pan/midgard: Implement i2i64 and u2u64
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/u_math.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "midgard_ops.h"
49 #include "helpers.h"
50 #include "compiler.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71
72 static bool
73 midgard_is_branch_unit(unsigned unit)
74 {
75 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
76 }
77
78 static midgard_block *
79 create_empty_block(compiler_context *ctx)
80 {
81 midgard_block *blk = rzalloc(ctx, midgard_block);
82
83 blk->predecessors = _mesa_set_create(blk,
84 _mesa_hash_pointer,
85 _mesa_key_pointer_equal);
86
87 blk->source_id = ctx->block_source_count++;
88
89 return blk;
90 }
91
92 static void
93 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
94 {
95 assert(block);
96 assert(successor);
97
98 /* Deduplicate */
99 for (unsigned i = 0; i < block->nr_successors; ++i) {
100 if (block->successors[i] == successor)
101 return;
102 }
103
104 block->successors[block->nr_successors++] = successor;
105 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
106
107 /* Note the predecessor in the other direction */
108 _mesa_set_add(successor->predecessors, block);
109 }
110
111 static void
112 schedule_barrier(compiler_context *ctx)
113 {
114 midgard_block *temp = ctx->after_block;
115 ctx->after_block = create_empty_block(ctx);
116 ctx->block_count++;
117 list_addtail(&ctx->after_block->link, &ctx->blocks);
118 list_inithead(&ctx->after_block->instructions);
119 midgard_block_add_successor(ctx->current_block, ctx->after_block);
120 ctx->current_block = ctx->after_block;
121 ctx->after_block = temp;
122 }
123
124 /* Helpers to generate midgard_instruction's using macro magic, since every
125 * driver seems to do it that way */
126
127 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
128
129 #define M_LOAD_STORE(name, store) \
130 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
131 midgard_instruction i = { \
132 .type = TAG_LOAD_STORE_4, \
133 .mask = 0xF, \
134 .dest = ~0, \
135 .src = { ~0, ~0, ~0 }, \
136 .swizzle = SWIZZLE_IDENTITY_4, \
137 .load_store = { \
138 .op = midgard_op_##name, \
139 .address = address \
140 } \
141 }; \
142 \
143 if (store) \
144 i.src[0] = ssa; \
145 else \
146 i.dest = ssa; \
147 \
148 return i; \
149 }
150
151 #define M_LOAD(name) M_LOAD_STORE(name, false)
152 #define M_STORE(name) M_LOAD_STORE(name, true)
153
154 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
155 * the corresponding Midgard source */
156
157 static midgard_vector_alu_src
158 vector_alu_modifiers(nir_alu_src *src, bool is_int, unsigned broadcast_count,
159 bool half, bool sext)
160 {
161 /* Figure out how many components there are so we can adjust.
162 * Specifically we want to broadcast the last channel so things like
163 * ball2/3 work.
164 */
165
166 if (broadcast_count && src) {
167 uint8_t last_component = src->swizzle[broadcast_count - 1];
168
169 for (unsigned c = broadcast_count; c < NIR_MAX_VEC_COMPONENTS; ++c) {
170 src->swizzle[c] = last_component;
171 }
172 }
173
174 midgard_vector_alu_src alu_src = {
175 .rep_low = 0,
176 .rep_high = 0,
177 .half = half
178 };
179
180 if (is_int) {
181 alu_src.mod = midgard_int_normal;
182
183 /* Sign/zero-extend if needed */
184
185 if (half) {
186 alu_src.mod = sext ?
187 midgard_int_sign_extend
188 : midgard_int_zero_extend;
189 }
190
191 /* These should have been lowered away */
192 if (src)
193 assert(!(src->abs || src->negate));
194 } else {
195 if (src)
196 alu_src.mod = (src->abs << 0) | (src->negate << 1);
197 }
198
199 return alu_src;
200 }
201
202 /* load/store instructions have both 32-bit and 16-bit variants, depending on
203 * whether we are using vectors composed of highp or mediump. At the moment, we
204 * don't support half-floats -- this requires changes in other parts of the
205 * compiler -- therefore the 16-bit versions are commented out. */
206
207 //M_LOAD(ld_attr_16);
208 M_LOAD(ld_attr_32);
209 //M_LOAD(ld_vary_16);
210 M_LOAD(ld_vary_32);
211 M_LOAD(ld_ubo_int4);
212 M_LOAD(ld_int4);
213 M_STORE(st_int4);
214 M_LOAD(ld_color_buffer_8);
215 //M_STORE(st_vary_16);
216 M_STORE(st_vary_32);
217 M_LOAD(ld_cubemap_coords);
218 M_LOAD(ld_compute_id);
219
220 static midgard_instruction
221 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
222 {
223 midgard_branch_cond branch = {
224 .op = op,
225 .dest_tag = tag,
226 .offset = offset,
227 .cond = cond
228 };
229
230 uint16_t compact;
231 memcpy(&compact, &branch, sizeof(branch));
232
233 midgard_instruction ins = {
234 .type = TAG_ALU_4,
235 .unit = ALU_ENAB_BR_COMPACT,
236 .prepacked_branch = true,
237 .compact_branch = true,
238 .br_compact = compact,
239 .dest = ~0,
240 .src = { ~0, ~0, ~0 },
241 };
242
243 if (op == midgard_jmp_writeout_op_writeout)
244 ins.writeout = true;
245
246 return ins;
247 }
248
249 static midgard_instruction
250 v_branch(bool conditional, bool invert)
251 {
252 midgard_instruction ins = {
253 .type = TAG_ALU_4,
254 .unit = ALU_ENAB_BRANCH,
255 .compact_branch = true,
256 .branch = {
257 .conditional = conditional,
258 .invert_conditional = invert
259 },
260 .dest = ~0,
261 .src = { ~0, ~0, ~0 },
262 };
263
264 return ins;
265 }
266
267 static midgard_branch_extended
268 midgard_create_branch_extended( midgard_condition cond,
269 midgard_jmp_writeout_op op,
270 unsigned dest_tag,
271 signed quadword_offset)
272 {
273 /* The condition code is actually a LUT describing a function to
274 * combine multiple condition codes. However, we only support a single
275 * condition code at the moment, so we just duplicate over a bunch of
276 * times. */
277
278 uint16_t duplicated_cond =
279 (cond << 14) |
280 (cond << 12) |
281 (cond << 10) |
282 (cond << 8) |
283 (cond << 6) |
284 (cond << 4) |
285 (cond << 2) |
286 (cond << 0);
287
288 midgard_branch_extended branch = {
289 .op = op,
290 .dest_tag = dest_tag,
291 .offset = quadword_offset,
292 .cond = duplicated_cond
293 };
294
295 return branch;
296 }
297
298 static void
299 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
300 {
301 ins->has_constants = true;
302 memcpy(&ins->constants, constants, 16);
303 }
304
305 static int
306 glsl_type_size(const struct glsl_type *type, bool bindless)
307 {
308 return glsl_count_attribute_slots(type, false);
309 }
310
311 /* Lower fdot2 to a vector multiplication followed by channel addition */
312 static void
313 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
314 {
315 if (alu->op != nir_op_fdot2)
316 return;
317
318 b->cursor = nir_before_instr(&alu->instr);
319
320 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
321 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
322
323 nir_ssa_def *product = nir_fmul(b, src0, src1);
324
325 nir_ssa_def *sum = nir_fadd(b,
326 nir_channel(b, product, 0),
327 nir_channel(b, product, 1));
328
329 /* Replace the fdot2 with this sum */
330 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
331 }
332
333 static int
334 midgard_sysval_for_ssbo(nir_intrinsic_instr *instr)
335 {
336 /* This is way too meta */
337 bool is_store = instr->intrinsic == nir_intrinsic_store_ssbo;
338 unsigned idx_idx = is_store ? 1 : 0;
339
340 nir_src index = instr->src[idx_idx];
341 assert(nir_src_is_const(index));
342 uint32_t uindex = nir_src_as_uint(index);
343
344 return PAN_SYSVAL(SSBO, uindex);
345 }
346
347 static int
348 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
349 {
350 switch (instr->intrinsic) {
351 case nir_intrinsic_load_viewport_scale:
352 return PAN_SYSVAL_VIEWPORT_SCALE;
353 case nir_intrinsic_load_viewport_offset:
354 return PAN_SYSVAL_VIEWPORT_OFFSET;
355 case nir_intrinsic_load_num_work_groups:
356 return PAN_SYSVAL_NUM_WORK_GROUPS;
357 case nir_intrinsic_load_ssbo:
358 case nir_intrinsic_store_ssbo:
359 return midgard_sysval_for_ssbo(instr);
360 default:
361 return ~0;
362 }
363 }
364
365 static int sysval_for_instr(compiler_context *ctx, nir_instr *instr,
366 unsigned *dest)
367 {
368 nir_intrinsic_instr *intr;
369 nir_dest *dst = NULL;
370 nir_tex_instr *tex;
371 int sysval = -1;
372
373 bool is_store = false;
374
375 switch (instr->type) {
376 case nir_instr_type_intrinsic:
377 intr = nir_instr_as_intrinsic(instr);
378 sysval = midgard_nir_sysval_for_intrinsic(intr);
379 dst = &intr->dest;
380 is_store |= intr->intrinsic == nir_intrinsic_store_ssbo;
381 break;
382 case nir_instr_type_tex:
383 tex = nir_instr_as_tex(instr);
384 if (tex->op != nir_texop_txs)
385 break;
386
387 sysval = PAN_SYSVAL(TEXTURE_SIZE,
388 PAN_TXS_SYSVAL_ID(tex->texture_index,
389 nir_tex_instr_dest_size(tex) -
390 (tex->is_array ? 1 : 0),
391 tex->is_array));
392 dst = &tex->dest;
393 break;
394 default:
395 break;
396 }
397
398 if (dest && dst && !is_store)
399 *dest = nir_dest_index(ctx, dst);
400
401 return sysval;
402 }
403
404 static void
405 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
406 {
407 int sysval;
408
409 sysval = sysval_for_instr(ctx, instr, NULL);
410 if (sysval < 0)
411 return;
412
413 /* We have a sysval load; check if it's already been assigned */
414
415 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
416 return;
417
418 /* It hasn't -- so assign it now! */
419
420 unsigned id = ctx->sysval_count++;
421 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
422 ctx->sysvals[id] = sysval;
423 }
424
425 static void
426 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
427 {
428 ctx->sysval_count = 0;
429
430 nir_foreach_function(function, shader) {
431 if (!function->impl) continue;
432
433 nir_foreach_block(block, function->impl) {
434 nir_foreach_instr_safe(instr, block) {
435 midgard_nir_assign_sysval_body(ctx, instr);
436 }
437 }
438 }
439 }
440
441 static bool
442 midgard_nir_lower_fdot2(nir_shader *shader)
443 {
444 bool progress = false;
445
446 nir_foreach_function(function, shader) {
447 if (!function->impl) continue;
448
449 nir_builder _b;
450 nir_builder *b = &_b;
451 nir_builder_init(b, function->impl);
452
453 nir_foreach_block(block, function->impl) {
454 nir_foreach_instr_safe(instr, block) {
455 if (instr->type != nir_instr_type_alu) continue;
456
457 nir_alu_instr *alu = nir_instr_as_alu(instr);
458 midgard_nir_lower_fdot2_body(b, alu);
459
460 progress |= true;
461 }
462 }
463
464 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
465
466 }
467
468 return progress;
469 }
470
471 /* Flushes undefined values to zero */
472
473 static void
474 optimise_nir(nir_shader *nir)
475 {
476 bool progress;
477 unsigned lower_flrp =
478 (nir->options->lower_flrp16 ? 16 : 0) |
479 (nir->options->lower_flrp32 ? 32 : 0) |
480 (nir->options->lower_flrp64 ? 64 : 0);
481
482 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
483 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
484 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
485
486 nir_lower_tex_options lower_tex_options = {
487 .lower_txs_lod = true,
488 .lower_txp = ~0
489 };
490
491 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
492
493 do {
494 progress = false;
495
496 NIR_PASS(progress, nir, nir_lower_var_copies);
497 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
498
499 NIR_PASS(progress, nir, nir_copy_prop);
500 NIR_PASS(progress, nir, nir_opt_dce);
501 NIR_PASS(progress, nir, nir_opt_dead_cf);
502 NIR_PASS(progress, nir, nir_opt_cse);
503 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
504 NIR_PASS(progress, nir, nir_opt_algebraic);
505 NIR_PASS(progress, nir, nir_opt_constant_folding);
506
507 if (lower_flrp != 0) {
508 bool lower_flrp_progress = false;
509 NIR_PASS(lower_flrp_progress,
510 nir,
511 nir_lower_flrp,
512 lower_flrp,
513 false /* always_precise */,
514 nir->options->lower_ffma);
515 if (lower_flrp_progress) {
516 NIR_PASS(progress, nir,
517 nir_opt_constant_folding);
518 progress = true;
519 }
520
521 /* Nothing should rematerialize any flrps, so we only
522 * need to do this lowering once.
