pan/mdg: Use helpers for branch/discard inversion
[mesa.git] / src / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/u_math.h"
39 #include "util/u_debug.h"
40 #include "util/u_dynarray.h"
41 #include "util/list.h"
42 #include "main/mtypes.h"
43
44 #include "midgard.h"
45 #include "midgard_nir.h"
46 #include "midgard_compile.h"
47 #include "midgard_ops.h"
48 #include "helpers.h"
49 #include "compiler.h"
50 #include "midgard_quirks.h"
51
52 #include "disassemble.h"
53
54 static const struct debug_named_value debug_options[] = {
55 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
56 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
57 {"shaderdb", MIDGARD_DBG_SHADERDB, "Prints shader-db statistics"},
58 DEBUG_NAMED_VALUE_END
59 };
60
61 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
62
63 unsigned SHADER_DB_COUNT = 0;
64
65 int midgard_debug = 0;
66
67 #define DBG(fmt, ...) \
68 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
69 fprintf(stderr, "%s:%d: "fmt, \
70 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
71 static midgard_block *
72 create_empty_block(compiler_context *ctx)
73 {
74 midgard_block *blk = rzalloc(ctx, midgard_block);
75
76 blk->base.predecessors = _mesa_set_create(blk,
77 _mesa_hash_pointer,
78 _mesa_key_pointer_equal);
79
80 blk->base.name = ctx->block_source_count++;
81
82 return blk;
83 }
84
85 static void
86 schedule_barrier(compiler_context *ctx)
87 {
88 midgard_block *temp = ctx->after_block;
89 ctx->after_block = create_empty_block(ctx);
90 ctx->block_count++;
91 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
92 list_inithead(&ctx->after_block->base.instructions);
93 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
94 ctx->current_block = ctx->after_block;
95 ctx->after_block = temp;
96 }
97
98 /* Helpers to generate midgard_instruction's using macro magic, since every
99 * driver seems to do it that way */
100
101 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
102
103 #define M_LOAD_STORE(name, store, T) \
104 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
105 midgard_instruction i = { \
106 .type = TAG_LOAD_STORE_4, \
107 .mask = 0xF, \
108 .dest = ~0, \
109 .src = { ~0, ~0, ~0, ~0 }, \
110 .swizzle = SWIZZLE_IDENTITY_4, \
111 .load_store = { \
112 .op = midgard_op_##name, \
113 .address = address \
114 } \
115 }; \
116 \
117 if (store) { \
118 i.src[0] = ssa; \
119 i.src_types[0] = T; \
120 } else { \
121 i.dest = ssa; \
122 i.dest_type = T; \
123 } \
124 return i; \
125 }
126
127 #define M_LOAD(name, T) M_LOAD_STORE(name, false, T)
128 #define M_STORE(name, T) M_LOAD_STORE(name, true, T)
129
130 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
131 * the corresponding Midgard source */
132
133 static midgard_vector_alu_src
134 vector_alu_modifiers(bool abs, bool neg, bool is_int,
135 bool half, bool sext)
136 {
137 /* Figure out how many components there are so we can adjust.
138 * Specifically we want to broadcast the last channel so things like
139 * ball2/3 work.
140 */
141
142 midgard_vector_alu_src alu_src = {
143 .rep_low = 0,
144 .rep_high = 0,
145 .half = half
146 };
147
148 if (is_int) {
149 alu_src.mod = midgard_int_normal;
150
151 /* Sign/zero-extend if needed */
152
153 if (half) {
154 alu_src.mod = sext ?
155 midgard_int_sign_extend
156 : midgard_int_zero_extend;
157 }
158
159 /* These should have been lowered away */
160 assert(!(abs || neg));
161 } else {
162 alu_src.mod = (abs << 0) | (neg << 1);
163 }
164
165 return alu_src;
166 }
167
168 M_LOAD(ld_attr_32, nir_type_uint32);
169 M_LOAD(ld_vary_32, nir_type_uint32);
170 M_LOAD(ld_ubo_int4, nir_type_uint32);
171 M_LOAD(ld_int4, nir_type_uint32);
172 M_STORE(st_int4, nir_type_uint32);
173 M_LOAD(ld_color_buffer_32u, nir_type_uint32);
174 M_STORE(st_vary_32, nir_type_uint32);
175 M_LOAD(ld_cubemap_coords, nir_type_uint32);
176 M_LOAD(ld_compute_id, nir_type_uint32);
177
178 static midgard_instruction
179 v_branch(bool conditional, bool invert)
180 {
181 midgard_instruction ins = {
182 .type = TAG_ALU_4,
183 .unit = ALU_ENAB_BRANCH,
184 .compact_branch = true,
185 .branch = {
186 .conditional = conditional,
187 .invert_conditional = invert
188 },
189 .dest = ~0,
190 .src = { ~0, ~0, ~0, ~0 },
191 };
192
193 return ins;
194 }
195
196 static midgard_branch_extended
197 midgard_create_branch_extended( midgard_condition cond,
198 midgard_jmp_writeout_op op,
199 unsigned dest_tag,
200 signed quadword_offset)
201 {
202 /* The condition code is actually a LUT describing a function to
203 * combine multiple condition codes. However, we only support a single
204 * condition code at the moment, so we just duplicate over a bunch of
205 * times. */
206
207 uint16_t duplicated_cond =
208 (cond << 14) |
209 (cond << 12) |
210 (cond << 10) |
211 (cond << 8) |
212 (cond << 6) |
213 (cond << 4) |
214 (cond << 2) |
215 (cond << 0);
216
217 midgard_branch_extended branch = {
218 .op = op,
219 .dest_tag = dest_tag,
220 .offset = quadword_offset,
221 .cond = duplicated_cond
222 };
223
224 return branch;
225 }
226
227 static void
228 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
229 {
230 ins->has_constants = true;
231 memcpy(&ins->constants, constants, 16);
232 }
233
234 static int
235 glsl_type_size(const struct glsl_type *type, bool bindless)
236 {
237 return glsl_count_attribute_slots(type, false);
238 }
239
240 /* Lower fdot2 to a vector multiplication followed by channel addition */
241 static void
242 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
243 {
244 if (alu->op != nir_op_fdot2)
245 return;
246
247 b->cursor = nir_before_instr(&alu->instr);
248
249 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
250 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
251
252 nir_ssa_def *product = nir_fmul(b, src0, src1);
253
254 nir_ssa_def *sum = nir_fadd(b,
255 nir_channel(b, product, 0),
256 nir_channel(b, product, 1));
257
258 /* Replace the fdot2 with this sum */
259 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
260 }
261
262 static bool
263 midgard_nir_lower_fdot2(nir_shader *shader)
264 {
265 bool progress = false;
266
267 nir_foreach_function(function, shader) {
268 if (!function->impl) continue;
269
270 nir_builder _b;
271 nir_builder *b = &_b;
272 nir_builder_init(b, function->impl);
273
274 nir_foreach_block(block, function->impl) {
275 nir_foreach_instr_safe(instr, block) {
276 if (instr->type != nir_instr_type_alu) continue;
277
278 nir_alu_instr *alu = nir_instr_as_alu(instr);
279 midgard_nir_lower_fdot2_body(b, alu);
280
281 progress |= true;
282 }
283 }
284
285 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
286
287 }
288
289 return progress;
290 }
291
292 /* Midgard can't write depth and stencil separately. It has to happen in a
293 * single store operation containing both. Let's add a panfrost specific
294 * intrinsic and turn all depth/stencil stores into a packed depth+stencil
295 * one.
