ins;
230 }
231
232 static midgard_branch_extended
233 midgard_create_branch_extended( midgard_condition cond,
234 midgard_jmp_writeout_op op,
235 unsigned dest_tag,
236 signed quadword_offset)
237 {
238 /* The condition code is actually a LUT describing a function to
239 * combine multiple condition codes. However, we only support a single
240 * condition code at the moment, so we just duplicate over a bunch of
241 * times. */
242
243 uint16_t duplicated_cond =
244 (cond << 14) |
245 (cond << 12) |
246 (cond << 10) |
247 (cond << 8) |
248 (cond << 6) |
249 (cond << 4) |
250 (cond << 2) |
251 (cond << 0);
252
253 midgard_branch_extended branch = {
254 .op = op,
255 .dest_tag = dest_tag,
256 .offset = quadword_offset,
257 .cond = duplicated_cond
258 };
259
260 return branch;
261 }
262
263 static void
264 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
265 {
266 ins->has_constants = true;
267 memcpy(&ins->constants, constants, 16);
268 }
269
270 static int
271 glsl_type_size(const struct glsl_type *type, bool bindless)
272 {
273 return glsl_count_attribute_slots(type, false);
274 }
275
276 /* Lower fdot2 to a vector multiplication followed by channel addition */
277 static void
278 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
279 {
280 if (alu->op != nir_op_fdot2)
281 return;
282
283 b->cursor = nir_before_instr(&alu->instr);
284
285 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
286 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
287
288 nir_ssa_def *product = nir_fmul(b, src0, src1);
289
290 nir_ssa_def *sum = nir_fadd(b,
291 nir_channel(b, product, 0),
292 nir_channel(b, product, 1));
293
294 /* Replace the fdot2 with this sum */
295 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
296 }
297
298 static int
299 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
300 {
301 /* This is way too meta */
302 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
303 unsigned idx_idx = is_store ? 1 : 0;
304
305 nir_src index = instr->src[idx_idx];
306 assert(nir_src_is_const(index));
307 uint32_t uindex = nir_src_as_uint(index);
308
309 return PAN_SYSVAL(SSBO, uindex);
310 }
311
312 static int
313 midgard_sysval_for_sampler(nir_intrinsic_instr *instr)
314 {
315 /* TODO: indirect samplers !!! */
316 nir_src index = instr->src[0];
317 assert(nir_src_is_const(index));
318 uint32_t uindex = nir_src_as_uint(index);
319
320 return PAN_SYSVAL(SAMPLER, uindex);
321 }
322
323 static int
324 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
325 {
326 switch (instr->intrinsic) {
327 case nir_intrinsic_load_viewport_scale:
328 return PAN_SYSVAL_VIEWPORT_SCALE;
329 case nir_intrinsic_load_viewport_offset:
330 return PAN_SYSVAL_VIEWPORT_OFFSET;
331 case nir_intrinsic_load_num_work_groups:
332 return PAN_SYSVAL_NUM_WORK_GROUPS;
333 case nir_intrinsic_load_ssbo:
334 case nir_intrinsic_store_ssbo:
335 return midgard_sysval_for_ssbo(instr);
336 case nir_intrinsic_load_sampler_lod_parameters_pan:
337 return midgard_sysval_for_sampler(instr);
338 default:
339 return ~0;
340 }
341 }
342
343 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
344 unsigned *dest)
345 {
346 nir_intrinsic_instr *intr;
347 nir_dest *dst = NULL;
348 nir_tex_instr *tex;
349 int sysval = -1;
350
351 bool is_store = false;
352
353 switch (instr->type) {
354 case nir_instr_type_intrinsic:
355 intr = nir_instr_as_intrinsic(instr);
356 sysval = midgard_nir_sysval_for_intrinsic(intr);
357 dst = &intr->dest;
358 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
359 break;
360 case nir_instr_type_tex:
361 tex = nir_instr_as_tex(instr);
362 if (tex->op != nir_texop_txs)
363 break;
364
365 sysval = PAN_SYSVAL(TEXTURE_SIZE,
366 PAN_TXS_SYSVAL_ID(tex->texture_index,
367 nir_tex_instr_dest_size(tex) -
368 (tex->is_array ? 1 : 0),
369 tex->is_array));
370 dst = &tex->dest;
371 break;
372 default:
373 break;
374 }
375
376 if (dest && dst && !is_store)
377 *dest = nir_dest_index(ctx, dst);
378
379 return sysval;
380 }
381
382 static void
383 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
384 {
385 int sysval;
386
387 sysval = sysval_for_instr(ctx, instr, NULL);
388 if (sysval < 0)
389 return;
390
391 /* We have a sysval load; check if it's already been assigned */
392
393 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
394 return;
395
396 /* It hasn't -- so assign it now! */
397
398 unsigned id = ctx->sysval_count++;
399 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
400 ctx->sysvals[id] = sysval;
401 }
402
403 static void
404 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
405 {
406 ctx->sysval_count = 0;
407
408 nir_foreach_function(function, shader) {
409 if (!function->impl) continue;
410
411 nir_foreach_block(block, function->impl) {
412 nir_foreach_instr_safe(instr, block) {
413 midgard_nir_assign_sysval_body(ctx, instr);
414 }
415 }
416 }
417 }
418
419 static bool
420 midgard_nir_lower_fdot2(nir_shader *shader)
421 {
422 bool progress = false;
423
424 nir_foreach_function(function, shader) {
425 if (!function->impl) continue;
426
427 nir_builder _b;
428 nir_builder *b = &_b;
429 nir_builder_init(b, function->impl);
430
431 nir_foreach_block(block, function->impl) {
432 nir_foreach_instr_safe(instr, block) {
433 if (instr->type != nir_instr_type_alu) continue;
434
435 nir_alu_instr *alu = nir_instr_as_alu(instr);
436 midgard_nir_lower_fdot2_body(b, alu);
437
438 progress |= true;
439 }
440 }
441
442 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
443
444 }
445
446 return progress;
447 }
448
449 /* Flushes undefined values to zero */
450
451 static void
452 optimise_nir(nir_shader *nir, unsigned quirks)
453 {
454 bool progress;
455 unsigned lower_flrp =
456 (nir->options->lower_flrp16 ? 16 : 0) |
457 (nir->options->lower_flrp32 ? 32 : 0) |
458 (nir->options->lower_flrp64 ? 64 : 0);
459
460 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
461 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
462
463 nir_lower_tex_options lower_tex_options = {
464 .lower_txs_lod = true,
465 .lower_txp = ~0,
466 .lower_tex_without_implicit_lod =
467 (quirks & MIDGARD_EXPLICIT_LOD),
468
469 /* TODO: we have native gradient.. */
470 .lower_txd = true,
471 };
472
473 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
474
475 /* Must lower fdot2 after tex is lowered */
476 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
477
478 /* T720 is broken. */
479
480 if (quirks & MIDGARD_BROKEN_LOD)
481 NIR_PASS_V(nir, midgard_nir_lod_errata);
482
483 do {
484 progress = false;
485
486 NIR_PASS(progress, nir, nir_lower_var_copies);
487 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
488
489 NIR_PASS(progress, nir, nir_copy_prop);
490 NIR_PASS(progress, nir, nir_opt_remove_phis);
491 NIR_PASS(progress, nir, nir_opt_dce);
492 NIR_PASS(progress, nir, nir_opt_dead_cf);
493 NIR_PASS(progress, nir, nir_opt_cse);
494 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
495 NIR_PASS(progress, nir, nir_opt_algebraic);
496 NIR_PASS(progress, nir, nir_opt_constant_folding);
497
498 if (lower_flrp != 0) {
499 bool lower_flrp_progress = false;
500 NIR_PASS(lower_flrp_progress,
501 nir,
502 nir_lower_flrp,
503 lower_flrp,
504 false /* always_precise */,
505 nir->options->lower_ffma);
506 if (lower_flrp_progress) {
507 NIR_PASS(progress, nir,
508 nir_opt_constant_folding);
509 progress = true;
510 }
511
512 /* Nothing should rematerialize any flrps, so we only
513 * need to do this lowering once.