523 */
524 lower_flrp = 0;
525 }
526
527 NIR_PASS(progress, nir, nir_opt_undef);
528 NIR_PASS(progress, nir, nir_undef_to_zero);
529
530 NIR_PASS(progress, nir, nir_opt_loop_unroll,
531 nir_var_shader_in |
532 nir_var_shader_out |
533 nir_var_function_temp);
534
535 NIR_PASS(progress, nir, nir_opt_vectorize);
536 } while (progress);
537
538 /* Must be run at the end to prevent creation of fsin/fcos ops */
539 NIR_PASS(progress, nir, midgard_nir_scale_trig);
540
541 do {
542 progress = false;
543
544 NIR_PASS(progress, nir, nir_opt_dce);
545 NIR_PASS(progress, nir, nir_opt_algebraic);
546 NIR_PASS(progress, nir, nir_opt_constant_folding);
547 NIR_PASS(progress, nir, nir_copy_prop);
548 } while (progress);
549
550 NIR_PASS(progress, nir, nir_opt_algebraic_late);
551
552 /* We implement booleans as 32-bit 0/~0 */
553 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
554
555 /* Now that booleans are lowered, we can run out late opts */
556 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
557
558 /* Lower mods for float ops only. Integer ops don't support modifiers
559 * (saturate doesn't make sense on integers, neg/abs require dedicated
560 * instructions) */
561
562 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
563 NIR_PASS(progress, nir, nir_copy_prop);
564 NIR_PASS(progress, nir, nir_opt_dce);
565
566 /* Take us out of SSA */
567 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
568 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
569
570 /* We are a vector architecture; write combine where possible */
571 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
572 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
573
574 NIR_PASS(progress, nir, nir_opt_dce);
575 }
576
577 /* Do not actually emit a load; instead, cache the constant for inlining */
578
579 static void
580 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
581 {
582 nir_ssa_def def = instr->def;
583
584 float *v = rzalloc_array(NULL, float, 4);
585 nir_const_value_to_array(v, instr->value, instr->def.num_components, f32);
586
587 /* Shifted for SSA, +1 for off-by-one */
588 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, v);
589 }
590
591 /* Normally constants are embedded implicitly, but for I/O and such we have to
592 * explicitly emit a move with the constant source */
593
594 static void
595 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
596 {
597 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
598
599 if (constant_value) {
600 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
601 attach_constants(ctx, &ins, constant_value, node + 1);
602 emit_mir_instruction(ctx, ins);
603 }
604 }
605
606 static bool
607 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
608 {
609 unsigned comp = src->swizzle[0];
610
611 for (unsigned c = 1; c < nr_components; ++c) {
612 if (src->swizzle[c] != comp)
613 return true;
614 }
615
616 return false;
617 }
618
619 #define ALU_CASE(nir, _op) \
620 case nir_op_##nir: \
621 op = midgard_alu_op_##_op; \
622 assert(src_bitsize == dst_bitsize); \
623 break;
624
625 #define ALU_CASE_BCAST(nir, _op, count) \
626 case nir_op_##nir: \
627 op = midgard_alu_op_##_op; \
628 broadcast_swizzle = count; \
629 assert(src_bitsize == dst_bitsize); \
630 break;
631 static bool
632 nir_is_fzero_constant(nir_src src)
633 {
634 if (!nir_src_is_const(src))
635 return false;
636
637 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
638 if (nir_src_comp_as_float(src, c) != 0.0)
639 return false;
640 }
641
642 return true;
643 }
644
645 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
646 * special treatment override this anyway. */
647
648 static midgard_reg_mode
649 reg_mode_for_nir(nir_alu_instr *instr)
650 {
651 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
652
653 switch (src_bitsize) {
654 case 8:
655 return midgard_reg_mode_8;
656 case 16:
657 return midgard_reg_mode_16;
658 case 32:
659 return midgard_reg_mode_32;
660 case 64:
661 return midgard_reg_mode_64;
662 default:
663 unreachable("Invalid bit size");
664 }
665 }
666
667 static void
668 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
669 {
670 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
671 * is handled elsewhere */
672
673 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
674 midgard_emit_derivatives(ctx, instr);
675 return;
676 }
677
678 bool is_ssa = instr->dest.dest.is_ssa;
679
680 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
681 unsigned nr_components = nir_dest_num_components(instr->dest.dest);
682 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
683
684 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
685 * supported. A few do not and are commented for now. Also, there are a
686 * number of NIR ops which Midgard does not support and need to be
687 * lowered, also TODO. This switch block emits the opcode and calling
688 * convention of the Midgard instruction; actual packing is done in
689 * emit_alu below */
690
691 unsigned op;
692
693 /* Number of components valid to check for the instruction (the rest
694 * will be forced to the last), or 0 to use as-is. Relevant as
695 * ball-type instructions have a channel count in NIR but are all vec4
696 * in Midgard */
697
698 unsigned broadcast_swizzle = 0;
699
700 /* What register mode should we operate in? */
701 midgard_reg_mode reg_mode =
702 reg_mode_for_nir(instr);
703
704 /* Do we need a destination override? Used for inline
705 * type conversion */
706
707 midgard_dest_override dest_override =
708 midgard_dest_override_none;
709
710 /* Should we use a smaller respective source and sign-extend? */
711
712 bool half_1 = false, sext_1 = false;
713 bool half_2 = false, sext_2 = false;
714
715 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
716 unsigned dst_bitsize = nir_dest_bit_size(instr->dest.dest);
717
718 switch (instr->op) {
719 ALU_CASE(fadd, fadd);
720 ALU_CASE(fmul, fmul);
721 ALU_CASE(fmin, fmin);
722 ALU_CASE(fmax, fmax);
723 ALU_CASE(imin, imin);
724 ALU_CASE(imax, imax);
725 ALU_CASE(umin, umin);
726 ALU_CASE(umax, umax);
727 ALU_CASE(ffloor, ffloor);
728 ALU_CASE(fround_even, froundeven);
729 ALU_CASE(ftrunc, ftrunc);
730 ALU_CASE(fceil, fceil);
731 ALU_CASE(fdot3, fdot3);
732 ALU_CASE(fdot4, fdot4);
733 ALU_CASE(iadd, iadd);
734 ALU_CASE(isub, isub);
735 ALU_CASE(imul, imul);
736
737 /* Zero shoved as second-arg */
738 ALU_CASE(iabs, iabsdiff);
739
740 ALU_CASE(mov, imov);
741
742 ALU_CASE(feq32, feq);
743 ALU_CASE(fne32, fne);
744 ALU_CASE(flt32, flt);
745 ALU_CASE(ieq32, ieq);
746 ALU_CASE(ine32, ine);
747 ALU_CASE(ilt32, ilt);
748 ALU_CASE(ult32, ult);
749
750 /* We don't have a native b2f32 instruction. Instead, like many
751 * GPUs, we exploit booleans as 0/~0 for false/true, and
752 * correspondingly AND
753 * by 1.0 to do the type conversion. For the moment, prime us
754 * to emit:
755 *
756 * iand [whatever], #0
757 *
758 * At the end of emit_alu (as MIR), we'll fix-up the constant
759 */
760
761 ALU_CASE(b2f32, iand);
762 ALU_CASE(b2i32, iand);
763
764 /* Likewise, we don't have a dedicated f2b32 instruction, but
765 * we can do a "not equal to 0.0" test. */
766
767 ALU_CASE(f2b32, fne);
768 ALU_CASE(i2b32, ine);
769
770 ALU_CASE(frcp, frcp);
771 ALU_CASE(frsq, frsqrt);
772 ALU_CASE(fsqrt, fsqrt);
773 ALU_CASE(fexp2, fexp2);
774 ALU_CASE(flog2, flog2);
775
776 ALU_CASE(f2i32, f2i_rtz);
777 ALU_CASE(f2u32, f2u_rtz);
778 ALU_CASE(i2f32, i2f_rtz);
779 ALU_CASE(u2f32, u2f_rtz);
780
781 ALU_CASE(f2i16, f2i_rtz);
782 ALU_CASE(f2u16, f2u_rtz);
783 ALU_CASE(i2f16, i2f_rtz);
784 ALU_CASE(u2f16, u2f_rtz);
785
786 ALU_CASE(fsin, fsin);
787 ALU_CASE(fcos, fcos);
788
789 /* We'll set invert */
790 ALU_CASE(inot, imov);
791 ALU_CASE(iand, iand);
792 ALU_CASE(ior, ior);
793 ALU_CASE(ixor, ixor);
794 ALU_CASE(ishl, ishl);
795 ALU_CASE(ishr, iasr);
796 ALU_CASE(ushr, ilsr);
797
798 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
799 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
800 ALU_CASE(b32all_fequal4, fball_eq);
801
802 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
803 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
804 ALU_CASE(b32any_fnequal4, fbany_neq);
805
806 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
807 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
808 ALU_CASE(b32all_iequal4, iball_eq);
809
810 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
811 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
812 ALU_CASE(b32any_inequal4, ibany_neq);
813
814 /* Source mods will be shoved in later */
815 ALU_CASE(fabs, fmov);
816 ALU_CASE(fneg, fmov);
817 ALU_CASE(fsat, fmov);
818
819 /* For size conversion, we use a move. Ideally though we would squash
820 * these ops together; maybe that has to happen after in NIR as part of
821 * propagation...? An earlier algebraic pass ensured we step down by
822 * only / exactly one size. If stepping down, we use a dest override to
823 * reduce the size; if stepping up, we use a larger-sized move with a
824 * half source and a sign/zero-extension modifier */
825
826 case nir_op_i2i8:
827 case nir_op_i2i16:
828 case nir_op_i2i32:
829 case nir_op_i2i64:
830 /* If we end up upscale, we'll need a sign-extend on the
831 * operand (the second argument) */
832
833 sext_2 = true;
834 /* fallthrough */
835 case nir_op_u2u8:
836 case nir_op_u2u16:
837 case nir_op_u2u32:
838 case nir_op_u2u64: {
839 op = midgard_alu_op_imov;
840
841 if (dst_bitsize == (src_bitsize * 2)) {
842 /* Converting up */
843 half_2 = true;
844
845 /* Use a greater register mode */
846 reg_mode++;