296 */
297 static bool
298 midgard_nir_lower_zs_store(nir_shader *nir)
299 {
300 if (nir->info.stage != MESA_SHADER_FRAGMENT)
301 return false;
302
303 nir_variable *z_var = NULL, *s_var = NULL;
304
305 nir_foreach_variable(var, &nir->outputs) {
306 if (var->data.location == FRAG_RESULT_DEPTH)
307 z_var = var;
308 else if (var->data.location == FRAG_RESULT_STENCIL)
309 s_var = var;
310 }
311
312 if (!z_var && !s_var)
313 return false;
314
315 bool progress = false;
316
317 nir_foreach_function(function, nir) {
318 if (!function->impl) continue;
319
320 nir_intrinsic_instr *z_store = NULL, *s_store = NULL, *last_store = NULL;
321
322 nir_foreach_block(block, function->impl) {
323 nir_foreach_instr_safe(instr, block) {
324 if (instr->type != nir_instr_type_intrinsic)
325 continue;
326
327 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
328 if (intr->intrinsic != nir_intrinsic_store_output)
329 continue;
330
331 if (z_var && nir_intrinsic_base(intr) == z_var->data.driver_location) {
332 assert(!z_store);
333 z_store = intr;
334 last_store = intr;
335 }
336
337 if (s_var && nir_intrinsic_base(intr) == s_var->data.driver_location) {
338 assert(!s_store);
339 s_store = intr;
340 last_store = intr;
341 }
342 }
343 }
344
345 if (!z_store && !s_store) continue;
346
347 nir_builder b;
348 nir_builder_init(&b, function->impl);
349
350 b.cursor = nir_before_instr(&last_store->instr);
351
352 nir_ssa_def *zs_store_src;
353
354 if (z_store && s_store) {
355 nir_ssa_def *srcs[2] = {
356 nir_ssa_for_src(&b, z_store->src[0], 1),
357 nir_ssa_for_src(&b, s_store->src[0], 1),
358 };
359
360 zs_store_src = nir_vec(&b, srcs, 2);
361 } else {
362 zs_store_src = nir_ssa_for_src(&b, last_store->src[0], 1);
363 }
364
365 nir_intrinsic_instr *zs_store;
366
367 zs_store = nir_intrinsic_instr_create(b.shader,
368 nir_intrinsic_store_zs_output_pan);
369 zs_store->src[0] = nir_src_for_ssa(zs_store_src);
370 zs_store->num_components = z_store && s_store ? 2 : 1;
371 nir_intrinsic_set_component(zs_store, z_store ? 0 : 1);
372
373 /* Replace the Z and S store by a ZS store */
374 nir_builder_instr_insert(&b, &zs_store->instr);
375
376 if (z_store)
377 nir_instr_remove(&z_store->instr);
378
379 if (s_store)
380 nir_instr_remove(&s_store->instr);
381
382 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
383 progress = true;
384 }
385
386 return progress;
387 }
388
389 /* Flushes undefined values to zero */
390
391 static void
392 optimise_nir(nir_shader *nir, unsigned quirks)
393 {
394 bool progress;
395 unsigned lower_flrp =
396 (nir->options->lower_flrp16 ? 16 : 0) |
397 (nir->options->lower_flrp32 ? 32 : 0) |
398 (nir->options->lower_flrp64 ? 64 : 0);
399
400 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
401 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
402
403 nir_lower_tex_options lower_tex_options = {
404 .lower_txs_lod = true,
405 .lower_txp = ~0,
406 .lower_tex_without_implicit_lod =
407 (quirks & MIDGARD_EXPLICIT_LOD),
408
409 /* TODO: we have native gradient.. */
410 .lower_txd = true,
411 };
412
413 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
414
415 /* Must lower fdot2 after tex is lowered */
416 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
417
418 /* T720 is broken. */
419
420 if (quirks & MIDGARD_BROKEN_LOD)
421 NIR_PASS_V(nir, midgard_nir_lod_errata);
422
423 do {
424 progress = false;
425
426 NIR_PASS(progress, nir, nir_lower_var_copies);
427 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
428
429 NIR_PASS(progress, nir, nir_copy_prop);
430 NIR_PASS(progress, nir, nir_opt_remove_phis);
431 NIR_PASS(progress, nir, nir_opt_dce);
432 NIR_PASS(progress, nir, nir_opt_dead_cf);
433 NIR_PASS(progress, nir, nir_opt_cse);
434 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
435 NIR_PASS(progress, nir, nir_opt_algebraic);
436 NIR_PASS(progress, nir, nir_opt_constant_folding);
437
438 if (lower_flrp != 0) {
439 bool lower_flrp_progress = false;
440 NIR_PASS(lower_flrp_progress,
441 nir,
442 nir_lower_flrp,
443 lower_flrp,
444 false /* always_precise */,
445 nir->options->lower_ffma);
446 if (lower_flrp_progress) {
447 NIR_PASS(progress, nir,
448 nir_opt_constant_folding);
449 progress = true;
450 }
451
452 /* Nothing should rematerialize any flrps, so we only
453 * need to do this lowering once.
454 */
455 lower_flrp = 0;
456 }
457
458 NIR_PASS(progress, nir, nir_opt_undef);
459 NIR_PASS(progress, nir, nir_undef_to_zero);
460
461 NIR_PASS(progress, nir, nir_opt_loop_unroll,
462 nir_var_shader_in |
463 nir_var_shader_out |
464 nir_var_function_temp);
465
466 NIR_PASS(progress, nir, nir_opt_vectorize);
467 } while (progress);
468
469 /* Must be run at the end to prevent creation of fsin/fcos ops */
470 NIR_PASS(progress, nir, midgard_nir_scale_trig);
471
472 do {
473 progress = false;
474
475 NIR_PASS(progress, nir, nir_opt_dce);
476 NIR_PASS(progress, nir, nir_opt_algebraic);
477 NIR_PASS(progress, nir, nir_opt_constant_folding);
478 NIR_PASS(progress, nir, nir_copy_prop);
479 } while (progress);
480
481 NIR_PASS(progress, nir, nir_opt_algebraic_late);
482 NIR_PASS(progress, nir, nir_opt_algebraic_distribute_src_mods);
483
484 /* We implement booleans as 32-bit 0/~0 */
485 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
486
487 /* Now that booleans are lowered, we can run out late opts */
488 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
489 NIR_PASS(progress, nir, midgard_nir_cancel_inot);
490
491 NIR_PASS(progress, nir, nir_copy_prop);
492 NIR_PASS(progress, nir, nir_opt_dce);
493
494 /* Take us out of SSA */
495 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
496 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
497
498 /* We are a vector architecture; write combine where possible */
499 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
500 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
501
502 NIR_PASS(progress, nir, nir_opt_dce);
503 }
504
505 /* Do not actually emit a load; instead, cache the constant for inlining */
506
507 static void
508 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
509 {
510 nir_ssa_def def = instr->def;
511
512 midgard_constants *consts = rzalloc(NULL, midgard_constants);
513
514 assert(instr->def.num_components * instr->def.bit_size <= sizeof(*consts) * 8);
515
516 #define RAW_CONST_COPY(bits) \
517 nir_const_value_to_array(consts->u##bits, instr->value, \
518 instr->def.num_components, u##bits)
519
520 switch (instr->def.bit_size) {
521 case 64:
522 RAW_CONST_COPY(64);
523 break;
524 case 32:
525 RAW_CONST_COPY(32);
526 break;
527 case 16:
528 RAW_CONST_COPY(16);
529 break;
530 case 8:
531 RAW_CONST_COPY(8);
532 break;
533 default:
534 unreachable("Invalid bit_size for load_const instruction\n");
535 }
536
537 /* Shifted for SSA, +1 for off-by-one */
538 _mesa_hash_table_u64_insert(ctx->ssa_constants, (def.index << 1) + 1, consts);
539 }
540
541 /* Normally constants are embedded implicitly, but for I/O and such we have to
542 * explicitly emit a move with the constant source */
543
544 static void
545 emit_explicit_constant(compiler_context *ctx, unsigned node, unsigned to)
546 {
547 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, node + 1);
548
549 if (constant_value) {
550 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), to);
551 attach_constants(ctx, &ins, constant_value, node + 1);
552 emit_mir_instruction(ctx, ins);
553 }
554 }
555
556 static bool
557 nir_is_non_scalar_swizzle(nir_alu_src *src, unsigned nr_components)
558 {
559 unsigned comp = src->swizzle[0];
560
561 for (unsigned c = 1; c < nr_components; ++c) {
562 if (src->swizzle[c] != comp)
563 return true;
564 }
565
566 return false;
567 }
568
569 #define ALU_CASE(nir, _op) \
570 case nir_op_##nir: \
571 op = midgard_alu_op_##_op; \
572 assert(src_bitsize == dst_bitsize); \
573 break;
574
575 #define ALU_CASE_BCAST(nir, _op, count) \
576 case nir_op_##nir: \
577 op = midgard_alu_op_##_op; \
578 broadcast_swizzle = count; \
579 assert(src_bitsize == dst_bitsize); \
580 break;