514 */
515 lower_flrp = 0;
516 }
517
518 NIR_PASS(progress, nir, nir_opt_undef);
519 NIR_PASS(progress, nir, nir_undef_to_zero);
520
521 NIR_PASS(progress, nir, nir_opt_loop_unroll,
522 nir_var_shader_in |
523 nir_var_shader_out |
524 nir_var_function_temp);
525
526 NIR_PASS(progress, nir, nir_opt_vectorize);
527 } while (progress);
528
529 /* Must be run at the end to prevent creation of fsin/fcos ops */
530 NIR_PASS(progress, nir, midgard_nir_scale_trig);
531
532 do {
533 progress = false;
534
535 NIR_PASS(progress, nir, nir_opt_dce);
536 NIR_PASS(progress, nir, nir_opt_algebraic);
537 NIR_PASS(progress, nir, nir_opt_constant_folding);
538 NIR_PASS(progress, nir, nir_copy_prop);
539 } while (progress);
540
541 NIR_PASS(progress, nir, nir_opt_algebraic_late);
542
543 /* We implement booleans as 32-bit 0/~0 */
544 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
545
546 /* Now that booleans are lowered, we can run out late opts */
547 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
548
549 /* Lower mods for float ops only. Integer ops don't support modifiers
550 * (saturate doesn't make sense on integers, neg/abs require dedicated
551 * instructions) */
552
553 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
554 NIR_PASS(progress, nir, nir_copy_prop);
555 NIR_PASS(progress, nir, nir_opt_dce);
556
557 /* Take us out of SSA */
558 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
559 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
560
561 /* We are a vector architecture; write combine where possible */
562 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
563 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
564
565 NIR_PASS(progress, nir, nir_opt_dce);
566 }
567
568 /* Do not actually emit a load; instead, cache the constant for inlining */
569
570 static void
571 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
572 {
573 nir_ssa_def def = instr->def;
574
575 midgard_constants *consts = rzalloc(NULL, midgard_constants);
576
577 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
578
579 #define RAW_CONST_COPY(bits) \
580 nir_const_value_to_array(consts->u##bits, instr->value, \
581 instr->def.num_components, u##bits)
582
583 switch (instr->def.bit_size) {
584 case 64:
585 RAW_CONST_COPY(64);
586 break;
587 case 32:
588 RAW_CONST_COPY(32);
589 break;
590 case 16:
591 RAW_CONST_COPY(16);
592 break;
593 case 8:
594 RAW_CONST_COPY(8);
595 break;
596 default:
597 unreachable("Invalid bit_size for load_const instruction\n");
598 }
599
600 /* Shifted for SSA, +1 for off-by-one */
601 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
602 }
603
604 /* Normally constants are embedded implicitly, but for I/O and such we have to
605 * explicitly emit a move with the constant source */
606
607 static void
608 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
609 {
610 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
611
612 if (constant_value) {
613 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
614 attach_constants(ctx, &ins, constant_value, node + 1);
615 emit_mir_instruction(ctx, ins);
616 }
617 }
618
619 static bool
620 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
621 {
622 unsigned comp = src->swizzle[0];
623
624 for (unsigned c = 1; c < nr_components; ++c) {
625 if (src->swizzle[c] != comp)
626 return true;
627 }
628
629 return false;
630 }
631
632 #define ALU_CASE(nir, _op) \
633 case nir_op_##nir: \
634 op = midgard_alu_op_##_op; \
635 assert(src_bitsize == dst_bitsize); \
636 break;
637
638 #define ALU_CASE_BCAST(nir, _op, count) \
639 case nir_op_##nir: \
640 op = midgard_alu_op_##_op; \
641 broadcast_swizzle = count; \
642 assert(src_bitsize == dst_bitsize); \
643 break;
644 static bool
645 nir_is_fzero_constant(nir_src src)
646 {
647 if (!nir_src_is_const(src))
648 return false;
649
650 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
651 if (nir_src_comp_as_float(src, c) != 0.0)
652 return false;
653 }
654
655 return true;
656 }
657
658 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
659 * special treatment override this anyway. */
660
661 static midgard_reg_mode
662 reg_mode_for_nir(nir_alu_instr *instr)
663 {
664 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
665
666 switch (src_bitsize) {
667 case 8:
668 return midgard_reg_mode_8;
669 case 16:
670 return midgard_reg_mode_16;
671 case 32:
672 return midgard_reg_mode_32;
673 case 64:
674 return midgard_reg_mode_64;
675 default:
676 unreachable("Invalid bit size");
677 }
678 }
679
680 static void
681 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
682 {
683 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
684 * is handled elsewhere */
685
686 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
687 midgard_emit_derivatives(ctx, instr);
688 return;
689 }
690
691 bool is_ssa = instr->dest.dest.is_ssa;
692
693 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
694 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
695 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
696
697 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
698 * supported. A few do not and are commented for now. Also, there are a
699 * number of NIR ops which Midgard does not support and need to be
700 * lowered, also TODO. This switch block emits the opcode and calling
701 * convention of the Midgard instruction; actual packing is done in
702 * emit_alu below */
703
704 unsigned op;
705
706 /* Number of components valid to check for the instruction (the rest
707 * will be forced to the last), or 0 to use as-is. Relevant as
708 * ball-type instructions have a channel count in NIR but are all vec4
709 * in Midgard */
710
711 unsigned broadcast_swizzle = 0;
712
713 /* What register mode should we operate in? */
714 midgard_reg_mode reg_mode =
715 reg_mode_for_nir(instr);
716
717 /* Do we need a destination override? Used for inline
718 * type conversion */
719
720 midgard_dest_override dest_override =
721 midgard_dest_override_none;
722
723 /* Should we use a smaller respective source and sign-extend? */
724
725 bool half_1 = false, sext_1 = false;
726 bool half_2 = false, sext_2 = false;
727
728 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
729 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
730
731 switch (instr->op) {
732 ALU_CASE(fadd, fadd);
733 ALU_CASE(fmul, fmul);
734 ALU_CASE(fmin, fmin);
735 ALU_CASE(fmax, fmax);
736 ALU_CASE(imin, imin);
737 ALU_CASE(imax, imax);
738 ALU_CASE(umin, umin);
739 ALU_CASE(umax, umax);
740 ALU_CASE(ffloor, ffloor);
741 ALU_CASE(fround_even, froundeven);
742 ALU_CASE(ftrunc, ftrunc);
743 ALU_CASE(fceil, fceil);
744 ALU_CASE(fdot3, fdot3);
745 ALU_CASE(fdot4, fdot4);
746 ALU_CASE(iadd, iadd);
747 ALU_CASE(isub, isub);
748 ALU_CASE(imul, imul);
749
750 /* Zero shoved as second-arg */
751 ALU_CASE(iabs, iabsdiff);
752
753 ALU_CASE(mov, imov);
754
755 ALU_CASE(feq32, feq);
756 ALU_CASE(fne32, fne);
757 ALU_CASE(flt32, flt);
758 ALU_CASE(ieq32, ieq);
759 ALU_CASE(ine32, ine);
760 ALU_CASE(ilt32, ilt);
761 ALU_CASE(ult32, ult);
762
763 /* We don't have a native b2f32 instruction. Instead, like many
764 * GPUs, we exploit booleans as 0/~0 for false/true, and
765 * correspondingly AND
766 * by 1.0 to do the type conversion. For the moment, prime us
767 * to emit:
768 *
769 * iand [whatever], #0
770 *
771 * At the end of emit_alu (as MIR), we'll fix-up the constant
772 */
773
774 ALU_CASE(b2f32, iand);
775 ALU_CASE(b2i32, iand);
776
777 /* Likewise, we don't have a dedicated f2b32 instruction, but
778 * we can do a "not equal to 0.0" test. */
779
780 ALU_CASE(f2b32, fne);
781 ALU_CASE(i2b32, ine);
782
783 ALU_CASE(frcp, frcp);
784 ALU_CASE(frsq, frsqrt);
785 ALU_CASE(fsqrt, fsqrt);
786 ALU_CASE(fexp2, fexp2);
787 ALU_CASE(flog2, flog2);
788
789 ALU_CASE(f2i64, f2i_rtz);
790 ALU_CASE(f2u64, f2u_rtz);
791 ALU_CASE(i2f64, i2f_rtz);
792 ALU_CASE(u2f64, u2f_rtz);
793
794 ALU_CASE(f2i32, f2i_rtz);
795 ALU_CASE(f2u32, f2u_rtz);
796 ALU_CASE(i2f32, i2f_rtz);
797 ALU_CASE(u2f32, u2f_rtz);
798
799 ALU_CASE(f2i16, f2i_rtz);
800 ALU_CASE(f2u16, f2u_rtz);
801 ALU_CASE(i2f16, i2f_rtz);
802 ALU_CASE(u2f16, u2f_rtz);
803
804 ALU_CASE(fsin, fsin);
805 ALU_CASE(fcos, fcos);
806
807 /* We'll set invert */
808 ALU_CASE(inot, imov);
809 ALU_CASE(iand, iand);
810 ALU_CASE(ior, ior);
811 ALU_CASE(ixor, ixor);
812 ALU_CASE(ishl, ishl);
813 ALU_CASE(ishr, iasr);
814 ALU_CASE(ushr, ilsr);
815
816 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
817 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
818 ALU_CASE(b32all_fequal4, fball_eq);
819
820 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
821 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
822 ALU_CASE(b32any_fnequal4, fbany_neq);
823
824 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
825 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
826 ALU_CASE(b32all_iequal4, iball_eq);
827
828 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
829 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
830 ALU_CASE(b32any_inequal4, ibany_neq);
831
832 /* Source mods will be shoved in later */
833 ALU_CASE(fabs, fmov);
834 ALU_CASE(fneg, fmov);
835 ALU_CASE(fsat, fmov);
836
837 /* For size conversion, we use a move. Ideally though we would squash
838 * these ops together; maybe that has to happen after in NIR as part of
839 * propagation...? An earlier algebraic pass ensured we step down by
840 * only / exactly one size. If stepping down, we use a dest override to
841 * reduce the size; if stepping up, we use a larger-sized move with a
842 * half source and a sign/zero-extension modifier */
843
844 case nir_op_i2i8:
845 case nir_op_i2i16:
846 case nir_op_i2i32:
847 case nir_op_i2i64:
848 /* If we end up upscale, we'll need a sign-extend on the
849 * operand (the second argument) */
850