847 } else if (src_bitsize == (dst_bitsize * 2)) {
848 /* Converting down */
849 dest_override = midgard_dest_override_lower;
850 }
851
852 break;
853 }
854
855 case nir_op_f2f16: {
856 assert(src_bitsize == 32);
857
858 op = midgard_alu_op_fmov;
859 dest_override = midgard_dest_override_lower;
860 break;
861 }
862
863 case nir_op_f2f32: {
864 assert(src_bitsize == 16);
865
866 op = midgard_alu_op_fmov;
867 half_2 = true;
868 reg_mode++;
869 break;
870 }
871
872
873 /* For greater-or-equal, we lower to less-or-equal and flip the
874 * arguments */
875
876 case nir_op_fge:
877 case nir_op_fge32:
878 case nir_op_ige32:
879 case nir_op_uge32: {
880 op =
881 instr->op == nir_op_fge ? midgard_alu_op_fle :
882 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
883 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
884 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
885 0;
886
887 /* Swap via temporary */
888 nir_alu_src temp = instr->src[1];
889 instr->src[1] = instr->src[0];
890 instr->src[0] = temp;
891
892 break;
893 }
894
895 case nir_op_b32csel: {
896 /* Midgard features both fcsel and icsel, depending on
897 * the type of the arguments/output. However, as long
898 * as we're careful we can _always_ use icsel and
899 * _never_ need fcsel, since the latter does additional
900 * floating-point-specific processing whereas the
901 * former just moves bits on the wire. It's not obvious
902 * why these are separate opcodes, save for the ability
903 * to do things like sat/pos/abs/neg for free */
904
905 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
906 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
907
908 /* The condition is the first argument; move the other
909 * arguments up one to be a binary instruction for
910 * Midgard with the condition last */
911
912 nir_alu_src temp = instr->src[2];
913
914 instr->src[2] = instr->src[0];
915 instr->src[0] = instr->src[1];
916 instr->src[1] = temp;
917
918 break;
919 }
920
921 default:
922 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
923 assert(0);
924 return;
925 }
926
927 /* Midgard can perform certain modifiers on output of an ALU op */
928 unsigned outmod;
929
930 if (midgard_is_integer_out_op(op)) {
931 outmod = midgard_outmod_int_wrap;
932 } else {
933 bool sat = instr->dest.saturate || instr->op == nir_op_fsat;
934 outmod = sat ? midgard_outmod_sat : midgard_outmod_none;
935 }
936
937 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
938
939 if (instr->op == nir_op_fmax) {
940 if (nir_is_fzero_constant(instr->src[0].src)) {
941 op = midgard_alu_op_fmov;
942 nr_inputs = 1;
943 outmod = midgard_outmod_pos;
944 instr->src[0] = instr->src[1];
945 } else if (nir_is_fzero_constant(instr->src[1].src)) {
946 op = midgard_alu_op_fmov;
947 nr_inputs = 1;
948 outmod = midgard_outmod_pos;
949 }
950 }
951
952 /* Fetch unit, quirks, etc information */
953 unsigned opcode_props = alu_opcode_props[op].props;
954 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
955
956 /* src0 will always exist afaik, but src1 will not for 1-argument
957 * instructions. The latter can only be fetched if the instruction
958 * needs it, or else we may segfault. */
959
960 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
961 unsigned src1 = nr_inputs >= 2 ? nir_alu_src_index(ctx, &instr->src[1]) : ~0;
962 unsigned src2 = nr_inputs == 3 ? nir_alu_src_index(ctx, &instr->src[2]) : ~0;
963 assert(nr_inputs <= 3);
964
965 /* Rather than use the instruction generation helpers, we do it
966 * ourselves here to avoid the mess */
967
968 midgard_instruction ins = {
969 .type = TAG_ALU_4,
970 .src = {
971 quirk_flipped_r24 ? ~0 : src0,
972 quirk_flipped_r24 ? src0 : src1,
973 src2,
974 },
975 .dest = dest,
976 };
977
978 nir_alu_src *nirmods[3] = { NULL };
979
980 if (nr_inputs >= 2) {
981 nirmods[0] = &instr->src[0];
982 nirmods[1] = &instr->src[1];
983 } else if (nr_inputs == 1) {
984 nirmods[quirk_flipped_r24] = &instr->src[0];
985 } else {
986 assert(0);
987 }
988
989 if (nr_inputs == 3)
990 nirmods[2] = &instr->src[2];
991
992 /* These were lowered to a move, so apply the corresponding mod */
993
994 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
995 nir_alu_src *s = nirmods[quirk_flipped_r24];
996
997 if (instr->op == nir_op_fneg)
998 s->negate = !s->negate;
999
1000 if (instr->op == nir_op_fabs)
1001 s->abs = !s->abs;
1002 }
1003
1004 bool is_int = midgard_is_integer_op(op);
1005
1006 ins.mask = mask_of(nr_components);
1007
1008 midgard_vector_alu alu = {
1009 .op = op,
1010 .reg_mode = reg_mode,
1011 .dest_override = dest_override,
1012 .outmod = outmod,
1013
1014 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int, broadcast_swizzle, half_1, sext_1)),
1015 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int, broadcast_swizzle, half_2, sext_2)),
1016 };
1017
1018 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1019
1020 if (!is_ssa)
1021 ins.mask &= instr->dest.write_mask;
1022
1023 for (unsigned m = 0; m < 3; ++m) {
1024 if (!nirmods[m])
1025 continue;
1026
1027 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c)
1028 ins.swizzle[m][c] = nirmods[m]->swizzle[c];
1029
1030 /* Replicate. TODO: remove when vec16 lands */
1031 for (unsigned c = NIR_MAX_VEC_COMPONENTS; c < MIR_VEC_COMPONENTS; ++c)
1032 ins.swizzle[m][c] = nirmods[m]->swizzle[NIR_MAX_VEC_COMPONENTS - 1];
1033 }
1034
1035 if (nr_inputs == 3) {
1036 /* Conditions can't have mods */
1037 assert(!nirmods[2]->abs);
1038 assert(!nirmods[2]->negate);
1039 }
1040
1041 ins.alu = alu;
1042
1043 /* Late fixup for emulated instructions */
1044
1045 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1046 /* Presently, our second argument is an inline #0 constant.
1047 * Switch over to an embedded 1.0 constant (that can't fit
1048 * inline, since we're 32-bit, not 16-bit like the inline
1049 * constants) */
1050
1051 ins.has_inline_constant = false;
1052 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1053 ins.has_constants = true;
1054
1055 if (instr->op == nir_op_b2f32) {
1056 float f = 1.0f;
1057 memcpy(&ins.constants, &f, sizeof(float));
1058 } else {
1059 ins.constants[0] = 1;
1060 }
1061
1062
1063 for (unsigned c = 0; c < 16; ++c)
1064 ins.swizzle[1][c] = 0;
1065 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1066 /* Lots of instructions need a 0 plonked in */
1067 ins.has_inline_constant = false;
1068 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1069 ins.has_constants = true;
1070 ins.constants[0] = 0;
1071
1072 for (unsigned c = 0; c < 16; ++c)
1073 ins.swizzle[1][c] = 0;
1074 } else if (instr->op == nir_op_inot) {
1075 ins.invert = true;
1076 }
1077
1078 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1079 /* To avoid duplicating the lookup tables (probably), true LUT
1080 * instructions can only operate as if they were scalars. Lower
1081 * them here by changing the component. */
1082
1083 unsigned orig_mask = ins.mask;
1084
1085 for (int i = 0; i < nr_components; ++i) {
1086 /* Mask the associated component, dropping the
1087 * instruction if needed */
1088
1089 ins.mask = 1 << i;
1090 ins.mask &= orig_mask;
1091
1092 if (!ins.mask)
1093 continue;
1094
1095 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1096 ins.swizzle[0][j] = nirmods[0]->swizzle[i]; /* Pull from the correct component */
1097
1098 emit_mir_instruction(ctx, ins);
1099 }
1100 } else {
1101 emit_mir_instruction(ctx, ins);
1102 }
1103 }
1104
1105 #undef ALU_CASE
1106
1107 static unsigned
1108 mir_mask_for_intr(nir_instr *instr, bool is_read)
1109 {
1110 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1111
1112 if (is_read)
1113 return mask_of(nir_intrinsic_dest_components(intr));
1114 else
1115 return nir_intrinsic_write_mask(intr);
1116 }
1117
1118 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1119 * optimized) versions of UBO #0 */
1120
1121 midgard_instruction *
1122 emit_ubo_read(
1123 compiler_context *ctx,
1124 nir_instr *instr,
1125 unsigned dest,
1126 unsigned offset,
1127 nir_src *indirect_offset,
1128 unsigned index)
1129 {
1130 /* TODO: half-floats */
1131
1132 midgard_instruction ins = m_ld_ubo_int4(dest, offset);
1133
1134 assert((offset & 0xF) == 0);
1135 offset /= 16;
1136
1137 /* TODO: Don't split */
1138 ins.load_store.varying_parameters = (offset & 7) << 7;
1139 ins.load_store.address = offset >> 3;
1140 ins.mask = mir_mask_for_intr(instr, true);
1141
1142 if (indirect_offset) {
1143 ins.src[2] = nir_src_index(ctx, indirect_offset);
1144 ins.load_store.arg_2 = 0x80;
1145 } else {
1146 ins.load_store.arg_2 = 0x1E;
1147 }
1148
1149 ins.load_store.arg_1 = index;
1150
1151 return emit_mir_instruction(ctx, ins);
1152 }
1153
1154 /* SSBO reads are like UBO reads if you squint */
1155
1156 static void
1157 emit_ssbo_access(
1158 compiler_context *ctx,
1159 nir_instr *instr,
1160 bool is_read,
1161 unsigned srcdest,
1162 unsigned offset,
1163 nir_src *indirect_offset,
1164 unsigned index)
1165 {
1166 /* TODO: types */
1167
1168 midgard_instruction ins;
1169
1170 if (is_read)
1171 ins = m_ld_int4(srcdest, offset);
1172 else
1173 ins = m_st_int4(srcdest, offset);
1174
1175 /* SSBO reads use a generic memory read interface, so we need the
1176 * address of the SSBO as the first argument. This is a sysval. */
1177
1178 unsigned addr = make_compiler_temp(ctx);
1179 emit_sysval_read(ctx, instr, addr, 2);
1180
1181 /* The source array:
1182 *
1183 * src[0] = store ? value : unused
1184 * src[1] = arg_1
1185 * src[2] = arg_2
1186 *
1187 * We would like arg_1 = the address and
1188 * arg_2 = the offset.