581 /* Analyze the sizes of the inputs to determine which reg mode. Ops needed
582 * special treatment override this anyway. */
583
584 static midgard_reg_mode
585 reg_mode_for_nir(nir_alu_instr *instr)
586 {
587 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
588
589 switch (src_bitsize) {
590 case 8:
591 return midgard_reg_mode_8;
592 case 16:
593 return midgard_reg_mode_16;
594 case 32:
595 return midgard_reg_mode_32;
596 case 64:
597 return midgard_reg_mode_64;
598 default:
599 unreachable("Invalid bit size");
600 }
601 }
602
603 /* Compare mir_lower_invert */
604 static bool
605 nir_accepts_inot(nir_op op, unsigned src)
606 {
607 switch (op) {
608 case nir_op_ior:
609 case nir_op_iand:
610 case nir_op_ixor:
611 return true;
612 case nir_op_b32csel:
613 /* Only the condition */
614 return (src == 0);
615 default:
616 return false;
617 }
618 }
619
620 static void
621 mir_copy_src(midgard_instruction *ins, nir_alu_instr *instr, unsigned i, unsigned to, bool *abs, bool *neg, bool *not, bool is_int, unsigned bcast_count)
622 {
623 nir_alu_src src = instr->src[i];
624
625 if (!is_int) {
626 if (pan_has_source_mod(&src, nir_op_fneg))
627 *neg = !(*neg);
628
629 if (pan_has_source_mod(&src, nir_op_fabs))
630 *abs = true;
631 }
632
633 if (nir_accepts_inot(instr->op, i) && pan_has_source_mod(&src, nir_op_inot))
634 *not = true;
635
636 unsigned bits = nir_src_bit_size(src.src);
637
638 ins->src[to] = nir_src_index(NULL, &src.src);
639 ins->src_types[to] = nir_op_infos[instr->op].input_types[i] | bits;
640
641 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; ++c) {
642 ins->swizzle[to][c] = src.swizzle[
643 (!bcast_count || c < bcast_count) ? c :
644 (bcast_count - 1)];
645 }
646 }
647
648 static void
649 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
650 {
651 nir_dest *dest = &instr->dest.dest;
652
653 if (dest->is_ssa && BITSET_TEST(ctx->already_emitted, dest->ssa.index))
654 return;
655
656 /* Derivatives end up emitted on the texture pipe, not the ALUs. This
657 * is handled elsewhere */
658
659 if (instr->op == nir_op_fddx || instr->op == nir_op_fddy) {
660 midgard_emit_derivatives(ctx, instr);
661 return;
662 }
663
664 bool is_ssa = dest->is_ssa;
665
666 unsigned nr_components = nir_dest_num_components(*dest);
667 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
668 unsigned op = 0;
669
670 /* Number of components valid to check for the instruction (the rest
671 * will be forced to the last), or 0 to use as-is. Relevant as
672 * ball-type instructions have a channel count in NIR but are all vec4
673 * in Midgard */
674
675 unsigned broadcast_swizzle = 0;
676
677 /* What register mode should we operate in? */
678 midgard_reg_mode reg_mode =
679 reg_mode_for_nir(instr);
680
681 /* Do we need a destination override? Used for inline
682 * type conversion */
683
684 midgard_dest_override dest_override =
685 midgard_dest_override_none;
686
687 /* Should we use a smaller respective source and sign-extend? */
688
689 bool half_1 = false, sext_1 = false;
690 bool half_2 = false, sext_2 = false;
691
692 /* Should we swap arguments? */
693 bool flip_src12 = false;
694
695 unsigned src_bitsize = nir_src_bit_size(instr->src[0].src);
696 unsigned dst_bitsize = nir_dest_bit_size(*dest);
697
698 switch (instr->op) {
699 ALU_CASE(fadd, fadd);
700 ALU_CASE(fmul, fmul);
701 ALU_CASE(fmin, fmin);
702 ALU_CASE(fmax, fmax);
703 ALU_CASE(imin, imin);
704 ALU_CASE(imax, imax);
705 ALU_CASE(umin, umin);
706 ALU_CASE(umax, umax);
707 ALU_CASE(ffloor, ffloor);
708 ALU_CASE(fround_even, froundeven);
709 ALU_CASE(ftrunc, ftrunc);
710 ALU_CASE(fceil, fceil);
711 ALU_CASE(fdot3, fdot3);
712 ALU_CASE(fdot4, fdot4);
713 ALU_CASE(iadd, iadd);
714 ALU_CASE(isub, isub);
715 ALU_CASE(imul, imul);
716
717 /* Zero shoved as second-arg */
718 ALU_CASE(iabs, iabsdiff);
719
720 ALU_CASE(mov, imov);
721
722 ALU_CASE(feq32, feq);
723 ALU_CASE(fne32, fne);
724 ALU_CASE(flt32, flt);
725 ALU_CASE(ieq32, ieq);
726 ALU_CASE(ine32, ine);
727 ALU_CASE(ilt32, ilt);
728 ALU_CASE(ult32, ult);
729
730 /* We don't have a native b2f32 instruction. Instead, like many
731 * GPUs, we exploit booleans as 0/~0 for false/true, and
732 * correspondingly AND
733 * by 1.0 to do the type conversion. For the moment, prime us
734 * to emit:
735 *
736 * iand [whatever], #0
737 *
738 * At the end of emit_alu (as MIR), we'll fix-up the constant
739 */
740
741 ALU_CASE(b2f32, iand);
742 ALU_CASE(b2i32, iand);
743
744 /* Likewise, we don't have a dedicated f2b32 instruction, but
745 * we can do a "not equal to 0.0" test. */
746
747 ALU_CASE(f2b32, fne);
748 ALU_CASE(i2b32, ine);
749
750 ALU_CASE(frcp, frcp);
751 ALU_CASE(frsq, frsqrt);
752 ALU_CASE(fsqrt, fsqrt);
753 ALU_CASE(fexp2, fexp2);
754 ALU_CASE(flog2, flog2);
755
756 ALU_CASE(f2i64, f2i_rtz);
757 ALU_CASE(f2u64, f2u_rtz);
758 ALU_CASE(i2f64, i2f_rtz);
759 ALU_CASE(u2f64, u2f_rtz);
760
761 ALU_CASE(f2i32, f2i_rtz);
762 ALU_CASE(f2u32, f2u_rtz);
763 ALU_CASE(i2f32, i2f_rtz);
764 ALU_CASE(u2f32, u2f_rtz);
765
766 ALU_CASE(f2i16, f2i_rtz);
767 ALU_CASE(f2u16, f2u_rtz);
768 ALU_CASE(i2f16, i2f_rtz);
769 ALU_CASE(u2f16, u2f_rtz);
770
771 ALU_CASE(fsin, fsin);
772 ALU_CASE(fcos, fcos);
773
774 /* We'll get 0 in the second arg, so:
775 * ~a = ~(a | 0) = nor(a, 0) */
776 ALU_CASE(inot, inor);
777 ALU_CASE(iand, iand);
778 ALU_CASE(ior, ior);
779 ALU_CASE(ixor, ixor);
780 ALU_CASE(ishl, ishl);
781 ALU_CASE(ishr, iasr);
782 ALU_CASE(ushr, ilsr);
783
784 ALU_CASE_BCAST(b32all_fequal2, fball_eq, 2);
785 ALU_CASE_BCAST(b32all_fequal3, fball_eq, 3);
786 ALU_CASE(b32all_fequal4, fball_eq);
787
788 ALU_CASE_BCAST(b32any_fnequal2, fbany_neq, 2);
789 ALU_CASE_BCAST(b32any_fnequal3, fbany_neq, 3);
790 ALU_CASE(b32any_fnequal4, fbany_neq);
791
792 ALU_CASE_BCAST(b32all_iequal2, iball_eq, 2);
793 ALU_CASE_BCAST(b32all_iequal3, iball_eq, 3);
794 ALU_CASE(b32all_iequal4, iball_eq);
795
796 ALU_CASE_BCAST(b32any_inequal2, ibany_neq, 2);
797 ALU_CASE_BCAST(b32any_inequal3, ibany_neq, 3);
798 ALU_CASE(b32any_inequal4, ibany_neq);
799
800 /* Source mods will be shoved in later */
801 ALU_CASE(fabs, fmov);
802 ALU_CASE(fneg, fmov);
803 ALU_CASE(fsat, fmov);
804 ALU_CASE(fsat_signed, fmov);
805 ALU_CASE(fclamp_pos, fmov);
806
807 /* For size conversion, we use a move. Ideally though we would squash
808 * these ops together; maybe that has to happen after in NIR as part of
809 * propagation...? An earlier algebraic pass ensured we step down by
810 * only / exactly one size. If stepping down, we use a dest override to
811 * reduce the size; if stepping up, we use a larger-sized move with a
812 * half source and a sign/zero-extension modifier */
813
814 case nir_op_i2i8:
815 case nir_op_i2i16:
816 case nir_op_i2i32:
817 case nir_op_i2i64:
818 /* If we end up upscale, we'll need a sign-extend on the
819 * operand (the second argument) */
820
821 sext_2 = true;
822 /* fallthrough */
823 case nir_op_u2u8:
824 case nir_op_u2u16:
825 case nir_op_u2u32:
826 case nir_op_u2u64:
827 case nir_op_f2f16:
828 case nir_op_f2f32:
829 case nir_op_f2f64: {
830 if (instr->op == nir_op_f2f16 || instr->op == nir_op_f2f32 ||
831 instr->op == nir_op_f2f64)
832 op = midgard_alu_op_fmov;
833 else
834 op = midgard_alu_op_imov;
835
836 if (dst_bitsize == (src_bitsize * 2)) {
837 /* Converting up */
838 half_2 = true;
839
840 /* Use a greater register mode */
841 reg_mode++;
842 } else if (src_bitsize == (dst_bitsize * 2)) {
843 /* Converting down */
844 dest_override = midgard_dest_override_lower;
845 }
846
847 break;
848 }
849
850 /* For greater-or-equal, we lower to less-or-equal and flip the
851 * arguments */
852
853 case nir_op_fge:
854 case nir_op_fge32:
855 case nir_op_ige32:
856 case nir_op_uge32: {
857 op =
858 instr->op == nir_op_fge ? midgard_alu_op_fle :
859 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
860 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
861 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
862 0;
863
864 flip_src12 = true;
865 break;
866 }
867
868 case nir_op_b32csel: {