851 sext_2 = true;
852 /* fallthrough */
853 case nir_op_u2u8:
854 case nir_op_u2u16:
855 case nir_op_u2u32:
856 case nir_op_u2u64:
857 case nir_op_f2f16:
858 case nir_op_f2f32:
859 case nir_op_f2f64: {
860 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
861 instr->op == nir_op_f2f64)
862 op = midgard_alu_op_fmov;
863 else
864 op = midgard_alu_op_imov;
865
866 if (dst_bitsize == (src_bitsize * 2)) {
867 /* Converting up */
868 half_2 = true;
869
870 /* Use a greater register mode */
871 reg_mode++;
872 } else if (src_bitsize == (dst_bitsize * 2)) {
873 /* Converting down */
874 dest_override = midgard_dest_override_lower;
875 }
876
877 break;
878 }
879
880 /* For greater-or-equal, we lower to less-or-equal and flip the
881 * arguments */
882
883 case nir_op_fge:
884 case nir_op_fge32:
885 case nir_op_ige32:
886 case nir_op_uge32: {
887 op =
888 instr->op == nir_op_fge ? midgard_alu_op_fle :
889 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
890 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
891 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
892 0;
893
894 /* Swap via temporary */
895 nir_alu_src temp = instr->src[1];
896 instr->src[1] = instr->src[0];
897 instr->src[0] = temp;
898
899 break;
900 }
901
902 case nir_op_b32csel: {
903 /* Midgard features both fcsel and icsel, depending on
904 * the type of the arguments/output. However, as long
905 * as we're careful we can _always_ use icsel and
906 * _never_ need fcsel, since the latter does additional
907 * floating-point-specific processing whereas the
908 * former just moves bits on the wire. It's not obvious
909 * why these are separate opcodes, save for the ability
910 * to do things like sat/pos/abs/neg for free */
911
912 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
913 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
914
915 /* The condition is the first argument; move the other
916 * arguments up one to be a binary instruction for
917 * Midgard with the condition last */
918
919 nir_alu_src temp = instr->src[2];
920
921 instr->src[2] = instr->src[0];
922 instr->src[0] = instr->src[1];
923 instr->src[1] = temp;
924
925 break;
926 }
927
928 default:
929 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
930 assert(0);
931 return;
932 }
933
934 /* Midgard can perform certain modifiers on output of an ALU op */
935 unsigned outmod;
936
937 if (midgard_is_integer_out_op(op)) {
938 outmod = midgard_outmod_int_wrap;
939 } else {
940 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
941 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
942 }
943
944 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
945
946 if (instr->op == nir_op_fmax) {
947 if (nir_is_fzero_constant(instr->src[0].src)) {
948 op = midgard_alu_op_fmov;
949 nr_inputs = 1;
950 outmod = midgard_outmod_pos;
951 instr->src[0] = instr->src[1];
952 } else if (nir_is_fzero_constant(instr->src[1].src)) {
953 op = midgard_alu_op_fmov;
954 nr_inputs = 1;
955 outmod = midgard_outmod_pos;
956 }
957 }
958
959 /* Fetch unit, quirks, etc information */
960 unsigned opcode_props = alu_opcode_props[op].props;
961 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
962
963 /* src0 will always exist afaik, but src1 will not for 1-argument
964 * instructions. The latter can only be fetched if the instruction
965 * needs it, or else we may segfault. */
966
967 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
968 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
969 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
970 assert(nr_inputs <= 3);
971
972 /* Rather than use the instruction generation helpers, we do it
973 * ourselves here to avoid the mess */
974
975 midgard_instruction ins = {
976 .type = TAG_ALU_4,
977 .src = {
978 quirk_flipped_r24 ? ~0 : src0,
979 quirk_flipped_r24 ? src0 : src1,
980 src2,
981 ~0
982 },
983 .dest = dest,
984 };
985
986 nir_alu_src *nirmods[3] = { NULL };
987
988 if (nr_inputs >= 2) {
989 nirmods[0] = &instr->src[0];
990 nirmods[1] = &instr->src[1];
991 } else if (nr_inputs == 1) {
992 nirmods[quirk_flipped_r24] = &instr->src[0];
993 } else {
994 assert(0);
995 }
996
997 if (nr_inputs == 3)
998 nirmods[2] = &instr->src[2];
999
1000 /* These were lowered to a move, so apply the corresponding mod */
1001
1002 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
1003 nir_alu_src *s = nirmods[quirk_flipped_r24];
1004
1005 if (instr->op == nir_op_fneg)
1006 s->negate = !s->negate;
1007
1008 if (instr->op == nir_op_fabs)
1009 s->abs = !s->abs;
1010 }
1011
1012 bool is_int = midgard_is_integer_op(op);
1013
1014 ins.mask = mask_of(nr_components);
1015
1016 midgard_vector_alu alu = {
1017 .op = op,
1018 .reg_mode = reg_mode,
1019 .dest_override = dest_override,
1020 .outmod = outmod,
1021
1022 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1023 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1024 };
1025
1026 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1027
1028 if (!is_ssa)
1029 ins.mask &= instr->dest.write_mask;
1030
1031 for (unsigned m = 0; m < 3; ++m) {
1032 if (!nirmods[m])
1033 continue;
1034
1035 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
1036 ins.swizzle[m][c] = nirmods[m]->swizzle[c];
1037
1038 /* Replicate. TODO: remove when vec16 lands */
1039 for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
1040 ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
1041 }
1042
1043 if (nr_inputs == 3) {
1044 /* Conditions can't have mods */
1045 assert(!nirmods[2]->abs);
1046 assert(!nirmods[2]->negate);
1047 }
1048
1049 ins.alu = alu;
1050
1051 /* Late fixup for emulated instructions */
1052
1053 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1054 /* Presently, our second argument is an inline #0 constant.
1055 * Switch over to an embedded 1.0 constant (that can't fit
1056 * inline, since we're 32-bit, not 16-bit like the inline
1057 * constants) */
1058
1059 ins.has_inline_constant = false;
1060 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1061 ins.has_constants = true;
1062
1063 if (instr->op == nir_op_b2f32)
1064 ins.constants.f32[0] = 1.0f;
1065 else
1066 ins.constants.i32[0] = 1;
1067
1068 for (unsigned c = 0; c < 16; ++c)
1069 ins.swizzle[1][c] = 0;
1070 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1071 /* Lots of instructions need a 0 plonked in */
1072 ins.has_inline_constant = false;
1073 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1074 ins.has_constants = true;
1075 ins.constants.u32[0] = 0;
1076
1077 for (unsigned c = 0; c < 16; ++c)
1078 ins.swizzle[1][c] = 0;
1079 } else if (instr->op == nir_op_inot) {
1080 ins.invert = true;
1081 }
1082
1083 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1084 /* To avoid duplicating the lookup tables (probably), true LUT
1085 * instructions can only operate as if they were scalars. Lower
1086 * them here by changing the component. */
1087
1088 unsigned orig_mask = ins.mask;
1089
1090 for (int i = 0; i < nr_components; ++i) {
1091 /* Mask the associated component, dropping the
1092 * instruction if needed */
1093
1094 ins.mask = 1 << i;
1095 ins.mask &= orig_mask;
1096
1097 if (!ins.mask)
1098 continue;
1099
1100 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1101 ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
1102
1103 emit_mir_instruction(ctx, ins);
1104 }
1105 } else {
1106 emit_mir_instruction(ctx, ins);
1107 }
1108 }
1109
1110 #undef ALU_CASE
1111
1112 static void
1113 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1114 {
1115 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1116 unsigned nir_mask = 0;
1117 unsigned dsize = 0;
1118
1119 if (is_read) {
1120 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1121 dsize = nir_dest_bit_size(intr->dest);
1122 } else {
1123 nir_mask = nir_intrinsic_write_mask(intr);
1124 dsize = 32;
1125 }
1126
1127 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1128 unsigned bytemask = mir_to_bytemask(mir_mode_for_destsize(dsize), nir_mask);
1129 mir_set_bytemask(ins, bytemask);
1130
1131 if (dsize == 64)
1132 ins->load_64 = true;
1133 }
1134
1135 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1136 * optimized) versions of UBO #0 */
1137
1138 static midgard_instruction *
1139 emit_ubo_read(
1140 compiler_context *ctx,
1141 nir_instr *instr,
1142 unsigned dest,
1143 unsigned offset,
1144 nir_src *indirect_offset,
1145 unsigned indirect_shift,
1146 unsigned index)
1147 {
1148 /* TODO: half-floats */
1149
1150 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1151 ins.constants.u32[0] = offset;
1152
1153 if (instr->type == nir_instr_type_intrinsic)
1154 mir_set_intr_mask(instr, &ins, true);
1155
1156 if (indirect_offset) {
1157 ins.src[2] = nir_src_index(ctx, indirect_offset);
1158 ins.load_store.arg_2 = (indirect_shift << 5);
1159 } else {
1160 ins.load_store.arg_2 = 0x1E;
1161 }
1162
1163 ins.load_store.arg_1 = index;
1164
1165 return emit_mir_instruction(ctx, ins);
1166 }
1167
1168 /* SSBO reads are like UBO reads if you squint */
1169
1170 static void
1171 emit_ssbo_access(
1172 compiler_context *ctx,
1173 nir_instr *instr,
1174 bool is_read,
1175 unsigned srcdest,
1176 unsigned offset,
1177 nir_src *indirect_offset,
1178 unsigned index)
1179 {
1180 /* TODO: types */
1181
1182 midgard_instruction ins;
1183
1184 if (is_read)
1185 ins = m_ld_int4(srcdest, offset);
1186 else
1187 ins = m_st_int4(srcdest, offset);
1188
1189 /* SSBO reads use a generic memory read interface, so we need the
1190 * address of the SSBO as the first argument. This is a sysval. */
1191
1192 unsigned addr = make_compiler_temp(ctx);
1193 emit_sysval_read(ctx, instr, addr, 2);
1194
1195 /* The source array:
1196 *
1197 * src[0] = store ? value : unused
1198 * src[1] = arg_1
1199 * src[2] = arg_2
1200 *
1201 * We would like arg_1 = the address and
1202 * arg_2 = the offset.