1189 */
1190
1191 ins.src[1] = addr;
1192
1193 /* TODO: What is this? It looks superficially like a shift << 5, but
1194 * arg_1 doesn't take a shift Should it be E0 or A0? We also need the
1195 * indirect offset. */
1196
1197 if (indirect_offset) {
1198 ins.load_store.arg_1 |= 0xE0;
1199 ins.src[2] = nir_src_index(ctx, indirect_offset);
1200 } else {
1201 ins.load_store.arg_2 = 0x7E;
1202 }
1203
1204 /* TODO: Bounds check */
1205
1206 /* Finally, we emit the direct offset */
1207
1208 ins.load_store.varying_parameters = (offset & 0x1FF) << 1;
1209 ins.load_store.address = (offset >> 9);
1210 ins.mask = mir_mask_for_intr(instr, is_read);
1211
1212 emit_mir_instruction(ctx, ins);
1213 }
1214
1215 static void
1216 emit_varying_read(
1217 compiler_context *ctx,
1218 unsigned dest, unsigned offset,
1219 unsigned nr_comp, unsigned component,
1220 nir_src *indirect_offset, nir_alu_type type)
1221 {
1222 /* XXX: Half-floats? */
1223 /* TODO: swizzle, mask */
1224
1225 midgard_instruction ins = m_ld_vary_32(dest, offset);
1226 ins.mask = mask_of(nr_comp);
1227
1228 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1229 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1230
1231 midgard_varying_parameter p = {
1232 .is_varying = 1,
1233 .interpolation = midgard_interp_default,
1234 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1235 };
1236
1237 unsigned u;
1238 memcpy(&u, &p, sizeof(p));
1239 ins.load_store.varying_parameters = u;
1240
1241 if (indirect_offset)
1242 ins.src[2] = nir_src_index(ctx, indirect_offset);
1243 else
1244 ins.load_store.arg_2 = 0x1E;
1245
1246 ins.load_store.arg_1 = 0x9E;
1247
1248 /* Use the type appropriate load */
1249 switch (type) {
1250 case nir_type_uint:
1251 case nir_type_bool:
1252 ins.load_store.op = midgard_op_ld_vary_32u;
1253 break;
1254 case nir_type_int:
1255 ins.load_store.op = midgard_op_ld_vary_32i;
1256 break;
1257 case nir_type_float:
1258 ins.load_store.op = midgard_op_ld_vary_32;
1259 break;
1260 default:
1261 unreachable("Attempted to load unknown type");
1262 break;
1263 }
1264
1265 emit_mir_instruction(ctx, ins);
1266 }
1267
1268 void
1269 emit_sysval_read(compiler_context *ctx, nir_instr *instr, signed dest_override,
1270 unsigned nr_components)
1271 {
1272 unsigned dest = 0;
1273
1274 /* Figure out which uniform this is */
1275 int sysval = sysval_for_instr(ctx, instr, &dest);
1276 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1277
1278 if (dest_override >= 0)
1279 dest = dest_override;
1280
1281 /* Sysvals are prefix uniforms */
1282 unsigned uniform = ((uintptr_t) val) - 1;
1283
1284 /* Emit the read itself -- this is never indirect */
1285 midgard_instruction *ins =
1286 emit_ubo_read(ctx, instr, dest, uniform * 16, NULL, 0);
1287
1288 ins->mask = mask_of(nr_components);
1289 }
1290
1291 static unsigned
1292 compute_builtin_arg(nir_op op)
1293 {
1294 switch (op) {
1295 case nir_intrinsic_load_work_group_id:
1296 return 0x14;
1297 case nir_intrinsic_load_local_invocation_id:
1298 return 0x10;
1299 default:
1300 unreachable("Invalid compute paramater loaded");
1301 }
1302 }
1303
1304 /* Emit store for a fragment shader, which is encoded via a fancy branch. TODO:
1305 * Handle MRT here */
1306
1307 static void
1308 emit_fragment_store(compiler_context *ctx, unsigned src, unsigned rt)
1309 {
1310 emit_explicit_constant(ctx, src, src);
1311
1312 /* If we're doing MRT, we need to specify the render target */
1313
1314 midgard_instruction rt_move = {
1315 .dest = ~0
1316 };
1317
1318 if (rt != 0) {
1319 /* We'll write to r1.z */
1320 rt_move = v_mov(~0, SSA_FIXED_REGISTER(1));
1321 rt_move.mask = 1 << COMPONENT_Z;
1322 rt_move.unit = UNIT_SADD;
1323
1324 /* r1.z = (rt * 0x100) */
1325 rt_move.has_inline_constant = true;
1326 rt_move.inline_constant = (rt * 0x100);
1327
1328 /* r1 */
1329 ctx->work_registers = MAX2(ctx->work_registers, 1);
1330
1331 /* Do the write */
1332 emit_mir_instruction(ctx, rt_move);
1333 }
1334
1335 /* Next, generate the branch. For R render targets in the writeout, the
1336 * i'th render target jumps to pseudo-offset [2(R-1) + i] */
1337
1338 unsigned outputs = ctx->is_blend ? 1 : ctx->nir->num_outputs;
1339 unsigned offset = (2 * (outputs - 1)) + rt;
1340
1341 struct midgard_instruction ins =
1342 v_alu_br_compact_cond(midgard_jmp_writeout_op_writeout, TAG_ALU_4, offset, midgard_condition_always);
1343
1344 /* Add dependencies */
1345 ins.src[0] = src;
1346 ins.src[1] = rt_move.dest;
1347
1348 /* Emit the branch */
1349 emit_mir_instruction(ctx, ins);
1350 }
1351
1352 static void
1353 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1354 {
1355 unsigned reg = nir_dest_index(ctx, &instr->dest);
1356 midgard_instruction ins = m_ld_compute_id(reg, 0);
1357 ins.mask = mask_of(3);
1358 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1359 emit_mir_instruction(ctx, ins);
1360 }
1361 static void
1362 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1363 {
1364 unsigned offset = 0, reg;
1365
1366 switch (instr->intrinsic) {
1367 case nir_intrinsic_discard_if:
1368 case nir_intrinsic_discard: {
1369 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1370 struct midgard_instruction discard = v_branch(conditional, false);
1371 discard.branch.target_type = TARGET_DISCARD;
1372
1373 if (conditional)
1374 discard.src[0] = nir_src_index(ctx, &instr->src[0]);
1375
1376 emit_mir_instruction(ctx, discard);
1377 schedule_barrier(ctx);
1378
1379 break;
1380 }
1381
1382 case nir_intrinsic_load_uniform:
1383 case nir_intrinsic_load_ubo:
1384 case nir_intrinsic_load_ssbo:
1385 case nir_intrinsic_load_input: {
1386 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1387 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1388 bool is_ssbo = instr->intrinsic == nir_intrinsic_load_ssbo;
1389
1390 /* Get the base type of the intrinsic */
1391 /* TODO: Infer type? Does it matter? */
1392 nir_alu_type t =
1393 (is_ubo || is_ssbo) ? nir_type_uint : nir_intrinsic_type(instr);
1394 t = nir_alu_type_get_base_type(t);
1395
1396 if (!(is_ubo || is_ssbo)) {
1397 offset = nir_intrinsic_base(instr);
1398 }
1399
1400 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1401
1402 nir_src *src_offset = nir_get_io_offset_src(instr);
1403
1404 bool direct = nir_src_is_const(*src_offset);
1405 nir_src *indirect_offset = direct ? NULL : src_offset;
1406
1407 if (direct)
1408 offset += nir_src_as_uint(*src_offset);
1409
1410 /* We may need to apply a fractional offset */
1411 int component = instr->intrinsic == nir_intrinsic_load_input ?