869 /* Midgard features both fcsel and icsel, depending on
870 * the type of the arguments/output. However, as long
871 * as we're careful we can _always_ use icsel and
872 * _never_ need fcsel, since the latter does additional
873 * floating-point-specific processing whereas the
874 * former just moves bits on the wire. It's not obvious
875 * why these are separate opcodes, save for the ability
876 * to do things like sat/pos/abs/neg for free */
877
878 bool mixed = nir_is_non_scalar_swizzle(&instr->src[0], nr_components);
879 op = mixed ? midgard_alu_op_icsel_v : midgard_alu_op_icsel;
880
881 break;
882 }
883
884 default:
885 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
886 assert(0);
887 return;
888 }
889
890 /* Midgard can perform certain modifiers on output of an ALU op */
891
892 unsigned outmod = 0;
893
894 bool abs[4] = { false };
895 bool neg[4] = { false };
896 bool is_int = midgard_is_integer_op(op);
897
898 if (midgard_is_integer_out_op(op)) {
899 outmod = midgard_outmod_int_wrap;
900 } else if (instr->op == nir_op_fsat) {
901 outmod = midgard_outmod_sat;
902 } else if (instr->op == nir_op_fsat_signed) {
903 outmod = midgard_outmod_sat_signed;
904 } else if (instr->op == nir_op_fclamp_pos) {
905 outmod = midgard_outmod_pos;
906 }
907
908 /* Fetch unit, quirks, etc information */
909 unsigned opcode_props = alu_opcode_props[op].props;
910 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
911
912 midgard_instruction ins = {
913 .type = TAG_ALU_4,
914 .dest = nir_dest_index(dest),
915 .dest_type = nir_op_infos[instr->op].output_type
916 | nir_dest_bit_size(*dest),
917 };
918
919 for (unsigned i = nr_inputs; i < ARRAY_SIZE(ins.src); ++i)
920 ins.src[i] = ~0;
921
922 if (quirk_flipped_r24) {
923 ins.src[0] = ~0;
924 mir_copy_src(&ins, instr, 0, 1, &abs[1], &neg[1], &ins.src_invert[1], is_int, broadcast_swizzle);
925 } else {
926 for (unsigned i = 0; i < nr_inputs; ++i) {
927 unsigned to = i;
928
929 if (instr->op == nir_op_b32csel) {
930 /* The condition is the first argument; move
931 * the other arguments up one to be a binary
932 * instruction for Midgard with the condition
933 * last */
934
935 if (i == 0)
936 to = 2;
937 else if (flip_src12)
938 to = 2 - i;
939 else
940 to = i - 1;
941 } else if (flip_src12) {
942 to = 1 - to;
943 }
944
945 mir_copy_src(&ins, instr, i, to, &abs[to], &neg[to], &ins.src_invert[to], is_int, broadcast_swizzle);
946
947 /* (!c) ? a : b = c ? b : a */
948 if (instr->op == nir_op_b32csel && ins.src_invert[2]) {
949 ins.src_invert[2] = false;
950 flip_src12 ^= true;
951 }
952 }
953 }
954
955 if (instr->op == nir_op_fneg || instr->op == nir_op_fabs) {
956 /* Lowered to move */
957 if (instr->op == nir_op_fneg)
958 neg[1] = !neg[1];
959
960 if (instr->op == nir_op_fabs)
961 abs[1] = true;
962 }
963
964 ins.mask = mask_of(nr_components);
965
966 midgard_vector_alu alu = {
967 .op = op,
968 .reg_mode = reg_mode,
969 .dest_override = dest_override,
970 .outmod = outmod,
971
972 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(abs[0], neg[0], is_int, half_1, sext_1)),
973 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(abs[1], neg[1], is_int, half_2, sext_2)),
974 };
975
976 /* Apply writemask if non-SSA, keeping in mind that we can't write to
977 * components that don't exist. Note modifier => SSA => !reg => no
978 * writemask, so we don't have to worry about writemasks here.*/
979
980 if (!is_ssa)
981 ins.mask &= instr->dest.write_mask;
982
983 ins.alu = alu;
984
985 /* Arrange for creation of iandnot/iornot */
986 if (ins.src_invert[0] && !ins.src_invert[1]) {
987 mir_flip(&ins);
988 ins.src_invert[0] = false;
989 ins.src_invert[1] = true;
990 }
991
992 /* Late fixup for emulated instructions */
993
994 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
995 /* Presently, our second argument is an inline #0 constant.
996 * Switch over to an embedded 1.0 constant (that can't fit
997 * inline, since we're 32-bit, not 16-bit like the inline
998 * constants) */
999
1000 ins.has_inline_constant = false;
1001 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1002 ins.src_types[1] = nir_type_float32;
1003 ins.has_constants = true;
1004
1005 if (instr->op == nir_op_b2f32)
1006 ins.constants.f32[0] = 1.0f;
1007 else
1008 ins.constants.i32[0] = 1;
1009
1010 for (unsigned c = 0; c < 16; ++c)
1011 ins.swizzle[1][c] = 0;
1012 } else if (nr_inputs == 1 && !quirk_flipped_r24) {
1013 /* Lots of instructions need a 0 plonked in */
1014 ins.has_inline_constant = false;
1015 ins.src[1] = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1016 ins.src_types[1] = nir_type_uint32;
1017 ins.has_constants = true;
1018 ins.constants.u32[0] = 0;
1019
1020 for (unsigned c = 0; c < 16; ++c)
1021 ins.swizzle[1][c] = 0;
1022 }
1023
1024 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1025 /* To avoid duplicating the lookup tables (probably), true LUT
1026 * instructions can only operate as if they were scalars. Lower
1027 * them here by changing the component. */
1028
1029 unsigned orig_mask = ins.mask;
1030
1031 unsigned swizzle_back[MIR_VEC_COMPONENTS];
1032 memcpy(&swizzle_back, ins.swizzle[0], sizeof(swizzle_back));
1033
1034 for (int i = 0; i < nr_components; ++i) {
1035 /* Mask the associated component, dropping the
1036 * instruction if needed */
1037
1038 ins.mask = 1 << i;
1039 ins.mask &= orig_mask;
1040
1041 if (!ins.mask)
1042 continue;
1043
1044 for (unsigned j = 0; j < MIR_VEC_COMPONENTS; ++j)
1045 ins.swizzle[0][j] = swizzle_back[i]; /* Pull from the correct component */
1046
1047 emit_mir_instruction(ctx, ins);
1048 }
1049 } else {
1050 emit_mir_instruction(ctx, ins);
1051 }
1052 }
1053
1054 #undef ALU_CASE
1055
1056 static void
1057 mir_set_intr_mask(nir_instr *instr, midgard_instruction *ins, bool is_read)
1058 {
1059 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
1060 unsigned nir_mask = 0;
1061 unsigned dsize = 0;
1062
1063 if (is_read) {
1064 nir_mask = mask_of(nir_intrinsic_dest_components(intr));
1065 dsize = nir_dest_bit_size(intr->dest);
1066 } else {
1067 nir_mask = nir_intrinsic_write_mask(intr);
1068 dsize = 32;
1069 }
1070
1071 /* Once we have the NIR mask, we need to normalize to work in 32-bit space */
1072 unsigned bytemask = pan_to_bytemask(dsize, nir_mask);
1073 mir_set_bytemask(ins, bytemask);
1074
1075 if (dsize == 64)
1076 ins->load_64 = true;
1077 }
1078
1079 /* Uniforms and UBOs use a shared code path, as uniforms are just (slightly
1080 * optimized) versions of UBO #0 */
1081
1082 static midgard_instruction *
1083 emit_ubo_read(
1084 compiler_context *ctx,
1085 nir_instr *instr,
1086 unsigned dest,
1087 unsigned offset,
1088 nir_src *indirect_offset,
1089 unsigned indirect_shift,
1090 unsigned index)
1091 {
1092 /* TODO: half-floats */
1093
1094 midgard_instruction ins = m_ld_ubo_int4(dest, 0);
1095 ins.constants.u32[0] = offset;
1096
1097 if (instr->type == nir_instr_type_intrinsic)
1098 mir_set_intr_mask(instr, &ins, true);
1099
1100 if (indirect_offset) {
1101 ins.src[2] = nir_src_index(ctx, indirect_offset);
1102 ins.src_types[2] = nir_type_uint32;
1103 ins.load_store.arg_2 = (indirect_shift << 5);
1104 } else {
1105 ins.load_store.arg_2 = 0x1E;
1106 }
1107
1108 ins.load_store.arg_1 = index;
1109
1110 return emit_mir_instruction(ctx, ins);
1111 }
1112
1113 /* Globals are like UBOs if you squint. And shared memory is like globals if
1114 * you squint even harder */
1115
1116 static void
1117 emit_global(
1118 compiler_context *ctx,
1119 nir_instr *instr,
1120 bool is_read,
1121 unsigned srcdest,
1122 nir_src *offset,
1123 bool is_shared)
1124 {
1125 /* TODO: types */
1126
1127 midgard_instruction ins;
1128
1129 if (is_read)
1130 ins = m_ld_int4(srcdest, 0);
1131 else
1132 ins = m_st_int4(srcdest, 0);
1133
1134 mir_set_offset(ctx, &ins, offset, is_shared);
1135 mir_set_intr_mask(instr, &ins, is_read);
1136
1137 emit_mir_instruction(ctx, ins);
1138 }
1139
1140 static void
1141 emit_varying_read(
1142 compiler_context *ctx,
1143 unsigned dest, unsigned offset,
1144 unsigned nr_comp, unsigned component,