1203 */
1204
1205 ins.src[1] = addr;
1206
1207 /* TODO: What is this? It looks superficially like a shift << 5, but
1208 * arg_1 doesn't take a shift Should it be E0 or A0? We also need the
1209 * indirect offset. */
1210
1211 if (indirect_offset) {
1212 ins.load_store.arg_1 |= 0xE0;
1213 ins.src[2] = nir_src_index(ctx, indirect_offset);
1214 } else {
1215 ins.load_store.arg_2 = 0x7E;
1216 }
1217
1218 /* TODO: Bounds check */
1219
1220 /* Finally, we emit the direct offset */
1221
1222 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1223 ins.load_store.address = (offset >> 9);
1224 mir_set_intr_mask(instr, &ins, is_read);
1225
1226 emit_mir_instruction(ctx, ins);
1227 }
1228
1229 static void
1230 emit_varying_read(
1231 compiler_context *ctx,
1232 unsigned dest, unsigned offset,
1233 unsigned nr_comp, unsigned component,
1234 nir_src *indirect_offset, nir_alu_type type, bool flat)
1235 {
1236 /* XXX: Half-floats? */
1237 /* TODO: swizzle, mask */
1238
1239 midgard_instruction ins = m_ld_vary_32(dest, offset);
1240 ins.mask = mask_of(nr_comp);
1241
1242 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1243 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1244
1245 midgard_varying_parameter p = {
1246 .is_varying = 1,
1247 .interpolation = midgard_interp_default,
1248 .flat = flat,
1249 };
1250
1251 unsigned u;
1252 memcpy(&u, &p, sizeof(p));
1253 ins.load_store.varying_parameters = u;
1254
1255 if (indirect_offset)
1256 ins.src[2] = nir_src_index(ctx, indirect_offset);
1257 else
1258 ins.load_store.arg_2 = 0x1E;
1259
1260 ins.load_store.arg_1 = 0x9E;
1261
1262 /* Use the type appropriate load */
1263 switch (type) {
1264 case nir_type_uint:
1265 case nir_type_bool:
1266 ins.load_store.op = midgard_op_ld_vary_32u;
1267 break;
1268 case nir_type_int:
1269 ins.load_store.op = midgard_op_ld_vary_32i;
1270 break;
1271 case nir_type_float:
1272 ins.load_store.op = midgard_op_ld_vary_32;
1273 break;
1274 default:
1275 unreachable("Attempted to load unknown type");
1276 break;
1277 }
1278
1279 emit_mir_instruction(ctx, ins);
1280 }
1281
1282 static void
1283 emit_attr_read(
1284 compiler_context *ctx,
1285 unsigned dest, unsigned offset,
1286 unsigned nr_comp, nir_alu_type t)
1287 {
1288 midgard_instruction ins = m_ld_attr_32(dest, offset);
1289 ins.load_store.arg_1 = 0x1E;
1290 ins.load_store.arg_2 = 0x1E;
1291 ins.mask = mask_of(nr_comp);
1292
1293 /* Use the type appropriate load */
1294 switch (t) {
1295 case nir_type_uint:
1296 case nir_type_bool:
1297 ins.load_store.op = midgard_op_ld_attr_32u;
1298 break;
1299 case nir_type_int:
1300 ins.load_store.op = midgard_op_ld_attr_32i;
1301 break;
1302 case nir_type_float:
1303 ins.load_store.op = midgard_op_ld_attr_32;
1304 break;
1305 default:
1306 unreachable("Attempted to load unknown type");
1307 break;
1308 }
1309
1310 emit_mir_instruction(ctx, ins);
1311 }
1312
1313 void
1314 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1315 unsigned nr_components)
1316 {
1317 unsigned dest = 0;
1318
1319 /* Figure out which uniform this is */
1320 int sysval = sysval_for_instr(ctx, instr, &dest);
1321 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1322
1323 if (dest_override >= 0)
1324 dest = dest_override;
1325
1326 /* Sysvals are prefix uniforms */
1327 unsigned uniform = ((uintptr_t) val) - 1;
1328
1329 /* Emit the read itself -- this is never indirect */
1330 midgard_instruction *ins =
1331 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0, 0);
1332
1333 ins->mask = mask_of(nr_components);
1334 }
1335
1336 static unsigned
1337 compute_builtin_arg(nir_op op)
1338 {
1339 switch (op) {
1340 case nir_intrinsic_load_work_group_id:
1341 return 0x14;
1342 case nir_intrinsic_load_local_invocation_id:
1343 return 0x10;
1344 default:
1345 unreachable("Invalid compute paramater loaded");
1346 }
1347 }
1348
1349 static void
1350 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1351 {
1352 emit_explicit_constant(ctx, src, src);
1353
1354 struct midgard_instruction ins =
1355 v_branch(false, false);
1356
1357 ins.writeout = true;
1358
1359 /* Add dependencies */
1360 ins.src[0] = src;
1361 ins.constants.u32[0] = rt * 0x100;
1362
1363 /* Emit the branch */
1364 midgard_instruction *br = emit_mir_instruction(ctx, ins);
1365 schedule_barrier(ctx);
1366
1367 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1368 assert(!ctx->writeout_branch[rt]);
1369 ctx->writeout_branch[rt] = br;
1370
1371 /* Push our current location = current block count - 1 = where we'll
1372 * jump to. Maybe a bit too clever for my own good */
1373
1374 br->branch.target_block = ctx->block_count - 1;
1375 }
1376
1377 static void
1378 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1379 {
1380 unsigned reg = nir_dest_index(ctx, &instr->dest);
1381 midgard_instruction ins = m_ld_compute_id(reg, 0);
1382 ins.mask = mask_of(3);
1383 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1384 emit_mir_instruction(ctx, ins);
1385 }
1386
1387 static unsigned
1388 vertex_builtin_arg(nir_op op)
1389 {
1390 switch (op) {
1391 case nir_intrinsic_load_vertex_id:
1392 return PAN_VERTEX_ID;
1393 case nir_intrinsic_load_instance_id:
1394 return PAN_INSTANCE_ID;
1395 default:
1396 unreachable("Invalid vertex builtin");
1397 }
1398 }
1399
1400 static void
1401 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1402 {
1403 unsigned reg = nir_dest_index(ctx, &instr->dest);
1404 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1405 }
1406
1407 static void
1408 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1409 {
1410 unsigned offset = 0, reg;
1411
1412 switch (instr->intrinsic) {
1413 case nir_intrinsic_discard_if:
1414 case nir_intrinsic_discard: {
1415 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1416 struct midgard_instruction discard = v_branch(conditional, false);
1417 discard.branch.target_type = TARGET_DISCARD;
1418
1419 if (conditional)
1420 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1421
1422 emit_mir_instruction(ctx, discard);
1423 schedule_barrier(ctx);
1424
1425 break;
1426 }
1427
1428 case nir_intrinsic_load_uniform:
1429 case nir_intrinsic_load_ubo:
1430 case nir_intrinsic_load_ssbo:
1431 case nir_intrinsic_load_input:
1432 case nir_intrinsic_load_interpolated_input: {
1433 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1434 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1435 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1436 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1437 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1438
1439 /* Get the base type of the intrinsic */
1440 /* TODO: Infer type? Does it matter? */
1441 nir_alu_type t =
1442 (is_ubo || is_ssbo) ? nir_type_uint :
1443 (is_interp) ? nir_type_float :
1444 nir_intrinsic_type(instr);
1445
1446 t = nir_alu_type_get_base_type(t);
1447
1448 if (!(is_ubo || is_ssbo)) {
1449 offset = nir_intrinsic_base(instr);
1450 }
1451
1452 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1453
1454 nir_src *src_offset = nir_get_io_offset_src(instr);
1455
1456 bool direct = nir_src_is_const(*src_offset);
1457 nir_src *indirect_offset = direct ? NULL : src_offset;
1458
1459 if (direct)
1460 offset += nir_src_as_uint(*src_offset);
1461
1462 /* We may need to apply a fractional offset */
1463 int component = (is_flat || is_interp) ?
1464 nir_intrinsic_component(instr) : 0;
1465 reg = nir_dest_index(ctx, &instr->dest);
1466
1467 if (is_uniform && !ctx->is_blend) {
1468 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 4, 0);
1469 } else if (is_ubo) {
1470 nir_src index = instr->src[0];
1471
1472 /* TODO: Is indirect block number possible? */
1473 assert(nir_src_is_const(index));
1474
1475 uint32_t uindex = nir_src_as_uint(index) + 1;
1476 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1477 } else if (is_ssbo) {
1478 nir_src index = instr->src[0];
1479 assert(nir_src_is_const(index));
1480 uint32_t uindex = nir_src_as_uint(index);
1481
1482 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1483 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1484 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t, is_flat);
1485 } else if (ctx->is_blend) {
1486 /* For blend shaders, load the input color, which is
1487 * preloaded to r0 */
1488
1489 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1490 emit_mir_instruction(ctx, move);
1491 schedule_barrier(ctx);
1492 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1493 emit_attr_read(ctx, reg, offset, nr_comp, t);
1494 } else {
1495 DBG("Unknown load\n");
1496 assert(0);
1497 }
1498
1499 break;
1500 }
1501
1502 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1503 case nir_intrinsic_load_barycentric_pixel:
1504 case nir_intrinsic_load_barycentric_centroid:
1505 break;
1506
1507 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1508
1509 case nir_intrinsic_load_raw_output_pan:
1510 case nir_intrinsic_load_output_u8_as_fp16_pan:
1511 reg = nir_dest_index(ctx, &instr->dest);
1512 assert(ctx->is_blend);
1513
1514 /* T720 and below use different blend opcodes with slightly
1515 * different semantics than T760 and up */
1516
1517 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1518 bool old_blend = ctx->quirks & MIDGARD_OLD_BLEND;
1519
1520 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1521 ld.load_store.op = old_blend ?
1522 midgard_op_ld_color_buffer_u8_as_fp16_old :
1523 midgard_op_ld_color_buffer_u8_as_fp16;
1524
1525 if (old_blend) {
1526 ld.load_store.address = 1;
1527 ld.load_store.arg_2 = 0x1E;
1528 }
1529
1530 for (unsigned c = 2; c < 16; ++c)
1531 ld.swizzle[0][c] = 0;
1532 }
1533
1534 emit_mir_instruction(ctx, ld);
1535 break;
1536
1537 case nir_intrinsic_load_blend_const_color_rgba: {
1538 assert(ctx->is_blend);
1539 reg = nir_dest_index(ctx, &instr->dest);
1540
1541 /* Blend constants are embedded directly in the shader and
1542 * patched in, so we use some magic routing */
1543
1544 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1545 ins.has_constants = true;
1546 ins.has_blend_constant = true;
1547 emit_mir_instruction(ctx, ins);
1548 break;
1549 }
1550
1551 case nir_intrinsic_store_output:
1552 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1553
1554 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1555
1556 reg = nir_src_index(ctx, &instr->src[0]);
1557
1558 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1559 emit_fragment_store(ctx, reg, offset);
1560 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1561 /* We should have been vectorized, though we don't
1562 * currently check that st_vary is emitted only once
1563 * per slot (this is relevant, since there's not a mask
1564 * parameter available on the store [set to 0 by the
1565 * blob]). We do respect the component by adjusting the
1566 * swizzle. If this is a constant source, we'll need to
1567 * emit that explicitly. */
1568
1569 emit_explicit_constant(ctx, reg, reg);
1570
1571 unsigned dst_component = nir_intrinsic_component(instr);
1572 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1573
1574 midgard_instruction st = m_st_vary_32(reg, offset);
1575 st.load_store.arg_1 = 0x9E;
1576 st.load_store.arg_2 = 0x1E;
1577
1578 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1579 case nir_type_uint:
1580 case nir_type_bool:
1581 st.load_store.op = midgard_op_st_vary_32u;
1582 break;
1583 case nir_type_int:
1584 st.load_store.op = midgard_op_st_vary_32i;
1585 break;
1586 case nir_type_float:
1587 st.load_store.op = midgard_op_st_vary_32;
1588 break;
1589 default:
1590 unreachable("Attempted to store unknown type");
1591 break;
1592 }
1593
1594 /* nir_intrinsic_component(store_intr) encodes the
1595 * destination component start. Source component offset
1596 * adjustment is taken care of in
1597 * install_registers_instr(), when offset_swizzle() is
1598 * called.