1412 nir_intrinsic_component(instr) : 0;
1413 reg = nir_dest_index(ctx, &instr->dest);
1414
1415 if (is_uniform && !ctx->is_blend) {
1416 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysval_count + offset) * 16, indirect_offset, 0);
1417 } else if (is_ubo) {
1418 nir_src index = instr->src[0];
1419
1420 /* We don't yet support indirect UBOs. For indirect
1421 * block numbers (if that's possible), we don't know
1422 * enough about the hardware yet. For indirect sources,
1423 * we know what we need but we need to add some NIR
1424 * support for lowering correctly with respect to
1425 * 128-bit reads */
1426
1427 assert(nir_src_is_const(index));
1428 assert(nir_src_is_const(*src_offset));
1429
1430 uint32_t uindex = nir_src_as_uint(index) + 1;
1431 emit_ubo_read(ctx, &instr->instr, reg, offset, NULL, uindex);
1432 } else if (is_ssbo) {
1433 nir_src index = instr->src[0];
1434 assert(nir_src_is_const(index));
1435 uint32_t uindex = nir_src_as_uint(index);
1436
1437 emit_ssbo_access(ctx, &instr->instr, true, reg, offset, indirect_offset, uindex);
1438 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1439 emit_varying_read(ctx, reg, offset, nr_comp, component, !direct ? &instr->src[0] : NULL, t);
1440 } else if (ctx->is_blend) {
1441 /* For blend shaders, load the input color, which is
1442 * preloaded to r0 */
1443
1444 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1445 emit_mir_instruction(ctx, move);
1446 schedule_barrier(ctx);
1447 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1448 midgard_instruction ins = m_ld_attr_32(reg, offset);
1449 ins.load_store.arg_1 = 0x1E;
1450 ins.load_store.arg_2 = 0x1E;
1451 ins.mask = mask_of(nr_comp);
1452
1453 /* Use the type appropriate load */
1454 switch (t) {
1455 case nir_type_uint:
1456 case nir_type_bool:
1457 ins.load_store.op = midgard_op_ld_attr_32u;
1458 break;
1459 case nir_type_int:
1460 ins.load_store.op = midgard_op_ld_attr_32i;
1461 break;
1462 case nir_type_float:
1463 ins.load_store.op = midgard_op_ld_attr_32;
1464 break;
1465 default:
1466 unreachable("Attempted to load unknown type");
1467 break;
1468 }
1469
1470 emit_mir_instruction(ctx, ins);
1471 } else {
1472 DBG("Unknown load\n");
1473 assert(0);
1474 }
1475
1476 break;
1477 }
1478
1479 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1480
1481 case nir_intrinsic_load_raw_output_pan:
1482 case nir_intrinsic_load_output_u8_as_fp16_pan:
1483 reg = nir_dest_index(ctx, &instr->dest);
1484 assert(ctx->is_blend);
1485
1486 /* T720 and below use different blend opcodes with slightly
1487 * different semantics than T760 and up */
1488
1489 midgard_instruction ld = m_ld_color_buffer_8(reg, 0);
1490 bool old_blend = ctx->gpu_id < 0x750;
1491
1492 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1493 ld.load_store.op = old_blend ?
1494 midgard_op_ld_color_buffer_u8_as_fp16_old :
1495 midgard_op_ld_color_buffer_u8_as_fp16;
1496
1497 if (old_blend) {
1498 ld.load_store.address = 1;
1499 ld.load_store.arg_2 = 0x1E;
1500 }
1501
1502 for (unsigned c = 2; c < 16; ++c)
1503 ld.swizzle[0][c] = 0;
1504 }
1505
1506 emit_mir_instruction(ctx, ld);
1507 break;
1508
1509 case nir_intrinsic_load_blend_const_color_rgba: {
1510 assert(ctx->is_blend);
1511 reg = nir_dest_index(ctx, &instr->dest);
1512
1513 /* Blend constants are embedded directly in the shader and
1514 * patched in, so we use some magic routing */
1515
1516 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1517 ins.has_constants = true;
1518 ins.has_blend_constant = true;
1519 emit_mir_instruction(ctx, ins);
1520 break;
1521 }
1522
1523 case nir_intrinsic_store_output:
1524 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1525
1526 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1527
1528 reg = nir_src_index(ctx, &instr->src[0]);
1529
1530 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1531 /* Determine number of render targets */
1532 emit_fragment_store(ctx, reg, offset);
1533 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1534 /* We should have been vectorized, though we don't
1535 * currently check that st_vary is emitted only once
1536 * per slot (this is relevant, since there's not a mask
1537 * parameter available on the store [set to 0 by the
1538 * blob]). We do respect the component by adjusting the
1539 * swizzle. If this is a constant source, we'll need to
1540 * emit that explicitly. */
1541
1542 emit_explicit_constant(ctx, reg, reg);
1543
1544 unsigned component = nir_intrinsic_component(instr);
1545 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1546
1547 midgard_instruction st = m_st_vary_32(reg, offset);
1548 st.load_store.arg_1 = 0x9E;
1549 st.load_store.arg_2 = 0x1E;
1550
1551 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle[0]); ++i)
1552 st.swizzle[0][i] = MIN2(i + component, nr_comp);
1553
1554 emit_mir_instruction(ctx, st);
1555 } else {
1556 DBG("Unknown store\n");
1557 assert(0);
1558 }
1559
1560 break;
1561
1562 /* Special case of store_output for lowered blend shaders */
1563 case nir_intrinsic_store_raw_output_pan:
1564 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1565 reg = nir_src_index(ctx, &instr->src[0]);
1566 emit_fragment_store(ctx, reg, 0);
1567
1568 break;
1569
1570 case nir_intrinsic_store_ssbo:
1571 assert(nir_src_is_const(instr->src[1]));
1572
1573 bool direct_offset = nir_src_is_const(instr->src[2]);
1574 offset = direct_offset ? nir_src_as_uint(instr->src[2]) : 0;
1575 nir_src *indirect_offset = direct_offset ? NULL : &instr->src[2];
1576 reg = nir_src_index(ctx, &instr->src[0]);
1577
1578 uint32_t uindex = nir_src_as_uint(instr->src[1]);
1579
1580 emit_explicit_constant(ctx, reg, reg);
1581 emit_ssbo_access(ctx, &instr->instr, false, reg, offset, indirect_offset, uindex);
1582 break;
1583
1584 case nir_intrinsic_load_viewport_scale:
1585 case nir_intrinsic_load_viewport_offset:
1586 case nir_intrinsic_load_num_work_groups:
1587 emit_sysval_read(ctx, &instr->instr, ~0, 3);
1588 break;
1589
1590 case nir_intrinsic_load_work_group_id:
1591 case nir_intrinsic_load_local_invocation_id:
1592 emit_compute_builtin(ctx, instr);
1593 break;
1594
1595 default:
1596 printf ("Unhandled intrinsic\n");
1597 assert(0);
1598 break;
1599 }
1600 }
1601
1602 static unsigned
1603 midgard_tex_format(enum glsl_sampler_dim dim)
1604 {
1605 switch (dim) {
1606 case GLSL_SAMPLER_DIM_1D:
1607 case GLSL_SAMPLER_DIM_BUF:
1608 return MALI_TEX_1D;
1609
1610 case GLSL_SAMPLER_DIM_2D:
1611 case GLSL_SAMPLER_DIM_EXTERNAL:
1612 case GLSL_SAMPLER_DIM_RECT:
1613 return MALI_TEX_2D;
1614
1615 case GLSL_SAMPLER_DIM_3D:
1616 return MALI_TEX_3D;
1617
1618 case GLSL_SAMPLER_DIM_CUBE:
1619 return MALI_TEX_CUBE;
1620
1621 default:
1622 DBG("Unknown sampler dim type\n");
1623 assert(0);
1624 return 0;
1625 }
1626 }
1627
1628 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1629 * was successful */
1630
1631 static bool
1632 pan_attach_constant_bias(
1633 compiler_context *ctx,
1634 nir_src lod,
1635 midgard_texture_word *word)
1636 {
1637 /* To attach as constant, it has to *be* constant */
1638
1639 if (!nir_src_is_const(lod))
1640 return false;
1641
1642 float f = nir_src_as_float(lod);
1643
1644 /* Break into fixed-point */
1645 signed lod_int = f;
1646 float lod_frac = f - lod_int;
1647
1648 /* Carry over negative fractions */
1649 if (lod_frac < 0.0) {
1650 lod_int--;
1651 lod_frac += 1.0;
1652 }
1653
1654 /* Encode */
1655 word->bias = float_to_ubyte(lod_frac);
1656 word->bias_int = lod_int;
1657
1658 return true;
1659 }
1660
1661 static enum mali_sampler_type
1662 midgard_sampler_type(nir_alu_type t) {
1663 switch (nir_alu_type_get_base_type(t))
1664 {
1665 case nir_type_float:
1666 return MALI_SAMPLER_FLOAT;
1667 case nir_type_int:
1668 return MALI_SAMPLER_SIGNED;
1669 case nir_type_uint:
1670 return MALI_SAMPLER_UNSIGNED;
1671 default:
1672 unreachable("Unknown sampler type");
1673 }
1674 }
1675
1676 static void
1677 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1678 unsigned midgard_texop)
1679 {
1680 /* TODO */
1681 //assert (!instr->sampler);
1682 //assert (!instr->texture_array_size);
1683
1684 int texture_index = instr->texture_index;
1685 int sampler_index = texture_index;
1686
1687 /* No helper to build texture words -- we do it all here */
1688 midgard_instruction ins = {
1689 .type = TAG_TEXTURE_4,
1690 .mask = 0xF,
1691 .dest = nir_dest_index(ctx, &instr->dest),
1692 .src = { ~0, ~0, ~0 },
1693 .swizzle = SWIZZLE_IDENTITY_4,
1694 .texture = {
1695 .op = midgard_texop,
1696 .format = midgard_tex_format(instr->sampler_dim),
1697 .texture_handle = texture_index,
1698 .sampler_handle = sampler_index,
1699
1700 /* TODO: half */
1701 .in_reg_full = 1,
1702 .out_full = 1,
1703
1704 .sampler_type = midgard_sampler_type(instr->dest_type),
1705 }
1706 };
1707
1708 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1709 int index = nir_src_index(ctx, &instr->src[i].src);
1710 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1711
1712 switch (instr->src[i].src_type) {
1713 case nir_tex_src_coord: {
1714 emit_explicit_constant(ctx, index, index);
1715
1716 /* Texelfetch coordinates uses all four elements
1717 * (xyz/index) regardless of texture dimensionality,
1718 * which means it's necessary to zero the unused
1719 * components to keep everything happy */
1720
1721 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1722 unsigned old_index = index;
1723
1724 index = make_compiler_temp(ctx);
1725
1726 /* mov index, old_index */
1727 midgard_instruction mov = v_mov(old_index, index);
1728 mov.mask = 0x3;
1729 emit_mir_instruction(ctx, mov);
1730
1731 /* mov index.zw, #0 */
1732 mov = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), index);
1733 mov.has_constants = true;