1145 nir_src *indirect_offset, nir_alu_type type, bool flat)
1146 {
1147 /* XXX: Half-floats? */
1148 /* TODO: swizzle, mask */
1149
1150 midgard_instruction ins = m_ld_vary_32(dest, offset);
1151 ins.mask = mask_of(nr_comp);
1152
1153 for (unsigned i = 0; i < ARRAY_SIZE(ins.swizzle[0]); ++i)
1154 ins.swizzle[0][i] = MIN2(i + component, COMPONENT_W);
1155
1156 midgard_varying_parameter p = {
1157 .is_varying = 1,
1158 .interpolation = midgard_interp_default,
1159 .flat = flat,
1160 };
1161
1162 unsigned u;
1163 memcpy(&u, &p, sizeof(p));
1164 ins.load_store.varying_parameters = u;
1165
1166 if (indirect_offset) {
1167 ins.src[2] = nir_src_index(ctx, indirect_offset);
1168 ins.src_types[2] = nir_type_uint32;
1169 } else
1170 ins.load_store.arg_2 = 0x1E;
1171
1172 ins.load_store.arg_1 = 0x9E;
1173
1174 /* Use the type appropriate load */
1175 switch (type) {
1176 case nir_type_uint:
1177 case nir_type_bool:
1178 ins.load_store.op = midgard_op_ld_vary_32u;
1179 break;
1180 case nir_type_int:
1181 ins.load_store.op = midgard_op_ld_vary_32i;
1182 break;
1183 case nir_type_float:
1184 ins.load_store.op = midgard_op_ld_vary_32;
1185 break;
1186 default:
1187 unreachable("Attempted to load unknown type");
1188 break;
1189 }
1190
1191 emit_mir_instruction(ctx, ins);
1192 }
1193
1194 static void
1195 emit_attr_read(
1196 compiler_context *ctx,
1197 unsigned dest, unsigned offset,
1198 unsigned nr_comp, nir_alu_type t)
1199 {
1200 midgard_instruction ins = m_ld_attr_32(dest, offset);
1201 ins.load_store.arg_1 = 0x1E;
1202 ins.load_store.arg_2 = 0x1E;
1203 ins.mask = mask_of(nr_comp);
1204
1205 /* Use the type appropriate load */
1206 switch (t) {
1207 case nir_type_uint:
1208 case nir_type_bool:
1209 ins.load_store.op = midgard_op_ld_attr_32u;
1210 break;
1211 case nir_type_int:
1212 ins.load_store.op = midgard_op_ld_attr_32i;
1213 break;
1214 case nir_type_float:
1215 ins.load_store.op = midgard_op_ld_attr_32;
1216 break;
1217 default:
1218 unreachable("Attempted to load unknown type");
1219 break;
1220 }
1221
1222 emit_mir_instruction(ctx, ins);
1223 }
1224
1225 static void
1226 emit_sysval_read(compiler_context *ctx, nir_instr *instr,
1227 unsigned nr_components, unsigned offset)
1228 {
1229 nir_dest nir_dest;
1230
1231 /* Figure out which uniform this is */
1232 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
1233 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
1234
1235 unsigned dest = nir_dest_index(&nir_dest);
1236
1237 /* Sysvals are prefix uniforms */
1238 unsigned uniform = ((uintptr_t) val) - 1;
1239
1240 /* Emit the read itself -- this is never indirect */
1241 midgard_instruction *ins =
1242 emit_ubo_read(ctx, instr, dest, (uniform * 16) + offset, NULL, 0, 0);
1243
1244 ins->mask = mask_of(nr_components);
1245 }
1246
1247 static unsigned
1248 compute_builtin_arg(nir_op op)
1249 {
1250 switch (op) {
1251 case nir_intrinsic_load_work_group_id:
1252 return 0x14;
1253 case nir_intrinsic_load_local_invocation_id:
1254 return 0x10;
1255 default:
1256 unreachable("Invalid compute paramater loaded");
1257 }
1258 }
1259
1260 static void
1261 emit_fragment_store(compiler_context *ctx, unsigned src, enum midgard_rt_id rt)
1262 {
1263 assert(rt < ARRAY_SIZE(ctx->writeout_branch));
1264
1265 midgard_instruction *br = ctx->writeout_branch[rt];
1266
1267 assert(!br);
1268
1269 emit_explicit_constant(ctx, src, src);
1270
1271 struct midgard_instruction ins =
1272 v_branch(false, false);
1273
1274 ins.writeout = true;
1275
1276 /* Add dependencies */
1277 ins.src[0] = src;
1278 ins.src_types[0] = nir_type_uint32;
1279 ins.constants.u32[0] = rt == MIDGARD_ZS_RT ?
1280 0xFF : (rt - MIDGARD_COLOR_RT0) * 0x100;
1281
1282 /* Emit the branch */
1283 br = emit_mir_instruction(ctx, ins);
1284 schedule_barrier(ctx);
1285 ctx->writeout_branch[rt] = br;
1286
1287 /* Push our current location = current block count - 1 = where we'll
1288 * jump to. Maybe a bit too clever for my own good */
1289
1290 br->branch.target_block = ctx->block_count - 1;
1291 }
1292
1293 static void
1294 emit_compute_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1295 {
1296 unsigned reg = nir_dest_index(&instr->dest);
1297 midgard_instruction ins = m_ld_compute_id(reg, 0);
1298 ins.mask = mask_of(3);
1299 ins.swizzle[0][3] = COMPONENT_X; /* xyzx */
1300 ins.load_store.arg_1 = compute_builtin_arg(instr->intrinsic);
1301 emit_mir_instruction(ctx, ins);
1302 }
1303
1304 static unsigned
1305 vertex_builtin_arg(nir_op op)
1306 {
1307 switch (op) {
1308 case nir_intrinsic_load_vertex_id:
1309 return PAN_VERTEX_ID;
1310 case nir_intrinsic_load_instance_id:
1311 return PAN_INSTANCE_ID;
1312 default:
1313 unreachable("Invalid vertex builtin");
1314 }
1315 }
1316
1317 static void
1318 emit_vertex_builtin(compiler_context *ctx, nir_intrinsic_instr *instr)
1319 {
1320 unsigned reg = nir_dest_index(&instr->dest);
1321 emit_attr_read(ctx, reg, vertex_builtin_arg(instr->intrinsic), 1, nir_type_int);
1322 }
1323
1324 static void
1325 emit_control_barrier(compiler_context *ctx)
1326 {
1327 midgard_instruction ins = {
1328 .type = TAG_TEXTURE_4,
1329 .src = { ~0, ~0, ~0, ~0 },
1330 .texture = {
1331 .op = TEXTURE_OP_BARRIER,
1332
1333 /* TODO: optimize */
1334 .barrier_buffer = 1,
1335 .barrier_shared = 1
1336 }
1337 };
1338
1339 emit_mir_instruction(ctx, ins);
1340 }
1341
1342 static const nir_variable *
1343 search_var(struct exec_list *vars, unsigned driver_loc)
1344 {
1345 nir_foreach_variable(var, vars) {
1346 if (var->data.driver_location == driver_loc)
1347 return var;
1348 }
1349
1350 return NULL;
1351 }
1352
1353 static unsigned
1354 mir_get_branch_cond(nir_src *src, bool *invert)
1355 {
1356 /* Wrap it. No swizzle since it's a scalar */
1357
1358 nir_alu_src alu = {
1359 .src = *src
1360 };
1361
1362 *invert = pan_has_source_mod(&alu, nir_op_inot);
1363 return nir_src_index(NULL, &alu.src);
1364 }
1365
1366 static void
1367 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1368 {
1369 unsigned offset = 0, reg;
1370
1371 switch (instr->intrinsic) {
1372 case nir_intrinsic_discard_if:
1373 case nir_intrinsic_discard: {
1374 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1375 struct midgard_instruction discard = v_branch(conditional, false);
1376 discard.branch.target_type = TARGET_DISCARD;
1377
1378 if (conditional) {
1379 discard.src[0] = mir_get_branch_cond(&instr->src[0],
1380 &discard.branch.invert_conditional);
1381 discard.src_types[0] = nir_type_uint32;
1382 }
1383
1384 emit_mir_instruction(ctx, discard);
1385 schedule_barrier(ctx);
1386
1387 break;
1388 }
1389
1390 case nir_intrinsic_load_uniform:
1391 case nir_intrinsic_load_ubo:
1392 case nir_intrinsic_load_global:
1393 case nir_intrinsic_load_shared:
1394 case nir_intrinsic_load_input:
1395 case nir_intrinsic_load_interpolated_input: {
1396 bool is_uniform = instr->intrinsic == nir_intrinsic_load_uniform;
1397 bool is_ubo = instr->intrinsic == nir_intrinsic_load_ubo;
1398 bool is_global = instr->intrinsic == nir_intrinsic_load_global;
1399 bool is_shared = instr->intrinsic == nir_intrinsic_load_shared;
1400 bool is_flat = instr->intrinsic == nir_intrinsic_load_input;
1401 bool is_interp = instr->intrinsic == nir_intrinsic_load_interpolated_input;
1402
1403 /* Get the base type of the intrinsic */
1404 /* TODO: Infer type? Does it matter? */
1405 nir_alu_type t =
1406 (is_ubo || is_global || is_shared) ? nir_type_uint :
1407 (is_interp) ? nir_type_float :
1408 nir_intrinsic_type(instr);
1409
1410 t = nir_alu_type_get_base_type(t);
1411
1412 if (!(is_ubo || is_global)) {
1413 offset = nir_intrinsic_base(instr);
1414 }
1415
1416 unsigned nr_comp = nir_intrinsic_dest_components(instr);
1417
1418 nir_src *src_offset = nir_get_io_offset_src(instr);
1419
1420 bool direct = nir_src_is_const(*src_offset);
1421 nir_src *indirect_offset = direct ? NULL : src_offset;
1422
1423 if (direct)
1424 offset += nir_src_as_uint(*src_offset);
1425
1426 /* We may need to apply a fractional offset */
1427 int component = (is_flat || is_interp) ?