1599 */
1600 unsigned src_component = COMPONENT_X;
1601
1602 assert(nr_comp > 0);
1603 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1604 st.swizzle[0][i] = src_component;
1605 if (i >= dst_component && i < dst_component + nr_comp - 1)
1606 src_component++;
1607 }
1608
1609 emit_mir_instruction(ctx, st);
1610 } else {
1611 DBG("Unknown store\n");
1612 assert(0);
1613 }
1614
1615 break;
1616
1617 /* Special case of store_output for lowered blend shaders */
1618 case nir_intrinsic_store_raw_output_pan:
1619 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1620 reg = nir_src_index(ctx, &instr->src[0]);
1621
1622 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1623 /* Suppose reg = qr0.xyzw. That means 4 8-bit ---> 1 32-bit. So
1624 * reg = r0.x. We want to splatter. So we can do a 32-bit move
1625 * of:
1626 *
1627 * imov r0.xyzw, r0.xxxx
1628 */
1629
1630 unsigned expanded = make_compiler_temp(ctx);
1631
1632 midgard_instruction splatter = v_mov(reg, expanded);
1633
1634 for (unsigned c = 0; c < 16; ++c)
1635 splatter.swizzle[1][c] = 0;
1636
1637 emit_mir_instruction(ctx, splatter);
1638 emit_fragment_store(ctx, expanded, ctx->blend_rt);
1639 } else
1640 emit_fragment_store(ctx, reg, ctx->blend_rt);
1641
1642 break;
1643
1644 case nir_intrinsic_store_ssbo:
1645 assert(nir_src_is_const(instr->src[1]));
1646
1647 bool direct_offset = nir_src_is_const(instr->src[2]);
1648 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1649 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1650 reg = nir_src_index(ctx, &instr->src[0]);
1651
1652 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1653
1654 emit_explicit_constant(ctx, reg, reg);
1655 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1656 break;
1657
1658 case nir_intrinsic_load_viewport_scale:
1659 case nir_intrinsic_load_viewport_offset:
1660 case nir_intrinsic_load_num_work_groups:
1661 case nir_intrinsic_load_sampler_lod_parameters_pan:
1662 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1663 break;
1664
1665 case nir_intrinsic_load_work_group_id:
1666 case nir_intrinsic_load_local_invocation_id:
1667 emit_compute_builtin(ctx, instr);
1668 break;
1669
1670 case nir_intrinsic_load_vertex_id:
1671 case nir_intrinsic_load_instance_id:
1672 emit_vertex_builtin(ctx, instr);
1673 break;
1674
1675 default:
1676 printf ("Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
1677 assert(0);
1678 break;
1679 }
1680 }
1681
1682 static unsigned
1683 midgard_tex_format(enum glsl_sampler_dim dim)
1684 {
1685 switch (dim) {
1686 case GLSL_SAMPLER_DIM_1D:
1687 case GLSL_SAMPLER_DIM_BUF:
1688 return MALI_TEX_1D;
1689
1690 case GLSL_SAMPLER_DIM_2D:
1691 case GLSL_SAMPLER_DIM_EXTERNAL:
1692 case GLSL_SAMPLER_DIM_RECT:
1693 return MALI_TEX_2D;
1694
1695 case GLSL_SAMPLER_DIM_3D:
1696 return MALI_TEX_3D;
1697
1698 case GLSL_SAMPLER_DIM_CUBE:
1699 return MALI_TEX_CUBE;
1700
1701 default:
1702 DBG("Unknown sampler dim type\n");
1703 assert(0);
1704 return 0;
1705 }
1706 }
1707
1708 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1709 * was successful */
1710
1711 static bool
1712 pan_attach_constant_bias(
1713 compiler_context *ctx,
1714 nir_src lod,
1715 midgard_texture_word *word)
1716 {
1717 /* To attach as constant, it has to *be* constant */
1718
1719 if (!nir_src_is_const(lod))
1720 return false;
1721
1722 float f = nir_src_as_float(lod);
1723
1724 /* Break into fixed-point */
1725 signed lod_int = f;
1726 float lod_frac = f - lod_int;
1727
1728 /* Carry over negative fractions */
1729 if (lod_frac < 0.0) {
1730 lod_int--;
1731 lod_frac += 1.0;
1732 }
1733
1734 /* Encode */
1735 word->bias = float_to_ubyte(lod_frac);
1736 word->bias_int = lod_int;
1737
1738 return true;
1739 }
1740
1741 static enum mali_sampler_type
1742 midgard_sampler_type(nir_alu_type t) {
1743 switch (nir_alu_type_get_base_type(t))
1744 {
1745 case nir_type_float:
1746 return MALI_SAMPLER_FLOAT;
1747 case nir_type_int:
1748 return MALI_SAMPLER_SIGNED;
1749 case nir_type_uint:
1750 return MALI_SAMPLER_UNSIGNED;
1751 default:
1752 unreachable("Unknown sampler type");
1753 }
1754 }
1755
1756 static void
1757 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1758 unsigned midgard_texop)
1759 {
1760 /* TODO */
1761 //assert (!instr->sampler);
1762 //assert (!instr->texture_array_size);
1763
1764 int texture_index = instr->texture_index;
1765 int sampler_index = texture_index;
1766
1767 /* No helper to build texture words -- we do it all here */
1768 midgard_instruction ins = {
1769 .type = TAG_TEXTURE_4,
1770 .mask = 0xF,
1771 .dest = nir_dest_index(ctx, &instr->dest),
1772 .src = { ~0, ~0, ~0, ~0 },
1773 .swizzle = SWIZZLE_IDENTITY_4,
1774 .texture = {
1775 .op = midgard_texop,
1776 .format = midgard_tex_format(instr->sampler_dim),
1777 .texture_handle = texture_index,
1778 .sampler_handle = sampler_index,
1779
1780 /* TODO: half */
1781 .in_reg_full = 1,
1782 .out_full = 1,
1783
1784 .sampler_type = midgard_sampler_type(instr->dest_type),
1785 .shadow = instr->is_shadow,
1786 }
1787 };
1788
1789 /* We may need a temporary for the coordinate */
1790
1791 bool needs_temp_coord =
1792 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
1793 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
1794 (instr->is_shadow);
1795
1796 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
1797
1798 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1799 int index = nir_src_index(ctx, &instr->src[i].src);
1800 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1801
1802 switch (instr->src[i].src_type) {
1803 case nir_tex_src_coord: {
1804 emit_explicit_constant(ctx, index, index);
1805
1806 unsigned coord_mask = mask_of(instr->coord_components);
1807
1808 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
1809
1810 if (flip_zw)
1811 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
1812
1813 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1814 /* texelFetch is undefined on samplerCube */
1815 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1816
1817 /* For cubemaps, we use a special ld/st op to
1818 * select the face and copy the xy into the
1819 * texture register */
1820
1821 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
1822 ld.src[1] = index;
1823 ld.mask = 0x3; /* xy */
1824 ld.load_store.arg_1 = 0x20;
1825 ld.swizzle[1][3] = COMPONENT_X;
1826 emit_mir_instruction(ctx, ld);
1827
1828 /* xyzw -> xyxx */
1829 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1830 ins.swizzle[1][3] = COMPONENT_X;
1831 } else if (needs_temp_coord) {
1832 /* mov coord_temp, coords */
1833 midgard_instruction mov = v_mov(index, coords);
1834 mov.mask = coord_mask;
1835
1836 if (flip_zw)
1837 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
1838
1839 emit_mir_instruction(ctx, mov);
1840 } else {
1841 coords = index;
1842 }
1843
1844 ins.src[1] = coords;
1845
1846 /* Texelfetch coordinates uses all four elements
1847 * (xyz/index) regardless of texture dimensionality,
1848 * which means it's necessary to zero the unused
1849 * components to keep everything happy */
1850
1851 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1852 /* mov index.zw, #0, or generalized */
1853 midgard_instruction mov =
1854 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
1855 mov.has_constants = true;
1856 mov.mask = coord_mask ^ 0xF;
1857 emit_mir_instruction(ctx, mov);
1858 }
1859
1860 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1861 /* Array component in w but NIR wants it in z,
1862 * but if we have a temp coord we already fixed
1863 * that up */
1864
1865 if (nr_components == 3) {
1866 ins.swizzle[1][2] = COMPONENT_Z;
1867 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
1868 } else if (nr_components == 2) {
1869 ins.swizzle[1][2] =
1870 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1871 ins.swizzle[1][3] = COMPONENT_X;
1872 } else
1873 unreachable("Invalid texture 2D components");
1874 }
1875
1876 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1877 /* We zeroed */
1878 ins.swizzle[1][2] = COMPONENT_Z;
1879 ins.swizzle[1][3] = COMPONENT_W;
1880 }
1881
1882 break;
1883 }
1884
1885 case nir_tex_src_bias:
1886 case nir_tex_src_lod: {
1887 /* Try as a constant if we can */
1888
1889 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1890 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1891 break;
1892
1893 ins.texture.lod_register = true;
1894 ins.src[2] = index;
1895
1896 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1897 ins.swizzle[2][c] = COMPONENT_X;
1898
1899 emit_explicit_constant(ctx, index, index);
1900
1901 break;
1902 };
1903
1904 case nir_tex_src_offset: {
1905 ins.texture.offset_register = true;
1906 ins.src[3] = index;
1907
1908 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1909 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
1910
1911 emit_explicit_constant(ctx, index, index);
1912 break;
1913 };
1914
1915 case nir_tex_src_comparator: {
1916 unsigned comp = COMPONENT_Z;
1917
1918 /* mov coord_temp.foo, coords */
1919 midgard_instruction mov = v_mov(index, coords);
1920 mov.mask = 1 << comp;
1921
1922 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
1923 mov.swizzle[1][i] = COMPONENT_X;
1924
1925 emit_mir_instruction(ctx, mov);
1926 break;
1927 }
1928
1929 default: {
1930 printf ("Unknown texture source type: %d\n", instr->src[i].src_type);
1931 assert(0);
1932 }
1933 }
1934 }
1935
1936 emit_mir_instruction(ctx, ins);
1937
1938 /* Used for .cont and .last hinting */
1939 ctx->texture_op_count++;
1940 }
1941
1942 static void
1943 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1944 {
1945 switch (instr->op) {
1946 case nir_texop_tex:
1947 case nir_texop_txb:
1948 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1949 break;
1950 case nir_texop_txl:
1951 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1952 break;
1953 case nir_texop_txf:
1954 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1955 break;
1956 case nir_texop_txs:
1957 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1958 break;
1959 default: {
1960 printf ("Unhandled texture op: %d\n", instr->op);
1961 assert(0);
1962 }
1963 }
1964 }
1965
1966 static void
1967 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1968 {
1969 switch (instr->type) {
1970 case nir_jump_break: {
1971 /* Emit a branch out of the loop */
1972 struct midgard_instruction br = v_branch(false, false);
1973 br.branch.target_type = TARGET_BREAK;
1974 br.branch.target_break = ctx->current_loop_depth;
1975 emit_mir_instruction(ctx, br);
1976 break;
1977 }
1978
1979 default:
1980 DBG("Unknown jump type %d\n", instr->type);
1981 break;
1982 }
1983 }
1984
1985 static void
1986 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1987 {
1988 switch (instr->type) {
1989 case nir_instr_type_load_const:
1990 emit_load_const(ctx, nir_instr_as_load_const(instr));
1991 break;
1992
1993 case nir_instr_type_intrinsic:
1994 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1995 break;
1996
1997 case nir_instr_type_alu:
1998 emit_alu(ctx, nir_instr_as_alu(instr));
1999 break;
2000
2001 case nir_instr_type_tex:
2002 emit_tex(ctx, nir_instr_as_tex(instr));
2003 break;
2004
2005 case nir_instr_type_jump:
2006 emit_jump(ctx, nir_instr_as_jump(instr));
2007 break;
2008
2009 case nir_instr_type_ssa_undef:
2010 /* Spurious */
2011 break;
2012
2013 default:
2014 DBG("Unhandled instruction type\n");
2015 break;
2016 }
2017 }
2018
2019
2020 /* ALU instructions can inline or embed constants, which decreases register
2021 * pressure and saves space. */
2022
2023 #define CONDITIONAL_ATTACH(idx) { \
2024 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2025 \
2026 if (entry) { \
2027 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2028 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2029 } \
2030 }
2031
2032 static void
2033 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2034 {
2035 mir_foreach_instr_in_block(block, alu) {
2036 /* Other instructions cannot inline constants */
2037 if (alu->type != TAG_ALU_4) continue;
2038 if (alu->compact_branch) continue;
2039
2040 /* If there is already a constant here, we can do nothing */
2041 if (alu->has_constants) continue;
2042
2043 CONDITIONAL_ATTACH(0);
2044
2045 if (!alu->has_constants) {
2046 CONDITIONAL_ATTACH(1)
2047 } else if (!alu->inline_constant) {
2048 /* Corner case: _two_ vec4 constants, for instance with a
2049 * csel. For this case, we can only use a constant
2050 * register for one, we'll have to emit a move for the
2051 * other. Note, if both arguments are constants, then
2052 * necessarily neither argument depends on the value of
2053 * any particular register. As the destination register
2054 * will be wiped, that means we can spill the constant
2055 * to the destination register.