1734 mov.mask = (1 << COMPONENT_Z) | (1 << COMPONENT_W);
1735 emit_mir_instruction(ctx, mov);
1736 }
1737
1738 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1739 /* texelFetch is undefined on samplerCube */
1740 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1741
1742 /* For cubemaps, we use a special ld/st op to
1743 * select the face and copy the xy into the
1744 * texture register */
1745
1746 unsigned temp = make_compiler_temp(ctx);
1747 midgard_instruction ld = m_ld_cubemap_coords(temp, 0);
1748 ld.src[1] = index;
1749 ld.mask = 0x3; /* xy */
1750 ld.load_store.arg_1 = 0x20;
1751 ld.swizzle[1][3] = COMPONENT_X;
1752 emit_mir_instruction(ctx, ld);
1753
1754 ins.src[1] = temp;
1755 /* xyzw -> xyxx */
1756 ins.swizzle[1][2] = COMPONENT_X;
1757 ins.swizzle[1][3] = COMPONENT_X;
1758 } else {
1759 ins.src[1] = index;
1760 }
1761
1762 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1763 /* Array component in w but NIR wants it in z */
1764 if (nr_components == 3) {
1765 ins.swizzle[1][2] = COMPONENT_Z;
1766 ins.swizzle[1][3] = COMPONENT_Z;
1767 } else if (nr_components == 2) {
1768 ins.swizzle[1][2] = COMPONENT_X;
1769 ins.swizzle[1][3] = COMPONENT_X;
1770 } else
1771 unreachable("Invalid texture 2D components");
1772 }
1773
1774 break;
1775 }
1776
1777 case nir_tex_src_bias:
1778 case nir_tex_src_lod: {
1779 /* Try as a constant if we can */
1780
1781 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1782 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1783 break;
1784
1785 ins.texture.lod_register = true;
1786 ins.src[2] = index;
1787 emit_explicit_constant(ctx, index, index);
1788
1789 break;
1790 };
1791
1792 default:
1793 unreachable("Unknown texture source type\n");
1794 }
1795 }
1796
1797 emit_mir_instruction(ctx, ins);
1798
1799 /* Used for .cont and .last hinting */
1800 ctx->texture_op_count++;
1801 }
1802
1803 static void
1804 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1805 {
1806 /* Fixup op, since only textureLod is permitted in VS on later Midgard
1807 * but NIR can give generic tex in some cases (which confuses the
1808 * hardware). Interestingly, early Midgard lines up with NIR */
1809
1810 bool is_vertex = ctx->stage == MESA_SHADER_VERTEX;
1811
1812 if (is_vertex && instr->op == nir_texop_tex && ctx->gpu_id >= 0x750)
1813 instr->op = nir_texop_txl;
1814
1815 switch (instr->op) {
1816 case nir_texop_tex:
1817 case nir_texop_txb:
1818 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1819 break;
1820 case nir_texop_txl:
1821 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1822 break;
1823 case nir_texop_txf:
1824 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1825 break;
1826 case nir_texop_txs:
1827 emit_sysval_read(ctx, &instr->instr, ~0, 4);
1828 break;
1829 default:
1830 unreachable("Unhanlded texture op");
1831 }
1832 }
1833
1834 static void
1835 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1836 {
1837 switch (instr->type) {
1838 case nir_jump_break: {
1839 /* Emit a branch out of the loop */
1840 struct midgard_instruction br = v_branch(false, false);
1841 br.branch.target_type = TARGET_BREAK;
1842 br.branch.target_break = ctx->current_loop_depth;
1843 emit_mir_instruction(ctx, br);
1844 break;
1845 }
1846
1847 default:
1848 DBG("Unknown jump type %d\n", instr->type);
1849 break;
1850 }
1851 }
1852
1853 static void
1854 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1855 {
1856 switch (instr->type) {
1857 case nir_instr_type_load_const:
1858 emit_load_const(ctx, nir_instr_as_load_const(instr));
1859 break;
1860
1861 case nir_instr_type_intrinsic:
1862 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1863 break;
1864
1865 case nir_instr_type_alu:
1866 emit_alu(ctx, nir_instr_as_alu(instr));
1867 break;
1868
1869 case nir_instr_type_tex:
1870 emit_tex(ctx, nir_instr_as_tex(instr));
1871 break;
1872
1873 case nir_instr_type_jump:
1874 emit_jump(ctx, nir_instr_as_jump(instr));
1875 break;
1876
1877 case nir_instr_type_ssa_undef:
1878 /* Spurious */
1879 break;
1880
1881 default:
1882 DBG("Unhandled instruction type\n");
1883 break;
1884 }
1885 }
1886
1887
1888 /* ALU instructions can inline or embed constants, which decreases register
1889 * pressure and saves space. */
1890
1891 #define CONDITIONAL_ATTACH(idx) { \
1892 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
1893 \
1894 if (entry) { \
1895 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
1896 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
1897 } \
1898 }
1899
1900 static void
1901 inline_alu_constants(compiler_context *ctx, midgard_block *block)
1902 {
1903 mir_foreach_instr_in_block(block, alu) {
1904 /* Other instructions cannot inline constants */
1905 if (alu->type != TAG_ALU_4) continue;
1906 if (alu->compact_branch) continue;
1907
1908 /* If there is already a constant here, we can do nothing */
1909 if (alu->has_constants) continue;
1910
1911 CONDITIONAL_ATTACH(0);
1912
1913 if (!alu->has_constants) {
1914 CONDITIONAL_ATTACH(1)
1915 } else if (!alu->inline_constant) {
1916 /* Corner case: _two_ vec4 constants, for instance with a
1917 * csel. For this case, we can only use a constant
1918 * register for one, we'll have to emit a move for the
1919 * other. Note, if both arguments are constants, then
1920 * necessarily neither argument depends on the value of
1921 * any particular register. As the destination register
1922 * will be wiped, that means we can spill the constant
1923 * to the destination register.
1924 */
1925
1926 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
1927 unsigned scratch = alu->dest;
1928
1929 if (entry) {
1930 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
1931 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
1932
1933 /* Set the source */
1934 alu->src[1] = scratch;
1935
1936 /* Inject us -before- the last instruction which set r31 */
1937 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
1938 }
1939 }
1940 }
1941 }
1942
1943 /* Being a little silly with the names, but returns the op that is the bitwise
1944 * inverse of the op with the argument switched. I.e. (f and g are
1945 * contrapositives):
1946 *
1947 * f(a, b) = ~g(b, a)
1948 *
1949 * Corollary: if g is the contrapositve of f, f is the contrapositive of g:
1950 *
1951 * f(a, b) = ~g(b, a)
1952 * ~f(a, b) = g(b, a)
1953 * ~f(a, b) = ~h(a, b) where h is the contrapositive of g
1954 * f(a, b) = h(a, b)
1955 *
1956 * Thus we define this function in pairs.
1957 */
1958
1959 static inline midgard_alu_op
1960 mir_contrapositive(midgard_alu_op op)
1961 {
1962 switch (op) {
1963 case midgard_alu_op_flt:
1964 return midgard_alu_op_fle;
1965 case midgard_alu_op_fle:
1966 return midgard_alu_op_flt;
1967
1968 case midgard_alu_op_ilt:
1969 return midgard_alu_op_ile;
1970 case midgard_alu_op_ile:
1971 return midgard_alu_op_ilt;
1972
1973 default:
1974 unreachable("No known contrapositive");
1975 }
1976 }
1977
1978 /* Midgard supports two types of constants, embedded constants (128-bit) and
1979 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
1980 * constants can be demoted to inline constants, for space savings and
1981 * sometimes a performance boost */
1982
1983 static void
1984 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
1985 {
1986 mir_foreach_instr_in_block(block, ins) {
1987 if (!ins->has_constants) continue;
1988 if (ins->has_inline_constant) continue;
1989
1990 /* Blend constants must not be inlined by definition */
1991 if (ins->has_blend_constant) continue;
1992
1993 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
1994 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
1995 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
1996
1997 if (!(is_16 || is_32))
1998 continue;
1999
2000 /* src1 cannot be an inline constant due to encoding
2001 * restrictions. So, if possible we try to flip the arguments
2002 * in that case */
2003
2004 int op = ins->alu.op;
2005
2006 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2007 bool flip = alu_opcode_props[op].props & OP_COMMUTES;
2008
2009 switch (op) {
2010 /* Conditionals can be inverted */
2011 case midgard_alu_op_flt:
2012 case midgard_alu_op_ilt:
2013 case midgard_alu_op_fle:
2014 case midgard_alu_op_ile:
2015 ins->alu.op = mir_contrapositive(ins->alu.op);
2016 ins->invert = true;
2017 flip = true;
2018 break;
2019
2020 case midgard_alu_op_fcsel:
2021 case midgard_alu_op_icsel:
2022 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2023 default:
2024 break;
2025 }
2026
2027 if (flip)
2028 mir_flip(ins);
2029 }
2030
2031 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2032 /* Extract the source information */
2033
2034 midgard_vector_alu_src *src;
2035 int q = ins->alu.src2;
2036 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2037 src = m;
2038
2039 /* Component is from the swizzle. Take a nonzero component */
2040 assert(ins->mask);
2041 unsigned first_comp = ffs(ins->mask) - 1;
2042 unsigned component = ins->swizzle[1][first_comp];
2043
2044 /* Scale constant appropriately, if we can legally */
2045 uint16_t scaled_constant = 0;
2046
2047 if (midgard_is_integer_op(op) || is_16) {
2048 unsigned int *iconstants = (unsigned int *) ins->constants;
2049 scaled_constant = (uint16_t) iconstants[component];
2050
2051 /* Constant overflow after resize */
2052 if (scaled_constant != iconstants[component])
2053 continue;
2054 } else {
2055 float *f = (float *) ins->constants;
2056 float original = f[component];
2057 scaled_constant = _mesa_float_to_half(original);
2058
2059 /* Check for loss of precision. If this is
2060 * mediump, we don't care, but for a highp
2061 * shader, we need to pay attention. NIR
2062 * doesn't yet tell us which mode we're in!