1428 nir_intrinsic_component(instr) : 0;
1429 reg = nir_dest_index(&instr->dest);
1430
1431 if (is_uniform && !ctx->is_blend) {
1432 emit_ubo_read(ctx, &instr->instr, reg, (ctx->sysvals.sysval_count + offset) * 16, indirect_offset, 4, 0);
1433 } else if (is_ubo) {
1434 nir_src index = instr->src[0];
1435
1436 /* TODO: Is indirect block number possible? */
1437 assert(nir_src_is_const(index));
1438
1439 uint32_t uindex = nir_src_as_uint(index) + 1;
1440 emit_ubo_read(ctx, &instr->instr, reg, offset, indirect_offset, 0, uindex);
1441 } else if (is_global || is_shared) {
1442 emit_global(ctx, &instr->instr, true, reg, src_offset, is_shared);
1443 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1444 emit_varying_read(ctx, reg, offset, nr_comp, component, indirect_offset, t, is_flat);
1445 } else if (ctx->is_blend) {
1446 /* For blend shaders, load the input color, which is
1447 * preloaded to r0 */
1448
1449 midgard_instruction move = v_mov(SSA_FIXED_REGISTER(0), reg);
1450 emit_mir_instruction(ctx, move);
1451 schedule_barrier(ctx);
1452 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1453 emit_attr_read(ctx, reg, offset, nr_comp, t);
1454 } else {
1455 DBG("Unknown load\n");
1456 assert(0);
1457 }
1458
1459 break;
1460 }
1461
1462 /* Artefact of load_interpolated_input. TODO: other barycentric modes */
1463 case nir_intrinsic_load_barycentric_pixel:
1464 case nir_intrinsic_load_barycentric_centroid:
1465 break;
1466
1467 /* Reads 128-bit value raw off the tilebuffer during blending, tasty */
1468
1469 case nir_intrinsic_load_raw_output_pan:
1470 case nir_intrinsic_load_output_u8_as_fp16_pan:
1471 reg = nir_dest_index(&instr->dest);
1472 assert(ctx->is_blend);
1473
1474 /* T720 and below use different blend opcodes with slightly
1475 * different semantics than T760 and up */
1476
1477 midgard_instruction ld = m_ld_color_buffer_32u(reg, 0);
1478 bool old_blend = ctx->quirks & MIDGARD_OLD_BLEND;
1479
1480 if (instr->intrinsic == nir_intrinsic_load_output_u8_as_fp16_pan) {
1481 ld.load_store.op = old_blend ?
1482 midgard_op_ld_color_buffer_u8_as_fp16_old :
1483 midgard_op_ld_color_buffer_u8_as_fp16;
1484
1485 if (old_blend) {
1486 ld.load_store.address = 1;
1487 ld.load_store.arg_2 = 0x1E;
1488 }
1489
1490 for (unsigned c = 2; c < 16; ++c)
1491 ld.swizzle[0][c] = 0;
1492 }
1493
1494 emit_mir_instruction(ctx, ld);
1495 break;
1496
1497 case nir_intrinsic_load_blend_const_color_rgba: {
1498 assert(ctx->is_blend);
1499 reg = nir_dest_index(&instr->dest);
1500
1501 /* Blend constants are embedded directly in the shader and
1502 * patched in, so we use some magic routing */
1503
1504 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), reg);
1505 ins.has_constants = true;
1506 ins.has_blend_constant = true;
1507 emit_mir_instruction(ctx, ins);
1508 break;
1509 }
1510
1511 case nir_intrinsic_store_zs_output_pan: {
1512 assert(ctx->stage == MESA_SHADER_FRAGMENT);
1513 emit_fragment_store(ctx, nir_src_index(ctx, &instr->src[0]),
1514 MIDGARD_ZS_RT);
1515
1516 midgard_instruction *br = ctx->writeout_branch[MIDGARD_ZS_RT];
1517
1518 if (!nir_intrinsic_component(instr))
1519 br->writeout_depth = true;
1520 if (nir_intrinsic_component(instr) ||
1521 instr->num_components)
1522 br->writeout_stencil = true;
1523 assert(br->writeout_depth | br->writeout_stencil);
1524 break;
1525 }
1526
1527 case nir_intrinsic_store_output:
1528 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1529
1530 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1531
1532 reg = nir_src_index(ctx, &instr->src[0]);
1533
1534 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1535 const nir_variable *var;
1536 enum midgard_rt_id rt;
1537
1538 var = search_var(&ctx->nir->outputs,
1539 nir_intrinsic_base(instr));
1540 assert(var);
1541 if (var->data.location == FRAG_RESULT_COLOR)
1542 rt = MIDGARD_COLOR_RT0;
1543 else if (var->data.location >= FRAG_RESULT_DATA0)
1544 rt = MIDGARD_COLOR_RT0 + var->data.location -
1545 FRAG_RESULT_DATA0;
1546 else
1547 assert(0);
1548
1549 emit_fragment_store(ctx, reg, rt);
1550 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1551 /* We should have been vectorized, though we don't
1552 * currently check that st_vary is emitted only once
1553 * per slot (this is relevant, since there's not a mask
1554 * parameter available on the store [set to 0 by the
1555 * blob]). We do respect the component by adjusting the
1556 * swizzle. If this is a constant source, we'll need to
1557 * emit that explicitly. */
1558
1559 emit_explicit_constant(ctx, reg, reg);
1560
1561 unsigned dst_component = nir_intrinsic_component(instr);
1562 unsigned nr_comp = nir_src_num_components(instr->src[0]);
1563
1564 midgard_instruction st = m_st_vary_32(reg, offset);
1565 st.load_store.arg_1 = 0x9E;
1566 st.load_store.arg_2 = 0x1E;
1567
1568 switch (nir_alu_type_get_base_type(nir_intrinsic_type(instr))) {
1569 case nir_type_uint:
1570 case nir_type_bool:
1571 st.load_store.op = midgard_op_st_vary_32u;
1572 break;
1573 case nir_type_int:
1574 st.load_store.op = midgard_op_st_vary_32i;
1575 break;
1576 case nir_type_float:
1577 st.load_store.op = midgard_op_st_vary_32;
1578 break;
1579 default:
1580 unreachable("Attempted to store unknown type");
1581 break;
1582 }
1583
1584 /* nir_intrinsic_component(store_intr) encodes the
1585 * destination component start. Source component offset
1586 * adjustment is taken care of in
1587 * install_registers_instr(), when offset_swizzle() is
1588 * called.