2056 */
2057
2058 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2059 unsigned scratch = alu->dest;
2060
2061 if (entry) {
2062 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2063 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2064
2065 /* Set the source */
2066 alu->src[1] = scratch;
2067
2068 /* Inject us -before- the last instruction which set r31 */
2069 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2070 }
2071 }
2072 }
2073 }
2074
2075 /* Being a little silly with the names, but returns the op that is the bitwise
2076 * inverse of the op with the argument switched. I.e. (f and g are
2077 * contrapositives):
2078 *
2079 * f(a, b) = ~g(b, a)
2080 *
2081 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
2082 *
2083 * f(a, b) = ~g(b, a)
2084 * ~f(a, b) = g(b, a)
2085 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
2086 * f(a, b) = h(a, b)
2087 *
2088 * Thus we define this function in pairs.
2089 */
2090
2091 static inline midgard_alu_op
2092 mir_contrapositive(midgard_alu_op op)
2093 {
2094 switch (op) {
2095 case midgard_alu_op_flt:
2096 return midgard_alu_op_fle;
2097 case midgard_alu_op_fle:
2098 return midgard_alu_op_flt;
2099
2100 case midgard_alu_op_ilt:
2101 return midgard_alu_op_ile;
2102 case midgard_alu_op_ile:
2103 return midgard_alu_op_ilt;
2104
2105 default:
2106 unreachable("No known contrapositive");
2107 }
2108 }
2109
2110 /* Midgard supports two types of constants, embedded constants (128-bit) and
2111 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2112 * constants can be demoted to inline constants, for space savings and
2113 * sometimes a performance boost */
2114
2115 static void
2116 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2117 {
2118 mir_foreach_instr_in_block(block, ins) {
2119 if (!ins->has_constants) continue;
2120 if (ins->has_inline_constant) continue;
2121
2122 /* Blend constants must not be inlined by definition */
2123 if (ins->has_blend_constant) continue;
2124
2125 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2126 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2127 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2128
2129 if (!(is_16 || is_32))
2130 continue;
2131
2132 /* src1 cannot be an inline constant due to encoding
2133 * restrictions. So, if possible we try to flip the arguments
2134 * in that case */
2135
2136 int op = ins->alu.op;
2137
2138 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2139 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2140
2141 switch (op) {
2142 /* Conditionals can be inverted */
2143 case midgard_alu_op_flt:
2144 case midgard_alu_op_ilt:
2145 case midgard_alu_op_fle:
2146 case midgard_alu_op_ile:
2147 ins->alu.op = mir_contrapositive(ins->alu.op);
2148 ins->invert = true;
2149 flip = true;
2150 break;
2151
2152 case midgard_alu_op_fcsel:
2153 case midgard_alu_op_icsel:
2154 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2155 default:
2156 break;
2157 }
2158
2159 if (flip)
2160 mir_flip(ins);
2161 }
2162
2163 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2164 /* Extract the source information */
2165
2166 midgard_vector_alu_src *src;
2167 int q = ins->alu.src2;
2168 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2169 src = m;
2170
2171 /* Component is from the swizzle. Take a nonzero component */
2172 assert(ins->mask);
2173 unsigned first_comp = ffs(ins->mask) - 1;
2174 unsigned component = ins->swizzle[1][first_comp];
2175
2176 /* Scale constant appropriately, if we can legally */
2177 uint16_t scaled_constant = 0;
2178
2179 if (is_16) {
2180 scaled_constant = ins->constants.u16[component];
2181 } else if (midgard_is_integer_op(op)) {
2182 scaled_constant = ins->constants.u32[component];
2183
2184 /* Constant overflow after resize */
2185 if (scaled_constant != ins->constants.u32[component])
2186 continue;
2187 } else {
2188 float original = ins->constants.f32[component];
2189 scaled_constant = _mesa_float_to_half(original);
2190
2191 /* Check for loss of precision. If this is
2192 * mediump, we don't care, but for a highp
2193 * shader, we need to pay attention. NIR
2194 * doesn't yet tell us which mode we're in!
2195 * Practically this prevents most constants
2196 * from being inlined, sadly. */
2197
2198 float fp32 = _mesa_half_to_float(scaled_constant);
2199
2200 if (fp32 != original)
2201 continue;
2202 }
2203
2204 /* We don't know how to handle these with a constant */
2205
2206 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2207 DBG("Bailing inline constant...\n");
2208 continue;
2209 }
2210
2211 /* Make sure that the constant is not itself a vector
2212 * by checking if all accessed values are the same. */
2213
2214 const midgard_constants *cons = &ins->constants;
2215 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2216
2217 bool is_vector = false;
2218 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2219
2220 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2221 /* We only care if this component is actually used */
2222 if (!(mask & (1 << c)))
2223 continue;
2224
2225 uint32_t test = is_16 ?