2063 * Practically this prevents most constants
2064 * from being inlined, sadly. */
2065
2066 float fp32 = _mesa_half_to_float(scaled_constant);
2067
2068 if (fp32 != original)
2069 continue;
2070 }
2071
2072 /* We don't know how to handle these with a constant */
2073
2074 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2075 DBG("Bailing inline constant...\n");
2076 continue;
2077 }
2078
2079 /* Make sure that the constant is not itself a vector
2080 * by checking if all accessed values are the same. */
2081
2082 uint32_t *cons = ins->constants;
2083 uint32_t value = cons[component];
2084
2085 bool is_vector = false;
2086 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2087
2088 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2089 /* We only care if this component is actually used */
2090 if (!(mask & (1 << c)))
2091 continue;
2092
2093 uint32_t test = cons[ins->swizzle[1][c]];
2094
2095 if (test != value) {
2096 is_vector = true;
2097 break;
2098 }
2099 }
2100
2101 if (is_vector)
2102 continue;
2103
2104 /* Get rid of the embedded constant */
2105 ins->has_constants = false;
2106 ins->src[1] = ~0;
2107 ins->has_inline_constant = true;
2108 ins->inline_constant = scaled_constant;
2109 }
2110 }
2111 }
2112
2113 /* Dead code elimination for branches at the end of a block - only one branch
2114 * per block is legal semantically */
2115
2116 static void
2117 midgard_opt_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2118 {
2119 bool branched = false;
2120
2121 mir_foreach_instr_in_block_safe(block, ins) {
2122 if (!midgard_is_branch_unit(ins->unit)) continue;
2123
2124 if (branched)
2125 mir_remove_instruction(ins);
2126
2127 branched = true;
2128 }
2129 }
2130
2131 /* fmov.pos is an idiom for fpos. Propoagate the .pos up to the source, so then
2132 * the move can be propagated away entirely */
2133
2134 static bool
2135 mir_compose_float_outmod(midgard_outmod_float *outmod, midgard_outmod_float comp)
2136 {
2137 /* Nothing to do */
2138 if (comp == midgard_outmod_none)
2139 return true;
2140
2141 if (*outmod == midgard_outmod_none) {
2142 *outmod = comp;
2143 return true;
2144 }
2145
2146 /* TODO: Compose rules */
2147 return false;
2148 }
2149
2150 static bool
2151 midgard_opt_pos_propagate(compiler_context *ctx, midgard_block *block)
2152 {
2153 bool progress = false;
2154
2155 mir_foreach_instr_in_block_safe(block, ins) {
2156 if (ins->type != TAG_ALU_4) continue;
2157 if (ins->alu.op != midgard_alu_op_fmov) continue;
2158 if (ins->alu.outmod != midgard_outmod_pos) continue;
2159
2160 /* TODO: Registers? */
2161 unsigned src = ins->src[1];
2162 if (src & IS_REG) continue;
2163
2164 /* There might be a source modifier, too */
2165 if (mir_nontrivial_source2_mod(ins)) continue;
2166
2167 /* Backpropagate the modifier */
2168 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
2169 if (v->type != TAG_ALU_4) continue;
2170 if (v->dest != src) continue;
2171
2172 /* Can we even take a float outmod? */
2173 if (midgard_is_integer_out_op(v->alu.op)) continue;
2174
2175 midgard_outmod_float temp = v->alu.outmod;
2176 progress |= mir_compose_float_outmod(&temp, ins->alu.outmod);
2177
2178 /* Throw in the towel.. */
2179 if (!progress) break;
2180
2181 /* Otherwise, transfer the modifier */
2182 v->alu.outmod = temp;
2183 ins->alu.outmod = midgard_outmod_none;
2184
2185 break;
2186 }
2187 }
2188
2189 return progress;
2190 }
2191
2192 static void
2193 emit_fragment_epilogue(compiler_context *ctx)
2194 {
2195 /* Just emit the last chunk with the branch */
2196 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, ~0, midgard_condition_always);
2197 }
2198
2199 static midgard_block *
2200 emit_block(compiler_context *ctx, nir_block *block)
2201 {
2202 midgard_block *this_block = ctx->after_block;
2203 ctx->after_block = NULL;
2204
2205 if (!this_block)
2206 this_block = create_empty_block(ctx);
2207
2208 list_addtail(&this_block->link, &ctx->blocks);
2209
2210 this_block->is_scheduled = false;
2211 ++ctx->block_count;
2212
2213 /* Set up current block */
2214 list_inithead(&this_block->instructions);
2215 ctx->current_block = this_block;
2216
2217 nir_foreach_instr(instr, block) {
2218 emit_instr(ctx, instr);
2219 ++ctx->instruction_count;
2220 }
2221
2222 return this_block;
2223 }
2224
2225 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2226
2227 static void
2228 emit_if(struct compiler_context *ctx, nir_if *nif)
2229 {
2230 midgard_block *before_block = ctx->current_block;
2231
2232 /* Speculatively emit the branch, but we can't fill it in until later */
2233 EMIT(branch, true, true);
2234 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2235 then_branch->src[0] = nir_src_index(ctx, &nif->condition);
2236
2237 /* Emit the two subblocks. */
2238 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2239 midgard_block *end_then_block = ctx->current_block;
2240
2241 /* Emit a jump from the end of the then block to the end of the else */
2242 EMIT(branch, false, false);
2243 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2244
2245 /* Emit second block, and check if it's empty */
2246
2247 int else_idx = ctx->block_count;
2248 int count_in = ctx->instruction_count;
2249 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2250 midgard_block *end_else_block = ctx->current_block;
2251 int after_else_idx = ctx->block_count;
2252
2253 /* Now that we have the subblocks emitted, fix up the branches */
2254
2255 assert(then_block);
2256 assert(else_block);
2257
2258 if (ctx->instruction_count == count_in) {
2259 /* The else block is empty, so don't emit an exit jump */
2260 mir_remove_instruction(then_exit);
2261 then_branch->branch.target_block = after_else_idx;
2262 } else {
2263 then_branch->branch.target_block = else_idx;
2264 then_exit->branch.target_block = after_else_idx;
2265 }
2266
2267 /* Wire up the successors */
2268
2269 ctx->after_block = create_empty_block(ctx);
2270
2271 midgard_block_add_successor(before_block, then_block);
2272 midgard_block_add_successor(before_block, else_block);
2273
2274 midgard_block_add_successor(end_then_block, ctx->after_block);
2275 midgard_block_add_successor(end_else_block, ctx->after_block);
2276 }
2277
2278 static void
2279 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2280 {
2281 /* Remember where we are */
2282 midgard_block *start_block = ctx->current_block;
2283
2284 /* Allocate a loop number, growing the current inner loop depth */
2285 int loop_idx = ++ctx->current_loop_depth;
2286
2287 /* Get index from before the body so we can loop back later */
2288 int start_idx = ctx->block_count;
2289
2290 /* Emit the body itself */
2291 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2292
2293 /* Branch back to loop back */
2294 struct midgard_instruction br_back = v_branch(false, false);
2295 br_back.branch.target_block = start_idx;
2296 emit_mir_instruction(ctx, br_back);
2297
2298 /* Mark down that branch in the graph. */
2299 midgard_block_add_successor(start_block, loop_block);
2300 midgard_block_add_successor(ctx->current_block, loop_block);
2301
2302 /* Find the index of the block about to follow us (note: we don't add
2303 * one; blocks are 0-indexed so we get a fencepost problem) */
2304 int break_block_idx = ctx->block_count;
2305
2306 /* Fix up the break statements we emitted to point to the right place,
2307 * now that we can allocate a block number for them */
2308 ctx->after_block = create_empty_block(ctx);
2309
2310 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
2311 mir_foreach_instr_in_block(block, ins) {
2312 if (ins->type != TAG_ALU_4) continue;
2313 if (!ins->compact_branch) continue;
2314 if (ins->prepacked_branch) continue;
2315
2316 /* We found a branch -- check the type to see if we need to do anything */
2317 if (ins->branch.target_type != TARGET_BREAK) continue;
2318
2319 /* It's a break! Check if it's our break */
2320 if (ins->branch.target_break != loop_idx) continue;
2321
2322 /* Okay, cool, we're breaking out of this loop.