1589 */
1590 unsigned src_component = COMPONENT_X;
1591
1592 assert(nr_comp > 0);
1593 for (unsigned i = 0; i < ARRAY_SIZE(st.swizzle); ++i) {
1594 st.swizzle[0][i] = src_component;
1595 if (i >= dst_component && i < dst_component + nr_comp - 1)
1596 src_component++;
1597 }
1598
1599 emit_mir_instruction(ctx, st);
1600 } else {
1601 DBG("Unknown store\n");
1602 assert(0);
1603 }
1604
1605 break;
1606
1607 /* Special case of store_output for lowered blend shaders */
1608 case nir_intrinsic_store_raw_output_pan:
1609 assert (ctx->stage == MESA_SHADER_FRAGMENT);
1610 reg = nir_src_index(ctx, &instr->src[0]);
1611
1612 if (ctx->quirks & MIDGARD_OLD_BLEND) {
1613 /* Suppose reg = qr0.xyzw. That means 4 8-bit ---> 1 32-bit. So
1614 * reg = r0.x. We want to splatter. So we can do a 32-bit move
1615 * of:
1616 *
1617 * imov r0.xyzw, r0.xxxx
1618 */
1619
1620 unsigned expanded = make_compiler_temp(ctx);
1621
1622 midgard_instruction splatter = v_mov(reg, expanded);
1623
1624 for (unsigned c = 0; c < 16; ++c)
1625 splatter.swizzle[1][c] = 0;
1626
1627 emit_mir_instruction(ctx, splatter);
1628 emit_fragment_store(ctx, expanded, ctx->blend_rt);
1629 } else
1630 emit_fragment_store(ctx, reg, ctx->blend_rt);
1631
1632 break;
1633
1634 case nir_intrinsic_store_global:
1635 case nir_intrinsic_store_shared:
1636 reg = nir_src_index(ctx, &instr->src[0]);
1637 emit_explicit_constant(ctx, reg, reg);
1638
1639 emit_global(ctx, &instr->instr, false, reg, &instr->src[1], instr->intrinsic == nir_intrinsic_store_shared);
1640 break;
1641
1642 case nir_intrinsic_load_ssbo_address:
1643 emit_sysval_read(ctx, &instr->instr, 1, 0);
1644 break;
1645
1646 case nir_intrinsic_get_buffer_size:
1647 emit_sysval_read(ctx, &instr->instr, 1, 8);
1648 break;
1649
1650 case nir_intrinsic_load_viewport_scale:
1651 case nir_intrinsic_load_viewport_offset:
1652 case nir_intrinsic_load_num_work_groups:
1653 case nir_intrinsic_load_sampler_lod_parameters_pan:
1654 emit_sysval_read(ctx, &instr->instr, 3, 0);
1655 break;
1656
1657 case nir_intrinsic_load_work_group_id:
1658 case nir_intrinsic_load_local_invocation_id:
1659 emit_compute_builtin(ctx, instr);
1660 break;
1661
1662 case nir_intrinsic_load_vertex_id:
1663 case nir_intrinsic_load_instance_id:
1664 emit_vertex_builtin(ctx, instr);
1665 break;
1666
1667 case nir_intrinsic_memory_barrier_buffer:
1668 case nir_intrinsic_memory_barrier_shared:
1669 break;
1670
1671 case nir_intrinsic_control_barrier:
1672 schedule_barrier(ctx);
1673 emit_control_barrier(ctx);
1674 schedule_barrier(ctx);
1675 break;
1676
1677 default:
1678 fprintf(stderr, "Unhandled intrinsic %s\n", nir_intrinsic_infos[instr->intrinsic].name);
1679 assert(0);
1680 break;
1681 }
1682 }
1683
1684 static unsigned
1685 midgard_tex_format(enum glsl_sampler_dim dim)
1686 {
1687 switch (dim) {
1688 case GLSL_SAMPLER_DIM_1D:
1689 case GLSL_SAMPLER_DIM_BUF:
1690 return MALI_TEX_1D;
1691
1692 case GLSL_SAMPLER_DIM_2D:
1693 case GLSL_SAMPLER_DIM_EXTERNAL:
1694 case GLSL_SAMPLER_DIM_RECT:
1695 return MALI_TEX_2D;
1696
1697 case GLSL_SAMPLER_DIM_3D:
1698 return MALI_TEX_3D;
1699
1700 case GLSL_SAMPLER_DIM_CUBE:
1701 return MALI_TEX_CUBE;
1702
1703 default:
1704 DBG("Unknown sampler dim type\n");
1705 assert(0);
1706 return 0;
1707 }
1708 }
1709
1710 /* Tries to attach an explicit LOD / bias as a constant. Returns whether this
1711 * was successful */
1712
1713 static bool
1714 pan_attach_constant_bias(
1715 compiler_context *ctx,
1716 nir_src lod,
1717 midgard_texture_word *word)
1718 {
1719 /* To attach as constant, it has to *be* constant */
1720
1721 if (!nir_src_is_const(lod))
1722 return false;
1723
1724 float f = nir_src_as_float(lod);
1725
1726 /* Break into fixed-point */
1727 signed lod_int = f;
1728 float lod_frac = f - lod_int;
1729
1730 /* Carry over negative fractions */
1731 if (lod_frac < 0.0) {
1732 lod_int--;
1733 lod_frac += 1.0;
1734 }
1735
1736 /* Encode */
1737 word->bias = float_to_ubyte(lod_frac);
1738 word->bias_int = lod_int;
1739
1740 return true;
1741 }
1742
1743 static void
1744 emit_texop_native(compiler_context *ctx, nir_tex_instr *instr,
1745 unsigned midgard_texop)
1746 {
1747 /* TODO */
1748 //assert (!instr->sampler);
1749
1750 int texture_index = instr->texture_index;
1751 int sampler_index = texture_index;
1752
1753 nir_alu_type dest_base = nir_alu_type_get_base_type(instr->dest_type);
1754 nir_alu_type dest_type = dest_base | nir_dest_bit_size(instr->dest);
1755
1756 midgard_instruction ins = {
1757 .type = TAG_TEXTURE_4,
1758 .mask = 0xF,
1759 .dest = nir_dest_index(&instr->dest),
1760 .src = { ~0, ~0, ~0, ~0 },
1761 .dest_type = dest_type,
1762 .swizzle = SWIZZLE_IDENTITY_4,
1763 .texture = {
1764 .op = midgard_texop,
1765 .format = midgard_tex_format(instr->sampler_dim),
1766 .texture_handle = texture_index,
1767 .sampler_handle = sampler_index,
1768 .shadow = instr->is_shadow,
1769 }
1770 };
1771
1772 if (instr->is_shadow && !instr->is_new_style_shadow)
1773 for (int i = 0; i < 4; ++i)
1774 ins.swizzle[0][i] = COMPONENT_X;
1775
1776 /* We may need a temporary for the coordinate */
1777
1778 bool needs_temp_coord =
1779 (midgard_texop == TEXTURE_OP_TEXEL_FETCH) ||
1780 (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) ||
1781 (instr->is_shadow);
1782
1783 unsigned coords = needs_temp_coord ? make_compiler_temp_reg(ctx) : 0;
1784
1785 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1786 int index = nir_src_index(ctx, &instr->src[i].src);
1787 unsigned nr_components = nir_src_num_components(instr->src[i].src);
1788 unsigned sz = nir_src_bit_size(instr->src[i].src);
1789 nir_alu_type T = nir_tex_instr_src_type(instr, i) | sz;
1790
1791 switch (instr->src[i].src_type) {
1792 case nir_tex_src_coord: {
1793 emit_explicit_constant(ctx, index, index);
1794
1795 unsigned coord_mask = mask_of(instr->coord_components);
1796
1797 bool flip_zw = (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) && (coord_mask & (1 << COMPONENT_Z));
1798
1799 if (flip_zw)
1800 coord_mask ^= ((1 << COMPONENT_Z) | (1 << COMPONENT_W));
1801
1802 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1803 /* texelFetch is undefined on samplerCube */
1804 assert(midgard_texop != TEXTURE_OP_TEXEL_FETCH);
1805
1806 /* For cubemaps, we use a special ld/st op to
1807 * select the face and copy the xy into the
1808 * texture register */
1809
1810 midgard_instruction ld = m_ld_cubemap_coords(coords, 0);
1811 ld.src[1] = index;
1812 ld.src_types[1] = T;
1813 ld.mask = 0x3; /* xy */
1814 ld.load_store.arg_1 = 0x20;
1815 ld.swizzle[1][3] = COMPONENT_X;
1816 emit_mir_instruction(ctx, ld);
1817
1818 /* xyzw -> xyxx */
1819 ins.swizzle[1][2] = instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1820 ins.swizzle[1][3] = COMPONENT_X;
1821 } else if (needs_temp_coord) {
1822 /* mov coord_temp, coords */
1823 midgard_instruction mov = v_mov(index, coords);
1824 mov.mask = coord_mask;
1825
1826 if (flip_zw)
1827 mov.swizzle[1][COMPONENT_W] = COMPONENT_Z;
1828
1829 emit_mir_instruction(ctx, mov);
1830 } else {
1831 coords = index;
1832 }
1833
1834 ins.src[1] = coords;
1835 ins.src_types[1] = T;
1836
1837 /* Texelfetch coordinates uses all four elements
1838 * (xyz/index) regardless of texture dimensionality,
1839 * which means it's necessary to zero the unused
1840 * components to keep everything happy */
1841
1842 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1843 /* mov index.zw, #0, or generalized */
1844 midgard_instruction mov =
1845 v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), coords);
1846 mov.has_constants = true;
1847 mov.mask = coord_mask ^ 0xF;
1848 emit_mir_instruction(ctx, mov);
1849 }
1850
1851 if (instr->sampler_dim == GLSL_SAMPLER_DIM_2D) {
1852 /* Array component in w but NIR wants it in z,
1853 * but if we have a temp coord we already fixed
1854 * that up */
1855
1856 if (nr_components == 3) {
1857 ins.swizzle[1][2] = COMPONENT_Z;
1858 ins.swizzle[1][3] = needs_temp_coord ? COMPONENT_W : COMPONENT_Z;
1859 } else if (nr_components == 2) {
1860 ins.swizzle[1][2] =
1861 instr->is_shadow ? COMPONENT_Z : COMPONENT_X;
1862 ins.swizzle[1][3] = COMPONENT_X;
1863 } else
1864 unreachable("Invalid texture 2D components");