2226 cons->u16[ins->swizzle[1][c]] :
2227 cons->u32[ins->swizzle[1][c]];
2228
2229 if (test != value) {
2230 is_vector = true;
2231 break;
2232 }
2233 }
2234
2235 if (is_vector)
2236 continue;
2237
2238 /* Get rid of the embedded constant */
2239 ins->has_constants = false;
2240 ins->src[1] = ~0;
2241 ins->has_inline_constant = true;
2242 ins->inline_constant = scaled_constant;
2243 }
2244 }
2245 }
2246
2247 /* Dead code elimination for branches at the end of a block - only one branch
2248 * per block is legal semantically */
2249
2250 static void
2251 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2252 {
2253 bool branched = false;
2254
2255 mir_foreach_instr_in_block_safe(block, ins) {
2256 if (!midgard_is_branch_unit(ins->unit)) continue;
2257
2258 if (branched)
2259 mir_remove_instruction(ins);
2260
2261 branched = true;
2262 }
2263 }
2264
2265 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2266 * the move can be propagated away entirely */
2267
2268 static bool
2269 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2270 {
2271 /* Nothing to do */
2272 if (comp == midgard_outmod_none)
2273 return true;
2274
2275 if (*outmod == midgard_outmod_none) {
2276 *outmod = comp;
2277 return true;
2278 }
2279
2280 /* TODO: Compose rules */
2281 return false;
2282 }
2283
2284 static bool
2285 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2286 {
2287 bool progress = false;
2288
2289 mir_foreach_instr_in_block_safe(block, ins) {
2290 if (ins->type != TAG_ALU_4) continue;
2291 if (ins->alu.op != midgard_alu_op_fmov) continue;
2292 if (ins->alu.outmod != midgard_outmod_pos) continue;
2293
2294 /* TODO: Registers? */
2295 unsigned src = ins->src[1];
2296 if (src & IS_REG) continue;
2297
2298 /* There might be a source modifier, too */
2299 if (mir_nontrivial_source2_mod(ins)) continue;
2300
2301 /* Backpropagate the modifier */
2302 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2303 if (v->type != TAG_ALU_4) continue;
2304 if (v->dest != src) continue;
2305
2306 /* Can we even take a float outmod? */
2307 if (midgard_is_integer_out_op(v->alu.op)) continue;
2308
2309 midgard_outmod_float temp = v->alu.outmod;
2310 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2311
2312 /* Throw in the towel.. */
2313 if (!progress) break;
2314
2315 /* Otherwise, transfer the modifier */
2316 v->alu.outmod = temp;
2317 ins->alu.outmod = midgard_outmod_none;
2318
2319 break;
2320 }
2321 }
2322
2323 return progress;
2324 }
2325
2326 static unsigned
2327 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2328 {
2329 /* Loop to ourselves */
2330
2331 struct midgard_instruction ins = v_branch(false, false);
2332 ins.writeout = true;
2333 ins.branch.target_block = ctx->block_count - 1;
2334 ins.constants.u32[0] = rt * 0x100;
2335 emit_mir_instruction(ctx, ins);
2336
2337 ctx->current_block->epilogue = true;
2338 schedule_barrier(ctx);
2339 return ins.branch.target_block;
2340 }
2341
2342 static midgard_block *
2343 emit_block(compiler_context *ctx, nir_block *block)
2344 {
2345 midgard_block *this_block = ctx->after_block;
2346 ctx->after_block = NULL;
2347
2348 if (!this_block)
2349 this_block = create_empty_block(ctx);
2350
2351 list_addtail(&this_block->link, &ctx->blocks);
2352
2353 this_block->is_scheduled = false;
2354 ++ctx->block_count;
2355
2356 /* Set up current block */
2357 list_inithead(&this_block->instructions);
2358 ctx->current_block = this_block;
2359
2360 nir_foreach_instr(instr, block) {
2361 emit_instr(ctx, instr);
2362 ++ctx->instruction_count;
2363 }
2364
2365 return this_block;
2366 }
2367
2368 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2369
2370 static void
2371 emit_if(struct compiler_context *ctx, nir_if *nif)
2372 {
2373 midgard_block *before_block = ctx->current_block;
2374
2375 /* Speculatively emit the branch, but we can't fill it in until later */
2376 EMIT(branch, true, true);
2377 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2378 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2379
2380 /* Emit the two subblocks. */
2381 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2382 midgard_block *end_then_block = ctx->current_block;
2383
2384 /* Emit a jump from the end of the then block to the end of the else */
2385 EMIT(branch, false, false);
2386 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2387
2388 /* Emit second block, and check if it's empty */
2389
2390 int else_idx = ctx->block_count;
2391 int count_in = ctx->instruction_count;
2392 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2393 midgard_block *end_else_block = ctx->current_block;
2394 int after_else_idx = ctx->block_count;
2395
2396 /* Now that we have the subblocks emitted, fix up the branches */
2397
2398 assert(then_block);
2399 assert(else_block);
2400
2401 if (ctx->instruction_count == count_in) {
2402 /* The else block is empty, so don't emit an exit jump */
2403 mir_remove_instruction(then_exit);
2404 then_branch->branch.target_block = after_else_idx;
2405 } else {
2406 then_branch->branch.target_block = else_idx;
2407 then_exit->branch.target_block = after_else_idx;
2408 }
2409
2410 /* Wire up the successors */
2411
2412 ctx->after_block = create_empty_block(ctx);
2413
2414 midgard_block_add_successor(before_block, then_block);
2415 midgard_block_add_successor(before_block, else_block);
2416
2417 midgard_block_add_successor(end_then_block, ctx->after_block);
2418 midgard_block_add_successor(end_else_block, ctx->after_block);
2419 }
2420
2421 static void
2422 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2423 {
2424 /* Remember where we are */
2425 midgard_block *start_block = ctx->current_block;
2426
2427 /* Allocate a loop number, growing the current inner loop depth */
2428 int loop_idx = ++ctx->current_loop_depth;
2429
2430 /* Get index from before the body so we can loop back later */
2431 int start_idx = ctx->block_count;
2432
2433 /* Emit the body itself */
2434 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2435
2436 /* Branch back to loop back */
2437 struct midgard_instruction br_back = v_branch(false, false);
2438 br_back.branch.target_block = start_idx;
2439 emit_mir_instruction(ctx, br_back);
2440
2441 /* Mark down that branch in the graph. */
2442 midgard_block_add_successor(start_block, loop_block);
2443 midgard_block_add_successor(ctx->current_block, loop_block);
2444
2445 /* Find the index of the block about to follow us (note: we don't add
2446 * one; blocks are 0-indexed so we get a fencepost problem) */
2447 int break_block_idx = ctx->block_count;
2448
2449 /* Fix up the break statements we emitted to point to the right place,
2450 * now that we can allocate a block number for them */
2451 ctx->after_block = create_empty_block(ctx);
2452
2453 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2454 mir_foreach_instr_in_block(block, ins) {
2455 if (ins->type != TAG_ALU_4) continue;
2456 if (!ins->compact_branch) continue;
2457
2458 /* We found a branch -- check the type to see if we need to do anything */
2459 if (ins->branch.target_type != TARGET_BREAK) continue;
2460
2461 /* It's a break! Check if it's our break */
2462 if (ins->branch.target_break != loop_idx) continue;
2463
2464 /* Okay, cool, we're breaking out of this loop.
2465 * Rewrite from a break to a goto */
2466
2467 ins->branch.target_type = TARGET_GOTO;
2468 ins->branch.target_block = break_block_idx;
2469
2470 midgard_block_add_successor(block, ctx->after_block);
2471 }
2472 }
2473
2474 /* Now that we've finished emitting the loop, free up the depth again
2475 * so we play nice with recursion amid nested loops */
2476 --ctx->current_loop_depth;
2477
2478 /* Dump loop stats */
2479 ++ctx->loop_count;
2480 }
2481
2482 static midgard_block *
2483 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2484 {
2485 midgard_block *start_block = NULL;
2486
2487 foreach_list_typed(nir_cf_node, node, node, list) {
2488 switch (node->type) {
2489 case nir_cf_node_block: {
2490 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2491
2492 if (!start_block)
2493 start_block = block;
2494
2495 break;
2496 }
2497
2498 case nir_cf_node_if:
2499 emit_if(ctx, nir_cf_node_as_if(node));
2500 break;
2501
2502 case nir_cf_node_loop:
2503 emit_loop(ctx, nir_cf_node_as_loop(node));
2504 break;
2505
2506 case nir_cf_node_function:
2507 assert(0);
2508 break;
2509 }
2510 }
2511
2512 return start_block;
2513 }
2514
2515 /* Due to lookahead, we need to report the first tag executed in the command
2516 * stream and in branch targets. An initial block might be empty, so iterate
2517 * until we find one that 'works' */
2518
2519 static unsigned
2520 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2521 {
2522 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2523
2524 unsigned first_tag = 0;
2525
2526 mir_foreach_block_from(ctx, initial_block, v) {
2527 if (v->quadword_count) {
2528 midgard_bundle *initial_bundle =
2529 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2530
2531 first_tag = initial_bundle->tag;
2532 break;
2533 }
2534 }
2535
2536 return first_tag;
2537 }
2538
2539 static unsigned
2540 pan_format_from_nir_base(nir_alu_type base)
2541 {
2542 switch (base) {
2543 case nir_type_int:
2544 return MALI_FORMAT_SINT;
2545 case nir_type_uint:
2546 case nir_type_bool:
2547 return MALI_FORMAT_UINT;
2548 case nir_type_float:
2549 return MALI_CHANNEL_FLOAT;
2550 default:
2551 unreachable("Invalid base");
2552 }
2553 }
2554
2555 static unsigned
2556 pan_format_from_nir_size(nir_alu_type base, unsigned size)
2557 {
2558 if (base == nir_type_float) {
2559 switch (size) {
2560 case 16: return MALI_FORMAT_SINT;
2561 case 32: return MALI_FORMAT_UNORM;
2562 default:
2563 unreachable("Invalid float size for format");
2564 }
2565 } else {
2566 switch (size) {
2567 case 1:
2568 case 8: return MALI_CHANNEL_8;
2569 case 16: return MALI_CHANNEL_16;
2570 case 32: return MALI_CHANNEL_32;
2571 default:
2572 unreachable("Invalid int size for format");
2573 }
2574 }
2575 }
2576
2577 static enum mali_format
2578 pan_format_from_glsl(const struct glsl_type *type)
2579 {
2580 enum glsl_base_type glsl_base = glsl_get_base_type(glsl_without_array(type));
2581 nir_alu_type t = nir_get_nir_type_for_glsl_base_type(glsl_base);
2582
2583 unsigned base = nir_alu_type_get_base_type(t);
2584 unsigned size = nir_alu_type_get_type_size(t);
2585
2586 return pan_format_from_nir_base(base) |
2587 pan_format_from_nir_size(base, size) |
2588 MALI_NR_CHANNELS(4);
2589 }
2590
2591 /* For each fragment writeout instruction, generate a writeout loop to
2592 * associate with it */
2593
2594 static void
2595 mir_add_writeout_loops(compiler_context *ctx)
2596 {
2597 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2598 midgard_instruction *br = ctx->writeout_branch[rt];
2599 if (!br) continue;
2600
2601 unsigned popped = br->branch.target_block;
2602 midgard_block_add_successor(mir_get_block(ctx, popped - 1), ctx->current_block);
2603 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2604
2605 /* If we have more RTs, we'll need to restore back after our
2606 * loop terminates */
2607
2608 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2609 midgard_instruction uncond = v_branch(false, false);
2610 uncond.branch.target_block = popped;
2611 emit_mir_instruction(ctx, uncond);