2323 * Rewrite from a break to a goto */
2324
2325 ins->branch.target_type = TARGET_GOTO;
2326 ins->branch.target_block = break_block_idx;
2327
2328 midgard_block_add_successor(block, ctx->after_block);
2329 }
2330 }
2331
2332 /* Now that we've finished emitting the loop, free up the depth again
2333 * so we play nice with recursion amid nested loops */
2334 --ctx->current_loop_depth;
2335
2336 /* Dump loop stats */
2337 ++ctx->loop_count;
2338 }
2339
2340 static midgard_block *
2341 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2342 {
2343 midgard_block *start_block = NULL;
2344
2345 foreach_list_typed(nir_cf_node, node, node, list) {
2346 switch (node->type) {
2347 case nir_cf_node_block: {
2348 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2349
2350 if (!start_block)
2351 start_block = block;
2352
2353 break;
2354 }
2355
2356 case nir_cf_node_if:
2357 emit_if(ctx, nir_cf_node_as_if(node));
2358 break;
2359
2360 case nir_cf_node_loop:
2361 emit_loop(ctx, nir_cf_node_as_loop(node));
2362 break;
2363
2364 case nir_cf_node_function:
2365 assert(0);
2366 break;
2367 }
2368 }
2369
2370 return start_block;
2371 }
2372
2373 /* Due to lookahead, we need to report the first tag executed in the command
2374 * stream and in branch targets. An initial block might be empty, so iterate
2375 * until we find one that 'works' */
2376
2377 static unsigned
2378 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2379 {
2380 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2381
2382 unsigned first_tag = 0;
2383
2384 mir_foreach_block_from(ctx, initial_block, v) {
2385 if (v->quadword_count) {
2386 midgard_bundle *initial_bundle =
2387 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2388
2389 first_tag = initial_bundle->tag;
2390 break;
2391 }
2392 }
2393
2394 return first_tag;
2395 }
2396
2397 int
2398 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend, unsigned gpu_id)
2399 {
2400 struct util_dynarray *compiled = &program->compiled;
2401
2402 midgard_debug = debug_get_option_midgard_debug();
2403
2404 /* TODO: Bound against what? */
2405 compiler_context *ctx = rzalloc(NULL, compiler_context);
2406
2407 ctx->nir = nir;
2408 ctx->stage = nir->info.stage;
2409 ctx->is_blend = is_blend;
2410 ctx->alpha_ref = program->alpha_ref;
2411 ctx->gpu_id = gpu_id;
2412
2413 /* Start off with a safe cutoff, allowing usage of all 16 work
2414 * registers. Later, we'll promote uniform reads to uniform registers
2415 * if we determine it is beneficial to do so */
2416 ctx->uniform_cutoff = 8;
2417
2418 /* Initialize at a global (not block) level hash tables */
2419
2420 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2421 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2422 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
2423
2424 /* Record the varying mapping for the command stream's bookkeeping */
2425
2426 struct exec_list *varyings =
2427 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
2428
2429 unsigned max_varying = 0;
2430 nir_foreach_variable(var, varyings) {
2431 unsigned loc = var->data.driver_location;
2432 unsigned sz = glsl_type_size(var->type, FALSE);
2433
2434 for (int c = 0; c < sz; ++c) {
2435 program->varyings[loc + c] = var->data.location + c;
2436 max_varying = MAX2(max_varying, loc + c);
2437 }
2438 }
2439
2440 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2441 * (so we don't accidentally duplicate the epilogue since mesa/st has
2442 * messed with our I/O quite a bit already) */
2443
2444 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2445
2446 if (ctx->stage == MESA_SHADER_VERTEX) {
2447 NIR_PASS_V(nir, nir_lower_viewport_transform);
2448 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2449 }
2450
2451 NIR_PASS_V(nir, nir_lower_var_copies);
2452 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2453 NIR_PASS_V(nir, nir_split_var_copies);
2454 NIR_PASS_V(nir, nir_lower_var_copies);
2455 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2456 NIR_PASS_V(nir, nir_lower_var_copies);
2457 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2458
2459 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2460
2461 /* Optimisation passes */
2462
2463 optimise_nir(nir);
2464
2465 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2466 nir_print_shader(nir, stdout);
2467 }
2468
2469 /* Assign sysvals and counts, now that we're sure
2470 * (post-optimisation) */
2471
2472 midgard_nir_assign_sysvals(ctx, nir);
2473
2474 program->uniform_count = nir->num_uniforms;
2475 program->sysval_count = ctx->sysval_count;
2476 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
2477
2478 nir_foreach_function(func, nir) {
2479 if (!func->impl)
2480 continue;
2481
2482 list_inithead(&ctx->blocks);
2483 ctx->block_count = 0;
2484 ctx->func = func;
2485
2486 emit_cf_list(ctx, &func->impl->body);
2487
2488 /* Emit empty exit block with successor */
2489
2490 struct midgard_block *semi_end = ctx->current_block;
2491
2492 struct midgard_block *end =
2493 emit_block(ctx, func->impl->end_block);
2494
2495 if (ctx->stage == MESA_SHADER_FRAGMENT)
2496 emit_fragment_epilogue(ctx);
2497
2498 midgard_block_add_successor(semi_end, end);
2499
2500 break; /* TODO: Multi-function shaders */
2501 }
2502
2503 util_dynarray_init(compiled, NULL);
2504
2505 /* Per-block lowering before opts */
2506
2507 mir_foreach_block(ctx, block) {
2508 inline_alu_constants(ctx, block);
2509 midgard_opt_promote_fmov(ctx, block);
2510 embedded_to_inline_constant(ctx, block);
2511 }
2512 /* MIR-level optimizations */
2513
2514 bool progress = false;
2515
2516 do {
2517 progress = false;
2518
2519 mir_foreach_block(ctx, block) {
2520 progress |= midgard_opt_pos_propagate(ctx, block);
2521 progress |= midgard_opt_copy_prop(ctx, block);
2522 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2523 progress |= midgard_opt_combine_projection(ctx, block);
2524 progress |= midgard_opt_varying_projection(ctx, block);
2525 progress |= midgard_opt_not_propagate(ctx, block);
2526 progress |= midgard_opt_fuse_src_invert(ctx, block);
2527 progress |= midgard_opt_fuse_dest_invert(ctx, block);
2528 progress |= midgard_opt_csel_invert(ctx, block);
2529 }
2530 } while (progress);
2531
2532 mir_foreach_block(ctx, block) {
2533 midgard_lower_invert(ctx, block);
2534 midgard_lower_derivatives(ctx, block);
2535 }
2536
2537 /* Nested control-flow can result in dead branches at the end of the
2538 * block. This messes with our analysis and is just dead code, so cull
2539 * them */
2540 mir_foreach_block(ctx, block) {
2541 midgard_opt_cull_dead_branch(ctx, block);
2542 }
2543
2544 /* Ensure we were lowered */
2545 mir_foreach_instr_global(ctx, ins) {
2546 assert(!ins->invert);
2547 }
2548
2549 /* Schedule! */
2550 schedule_program(ctx);
2551
2552 /* Now that all the bundles are scheduled and we can calculate block
2553 * sizes, emit actual branch instructions rather than placeholders */
2554
2555 int br_block_idx = 0;
2556
2557 mir_foreach_block(ctx, block) {
2558 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2559 for (int c = 0; c < bundle->instruction_count; ++c) {
2560 midgard_instruction *ins = bundle->instructions[c];
2561
2562 if (!midgard_is_branch_unit(ins->unit)) continue;
2563
2564 if (ins->prepacked_branch) continue;
2565
2566 /* Parse some basic branch info */
2567 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2568 bool is_conditional = ins->branch.conditional;
2569 bool is_inverted = ins->branch.invert_conditional;
2570 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2571
2572 /* Determine the block we're jumping to */
2573 int target_number = ins->branch.target_block;
2574
2575 /* Report the destination tag */
2576 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2577
2578 /* Count up the number of quadwords we're
2579 * jumping over = number of quadwords until
2580 * (br_block_idx, target_number) */
2581
2582 int quadword_offset = 0;
2583
2584 if (is_discard) {
2585 /* Ignored */
2586 } else if (target_number > br_block_idx) {
2587 /* Jump forward */
2588
2589 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2590 midgard_block *blk = mir_get_block(ctx, idx);
2591 assert(blk);
2592
2593 quadword_offset += blk->quadword_count;
2594 }
2595 } else {
2596 /* Jump backwards */
2597
2598 for (int idx = br_block_idx; idx >= target_number; --idx) {
2599 midgard_block *blk = mir_get_block(ctx, idx);
2600 assert(blk);
2601
2602 quadword_offset -= blk->quadword_count;
2603 }
2604 }
2605
2606 /* Unconditional extended branches (far jumps)
2607 * have issues, so we always use a conditional
2608 * branch, setting the condition to always for
2609 * unconditional. For compact unconditional
2610 * branches, cond isn't used so it doesn't
2611 * matter what we pick. */
2612
2613 midgard_condition cond =
2614 !is_conditional ? midgard_condition_always :
2615 is_inverted ? midgard_condition_false :
2616 midgard_condition_true;
2617
2618 midgard_jmp_writeout_op op =
2619 is_discard ? midgard_jmp_writeout_op_discard :
2620 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2621 midgard_jmp_writeout_op_branch_cond;
2622
2623 if (!is_compact) {
2624 midgard_branch_extended branch =
2625 midgard_create_branch_extended(
2626 cond, op,
2627 dest_tag,
2628 quadword_offset);
2629
2630 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2631 } else if (is_conditional || is_discard) {
2632 midgard_branch_cond branch = {
2633 .op = op,
2634 .dest_tag = dest_tag,
2635 .offset = quadword_offset,
2636 .cond = cond
2637 };
2638
2639 assert(branch.offset == quadword_offset);
2640
2641 memcpy(&ins->br_compact, &branch, sizeof(branch));
2642 } else {
2643 assert(op == midgard_jmp_writeout_op_branch_uncond);
2644
2645 midgard_branch_uncond branch = {
2646 .op = op,
2647 .dest_tag = dest_tag,
2648 .offset = quadword_offset,
2649 .unknown = 1
2650 };
2651
2652 assert(branch.offset == quadword_offset);
2653
2654 memcpy(&ins->br_compact, &branch, sizeof(branch));
2655 }
2656 }
2657 }
2658
2659 ++br_block_idx;
2660 }
2661
2662 /* Emit flat binary from the instruction arrays. Iterate each block in
2663 * sequence. Save instruction boundaries such that lookahead tags can
2664 * be assigned easily */
2665
2666 /* Cache _all_ bundles in source order for lookahead across failed branches */
2667
2668 int bundle_count = 0;
2669 mir_foreach_block(ctx, block) {
2670 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2671 }
2672 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2673 int bundle_idx = 0;
2674 mir_foreach_block(ctx, block) {
2675 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2676 source_order_bundles[bundle_idx++] = bundle;
2677 }
2678 }
2679
2680 int current_bundle = 0;
2681
2682 /* Midgard prefetches instruction types, so during emission we
2683 * need to lookahead. Unless this is the last instruction, in
2684 * which we return 1. Or if this is the second to last and the
2685 * last is an ALU, then it's also 1... */
2686
2687 mir_foreach_block(ctx, block) {
2688 mir_foreach_bundle_in_block(block, bundle) {
2689 int lookahead = 1;
2690
2691 if (current_bundle + 1 < bundle_count) {
2692 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
2693
2694 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
2695 lookahead = 1;
2696 } else {
2697 lookahead = next;
2698 }
2699 }
2700
2701 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2702 ++current_bundle;
2703 }
2704
2705 /* TODO: Free deeper */
2706 //util_dynarray_fini(&block->instructions);
2707 }
2708
2709 free(source_order_bundles);
2710
2711 /* Report the very first tag executed */
2712 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2713
2714 /* Deal with off-by-one related to the fencepost problem */
2715 program->work_register_count = ctx->work_registers + 1;
2716 program->uniform_cutoff = ctx->uniform_cutoff;
2717
2718 program->blend_patch_offset = ctx->blend_constant_offset;
2719 program->tls_size = ctx->tls_size;
2720
2721 if (midgard_debug & MIDGARD_DBG_SHADERS)
2722 disassemble_midgard(program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2723
2724 if (midgard_debug & MIDGARD_DBG_SHADERDB) {
2725 unsigned nr_bundles = 0, nr_ins = 0;
2726
2727 /* Count instructions and bundles */
2728
2729 mir_foreach_block(ctx, block) {
2730 nr_bundles += util_dynarray_num_elements(
2731 &block->bundles, midgard_bundle);
2732
2733 mir_foreach_bundle_in_block(block, bun)
2734 nr_ins += bun->instruction_count;
2735 }
2736
2737 /* Calculate thread count. There are certain cutoffs by
2738 * register count for thread count */
2739
2740 unsigned nr_registers = program->work_register_count;
2741
2742 unsigned nr_threads =
2743 (nr_registers <= 4) ? 4 :
2744 (nr_registers <= 8) ? 2 :
2745 1;
2746
2747 /* Dump stats */
2748
2749 fprintf(stderr, "shader%d - %s shader: "
2750 "%u inst, %u bundles, %u quadwords, "
2751 "%u registers, %u threads, %u loops, "
2752 "%u:%u spills:fills\n",
2753 SHADER_DB_COUNT++,
2754 gl_shader_stage_name(ctx->stage),
2755 nr_ins, nr_bundles, ctx->quadword_count,
2756 nr_registers, nr_threads,
2757 ctx->loop_count,
2758 ctx->spills, ctx->fills);
2759 }
2760
2761 ralloc_free(ctx);
2762
2763 return 0;
2764 }