2612 midgard_block_add_successor(ctx->current_block, mir_get_block(ctx, popped));
2613 schedule_barrier(ctx);
2614 } else {
2615 /* We're last, so we can terminate here */
2616 br->last_writeout = true;
2617 }
2618 }
2619 }
2620
2621 int
2622 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
2623 {
2624 struct util_dynarray *compiled = &program->compiled;
2625
2626 midgard_debug = debug_get_option_midgard_debug();
2627
2628 /* TODO: Bound against what? */
2629 compiler_context *ctx = rzalloc(NULL, compiler_context);
2630
2631 ctx->nir = nir;
2632 ctx->stage = nir->info.stage;
2633 ctx->is_blend = is_blend;
2634 ctx->alpha_ref = program->alpha_ref;
2635 ctx->blend_rt = blend_rt;
2636 ctx->quirks = midgard_get_quirks(gpu_id);
2637
2638 /* Start off with a safe cutoff, allowing usage of all 16 work
2639 * registers. Later, we'll promote uniform reads to uniform registers
2640 * if we determine it is beneficial to do so */
2641 ctx->uniform_cutoff = 8;
2642
2643 /* Initialize at a global (not block) level hash tables */
2644
2645 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2646 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2647 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2648
2649 /* Record the varying mapping for the command stream's bookkeeping */
2650
2651 struct exec_list *varyings =
2652 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2653
2654 unsigned max_varying = 0;
2655 nir_foreach_variable(var, varyings) {
2656 unsigned loc = var->data.driver_location;
2657 unsigned sz = glsl_type_size(var->type, FALSE);
2658
2659 for (int c = 0; c < sz; ++c) {
2660 program->varyings[loc + c] = var->data.location + c;
2661 program->varying_type[loc + c] = pan_format_from_glsl(var->type);
2662 max_varying = MAX2(max_varying, loc + c);
2663 }
2664 }
2665
2666 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2667 * (so we don't accidentally duplicate the epilogue since mesa/st has
2668 * messed with our I/O quite a bit already) */
2669
2670 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2671
2672 if (ctx->stage == MESA_SHADER_VERTEX) {
2673 NIR_PASS_V(nir, nir_lower_viewport_transform);
2674 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2675 }
2676
2677 NIR_PASS_V(nir, nir_lower_var_copies);
2678 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2679 NIR_PASS_V(nir, nir_split_var_copies);
2680 NIR_PASS_V(nir, nir_lower_var_copies);
2681 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2682 NIR_PASS_V(nir, nir_lower_var_copies);
2683 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2684
2685 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2686
2687 /* Optimisation passes */
2688
2689 optimise_nir(nir, ctx->quirks);
2690
2691 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2692 nir_print_shader(nir, stdout);
2693 }
2694
2695 /* Assign sysvals and counts, now that we're sure
2696 * (post-optimisation) */
2697
2698 midgard_nir_assign_sysvals(ctx, nir);
2699
2700 program->uniform_count = nir->num_uniforms;
2701 program->sysval_count = ctx->sysval_count;
2702 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2703
2704 nir_foreach_function(func, nir) {
2705 if (!func->impl)
2706 continue;
2707
2708 list_inithead(&ctx->blocks);
2709 ctx->block_count = 0;
2710 ctx->func = func;
2711
2712 emit_cf_list(ctx, &func->impl->body);
2713 break; /* TODO: Multi-function shaders */
2714 }
2715
2716 util_dynarray_init(compiled, NULL);
2717
2718 /* Per-block lowering before opts */
2719
2720 mir_foreach_block(ctx, block) {
2721 inline_alu_constants(ctx, block);
2722 midgard_opt_promote_fmov(ctx, block);
2723 embedded_to_inline_constant(ctx, block);
2724 }
2725 /* MIR-level optimizations */
2726
2727 bool progress = false;
2728
2729 do {
2730 progress = false;
2731
2732 mir_foreach_block(ctx, block) {
2733 progress |= midgard_opt_pos_propagate(ctx, block);
2734 progress |= midgard_opt_copy_prop(ctx, block);
2735 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2736 progress |= midgard_opt_combine_projection(ctx, block);
2737 progress |= midgard_opt_varying_projection(ctx, block);
2738 progress |= midgard_opt_not_propagate(ctx, block);
2739 progress |= midgard_opt_fuse_src_invert(ctx, block);
2740 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2741 progress |= midgard_opt_csel_invert(ctx, block);
2742 progress |= midgard_opt_drop_cmp_invert(ctx, block);
2743 progress |= midgard_opt_invert_branch(ctx, block);
2744 }
2745 } while (progress);
2746
2747 mir_foreach_block(ctx, block) {
2748 midgard_lower_invert(ctx, block);
2749 midgard_lower_derivatives(ctx, block);
2750 }
2751
2752 /* Nested control-flow can result in dead branches at the end of the
2753 * block. This messes with our analysis and is just dead code, so cull
2754 * them */
2755 mir_foreach_block(ctx, block) {
2756 midgard_opt_cull_dead_branch(ctx, block);
2757 }
2758
2759 /* Ensure we were lowered */
2760 mir_foreach_instr_global(ctx, ins) {
2761 assert(!ins->invert);
2762 }
2763
2764 if (ctx->stage == MESA_SHADER_FRAGMENT)
2765 mir_add_writeout_loops(ctx);
2766
2767 /* Schedule! */
2768 midgard_schedule_program(ctx);
2769 mir_ra(ctx);
2770
2771 /* Now that all the bundles are scheduled and we can calculate block
2772 * sizes, emit actual branch instructions rather than placeholders */
2773
2774 int br_block_idx = 0;
2775
2776 mir_foreach_block(ctx, block) {
2777 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2778 for (int c = 0; c < bundle->instruction_count; ++c) {
2779 midgard_instruction *ins = bundle->instructions[c];
2780
2781 if (!midgard_is_branch_unit(ins->unit)) continue;
2782
2783 /* Parse some basic branch info */
2784 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2785 bool is_conditional = ins->branch.conditional;
2786 bool is_inverted = ins->branch.invert_conditional;
2787 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2788 bool is_writeout = ins->writeout;
2789
2790 /* Determine the block we're jumping to */
2791 int target_number = ins->branch.target_block;
2792
2793 /* Report the destination tag */
2794 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2795
2796 /* Count up the number of quadwords we're
2797 * jumping over = number of quadwords until
2798 * (br_block_idx, target_number) */
2799
2800 int quadword_offset = 0;
2801
2802 if (is_discard) {
2803 /* Ignored */
2804 } else if (target_number > br_block_idx) {
2805 /* Jump forward */
2806
2807 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2808 midgard_block *blk = mir_get_block(ctx, idx);
2809 assert(blk);
2810
2811 quadword_offset += blk->quadword_count;
2812 }
2813 } else {
2814 /* Jump backwards */
2815
2816 for (int idx = br_block_idx; idx >= target_number; --idx) {
2817 midgard_block *blk = mir_get_block(ctx, idx);
2818 assert(blk);
2819
2820 quadword_offset -= blk->quadword_count;
2821 }
2822 }
2823
2824 /* Unconditional extended branches (far jumps)
2825 * have issues, so we always use a conditional
2826 * branch, setting the condition to always for
2827 * unconditional. For compact unconditional
2828 * branches, cond isn't used so it doesn't
2829 * matter what we pick. */
2830
2831 midgard_condition cond =
2832 !is_conditional ? midgard_condition_always :
2833 is_inverted ? midgard_condition_false :
2834 midgard_condition_true;
2835
2836 midgard_jmp_writeout_op op =
2837 is_discard ? midgard_jmp_writeout_op_discard :
2838 is_writeout ? midgard_jmp_writeout_op_writeout :
2839 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2840 midgard_jmp_writeout_op_branch_cond;
2841
2842 if (!is_compact) {
2843 midgard_branch_extended branch =
2844 midgard_create_branch_extended(
2845 cond, op,
2846 dest_tag,
2847 quadword_offset);
2848
2849 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2850 } else if (is_conditional || is_discard) {
2851 midgard_branch_cond branch = {
2852 .op = op,
2853 .dest_tag = dest_tag,
2854 .offset = quadword_offset,
2855 .cond = cond
2856 };
2857
2858 assert(branch.offset == quadword_offset);
2859
2860 memcpy(&ins->br_compact, &branch, sizeof(branch));
2861 } else {
2862 assert(op == midgard_jmp_writeout_op_branch_uncond);
2863
2864 midgard_branch_uncond branch = {
2865 .op = op,
2866 .dest_tag = dest_tag,
2867 .offset = quadword_offset,
2868 .unknown = 1
2869 };
2870
2871 assert(branch.offset == quadword_offset);
2872
2873 memcpy(&ins->br_compact, &branch, sizeof(branch));
2874 }
2875 }
2876 }
2877
2878 ++br_block_idx;
2879 }
2880
2881 /* Emit flat binary from the instruction arrays. Iterate each block in
2882 * sequence. Save instruction boundaries such that lookahead tags can
2883 * be assigned easily */
2884
2885 /* Cache _all_ bundles in source order for lookahead across failed branches */
2886
2887 int bundle_count = 0;
2888 mir_foreach_block(ctx, block) {
2889 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2890 }
2891 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2892 int bundle_idx = 0;
2893 mir_foreach_block(ctx, block) {
2894 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2895 source_order_bundles[bundle_idx++] = bundle;
2896 }
2897 }
2898
2899 int current_bundle = 0;
2900
2901 /* Midgard prefetches instruction types, so during emission we
2902 * need to lookahead. Unless this is the last instruction, in
2903 * which we return 1. */
2904
2905 mir_foreach_block(ctx, block) {
2906 mir_foreach_bundle_in_block(block, bundle) {
2907 int lookahead = 1;
2908
2909 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
2910 lookahead = source_order_bundles[current_bundle + 1]->tag;
2911
2912 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2913 ++current_bundle;
2914 }
2915
2916 /* TODO: Free deeper */
2917 //util_dynarray_fini(&block->instructions);
2918 }
2919
2920 free(source_order_bundles);
2921
2922 /* Report the very first tag executed */
2923 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2924
2925 /* Deal with off-by-one related to the fencepost problem */
2926 program->work_register_count = ctx->work_registers + 1;
2927 program->uniform_cutoff = ctx->uniform_cutoff;
2928
2929 program->blend_patch_offset = ctx->blend_constant_offset;
2930 program->tls_size = ctx->tls_size;
2931
2932 if (midgard_debug & MIDGARD_DBG_SHADERS)
2933 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2934
2935 if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
2936 unsigned nr_bundles = 0, nr_ins = 0;
2937
2938 /* Count instructions and bundles */
2939
2940 mir_foreach_block(ctx, block) {
2941 nr_bundles += util_dynarray_num_elements(
2942 &block->bundles, midgard_bundle);
2943
2944 mir_foreach_bundle_in_block(block, bun)
2945 nr_ins += bun->instruction_count;
2946 }
2947
2948 /* Calculate thread count. There are certain cutoffs by
2949 * register count for thread count */
2950
2951 unsigned nr_registers = program->work_register_count;
2952
2953 unsigned nr_threads =
2954 (nr_registers <= 4) ? 4 :
2955 (nr_registers <= 8) ? 2 :
2956 1;
2957
2958 /* Dump stats */
2959
2960 fprintf(stderr, "shader%d - %s shader: "
2961 "%u inst, %u bundles, %u quadwords, "
2962 "%u registers, %u threads, %u loops, "
2963 "%u:%u spills:fills\n",
2964 SHADER_DB_COUNT++,
2965 gl_shader_stage_name(ctx->stage),
2966 nr_ins, nr_bundles, ctx->quadword_count,
2967 nr_registers, nr_threads,
2968 ctx->loop_count,
2969 ctx->spills, ctx->fills);
2970 }
2971
2972 ralloc_free(ctx);
2973
2974 return 0;
2975 }