1865 }
1866
1867 if (midgard_texop == TEXTURE_OP_TEXEL_FETCH) {
1868 /* We zeroed */
1869 ins.swizzle[1][2] = COMPONENT_Z;
1870 ins.swizzle[1][3] = COMPONENT_W;
1871 }
1872
1873 break;
1874 }
1875
1876 case nir_tex_src_bias:
1877 case nir_tex_src_lod: {
1878 /* Try as a constant if we can */
1879
1880 bool is_txf = midgard_texop == TEXTURE_OP_TEXEL_FETCH;
1881 if (!is_txf && pan_attach_constant_bias(ctx, instr->src[i].src, &ins.texture))
1882 break;
1883
1884 ins.texture.lod_register = true;
1885 ins.src[2] = index;
1886 ins.src_types[2] = T;
1887
1888 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1889 ins.swizzle[2][c] = COMPONENT_X;
1890
1891 emit_explicit_constant(ctx, index, index);
1892
1893 break;
1894 };
1895
1896 case nir_tex_src_offset: {
1897 ins.texture.offset_register = true;
1898 ins.src[3] = index;
1899 ins.src_types[3] = T;
1900
1901 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c)
1902 ins.swizzle[3][c] = (c > COMPONENT_Z) ? 0 : c;
1903
1904 emit_explicit_constant(ctx, index, index);
1905 break;
1906 };
1907
1908 case nir_tex_src_comparator: {
1909 unsigned comp = COMPONENT_Z;
1910
1911 /* mov coord_temp.foo, coords */
1912 midgard_instruction mov = v_mov(index, coords);
1913 mov.mask = 1 << comp;
1914
1915 for (unsigned i = 0; i < MIR_VEC_COMPONENTS; ++i)
1916 mov.swizzle[1][i] = COMPONENT_X;
1917
1918 emit_mir_instruction(ctx, mov);
1919 break;
1920 }
1921
1922 default: {
1923 fprintf(stderr, "Unknown texture source type: %d\n", instr->src[i].src_type);
1924 assert(0);
1925 }
1926 }
1927 }
1928
1929 emit_mir_instruction(ctx, ins);
1930 }
1931
1932 static void
1933 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1934 {
1935 switch (instr->op) {
1936 case nir_texop_tex:
1937 case nir_texop_txb:
1938 emit_texop_native(ctx, instr, TEXTURE_OP_NORMAL);
1939 break;
1940 case nir_texop_txl:
1941 emit_texop_native(ctx, instr, TEXTURE_OP_LOD);
1942 break;
1943 case nir_texop_txf:
1944 emit_texop_native(ctx, instr, TEXTURE_OP_TEXEL_FETCH);
1945 break;
1946 case nir_texop_txs:
1947 emit_sysval_read(ctx, &instr->instr, 4, 0);
1948 break;
1949 default: {
1950 fprintf(stderr, "Unhandled texture op: %d\n", instr->op);
1951 assert(0);
1952 }
1953 }
1954 }
1955
1956 static void
1957 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1958 {
1959 switch (instr->type) {
1960 case nir_jump_break: {
1961 /* Emit a branch out of the loop */
1962 struct midgard_instruction br = v_branch(false, false);
1963 br.branch.target_type = TARGET_BREAK;
1964 br.branch.target_break = ctx->current_loop_depth;
1965 emit_mir_instruction(ctx, br);
1966 break;
1967 }
1968
1969 default:
1970 DBG("Unknown jump type %d\n", instr->type);
1971 break;
1972 }
1973 }
1974
1975 static void
1976 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1977 {
1978 switch (instr->type) {
1979 case nir_instr_type_load_const:
1980 emit_load_const(ctx, nir_instr_as_load_const(instr));
1981 break;
1982
1983 case nir_instr_type_intrinsic:
1984 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1985 break;
1986
1987 case nir_instr_type_alu:
1988 emit_alu(ctx, nir_instr_as_alu(instr));
1989 break;
1990
1991 case nir_instr_type_tex:
1992 emit_tex(ctx, nir_instr_as_tex(instr));
1993 break;
1994
1995 case nir_instr_type_jump:
1996 emit_jump(ctx, nir_instr_as_jump(instr));
1997 break;
1998
1999 case nir_instr_type_ssa_undef:
2000 /* Spurious */
2001 break;
2002
2003 default:
2004 DBG("Unhandled instruction type\n");
2005 break;
2006 }
2007 }
2008
2009
2010 /* ALU instructions can inline or embed constants, which decreases register
2011 * pressure and saves space. */
2012
2013 #define CONDITIONAL_ATTACH(idx) { \
2014 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[idx] + 1); \
2015 \
2016 if (entry) { \
2017 attach_constants(ctx, alu, entry, alu->src[idx] + 1); \
2018 alu->src[idx] = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2019 } \
2020 }
2021
2022 static void
2023 inline_alu_constants(compiler_context *ctx, midgard_block *block)
2024 {
2025 mir_foreach_instr_in_block(block, alu) {
2026 /* Other instructions cannot inline constants */
2027 if (alu->type != TAG_ALU_4) continue;
2028 if (alu->compact_branch) continue;
2029
2030 /* If there is already a constant here, we can do nothing */
2031 if (alu->has_constants) continue;
2032
2033 CONDITIONAL_ATTACH(0);
2034
2035 if (!alu->has_constants) {
2036 CONDITIONAL_ATTACH(1)
2037 } else if (!alu->inline_constant) {
2038 /* Corner case: _two_ vec4 constants, for instance with a
2039 * csel. For this case, we can only use a constant
2040 * register for one, we'll have to emit a move for the
2041 * other. */
2042
2043 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->src[1] + 1);
2044 unsigned scratch = make_compiler_temp(ctx);
2045
2046 if (entry) {
2047 midgard_instruction ins = v_mov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), scratch);
2048 attach_constants(ctx, &ins, entry, alu->src[1] + 1);
2049
2050 /* Set the source */
2051 alu->src[1] = scratch;
2052
2053 /* Inject us -before- the last instruction which set r31 */
2054 mir_insert_instruction_before(ctx, mir_prev_op(alu), ins);
2055 }
2056 }
2057 }
2058 }
2059
2060 /* Midgard supports two types of constants, embedded constants (128-bit) and
2061 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2062 * constants can be demoted to inline constants, for space savings and
2063 * sometimes a performance boost */
2064
2065 static void
2066 embedded_to_inline_constant(compiler_context *ctx, midgard_block *block)
2067 {
2068 mir_foreach_instr_in_block(block, ins) {
2069 if (!ins->has_constants) continue;
2070 if (ins->has_inline_constant) continue;
2071
2072 /* Blend constants must not be inlined by definition */
2073 if (ins->has_blend_constant) continue;
2074
2075 /* We can inline 32-bit (sometimes) or 16-bit (usually) */
2076 bool is_16 = ins->alu.reg_mode == midgard_reg_mode_16;
2077 bool is_32 = ins->alu.reg_mode == midgard_reg_mode_32;
2078
2079 if (!(is_16 || is_32))
2080 continue;
2081
2082 /* src1 cannot be an inline constant due to encoding
2083 * restrictions. So, if possible we try to flip the arguments
2084 * in that case */
2085
2086 int op = ins->alu.op;
2087
2088 if (ins->src[0] == SSA_FIXED_REGISTER(REGISTER_CONSTANT) &&
2089 alu_opcode_props[op].props & OP_COMMUTES) {
2090 mir_flip(ins);
2091 }
2092
2093 if (ins->src[1] == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2094 /* Extract the source information */
2095
2096 midgard_vector_alu_src *src;
2097 int q = ins->alu.src2;
2098 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2099 src = m;
2100
2101 /* Component is from the swizzle. Take a nonzero component */
2102 assert(ins->mask);
2103 unsigned first_comp = ffs(ins->mask) - 1;
2104 unsigned component = ins->swizzle[1][first_comp];
2105
2106 /* Scale constant appropriately, if we can legally */
2107 uint16_t scaled_constant = 0;
2108
2109 if (is_16) {
2110 scaled_constant = ins->constants.u16[component];
2111 } else if (midgard_is_integer_op(op)) {
2112 scaled_constant = ins->constants.u32[component];
2113
2114 /* Constant overflow after resize */
2115 if (scaled_constant != ins->constants.u32[component])
2116 continue;
2117 } else {
2118 float original = ins->constants.f32[component];
2119 scaled_constant = _mesa_float_to_half(original);
2120
2121 /* Check for loss of precision. If this is
2122 * mediump, we don't care, but for a highp
2123 * shader, we need to pay attention. NIR
2124 * doesn't yet tell us which mode we're in!
2125 * Practically this prevents most constants
2126 * from being inlined, sadly. */
2127
2128 float fp32 = _mesa_half_to_float(scaled_constant);
2129
2130 if (fp32 != original)
2131 continue;
2132 }
2133
2134 /* We don't know how to handle these with a constant */
2135
2136 if (mir_nontrivial_source2_mod_simple(ins) || src->rep_low || src->rep_high) {
2137 DBG("Bailing inline constant...\n");
2138 continue;
2139 }
2140
2141 /* Make sure that the constant is not itself a vector
2142 * by checking if all accessed values are the same. */
2143
2144 const midgard_constants *cons = &ins->constants;
2145 uint32_t value = is_16 ? cons->u16[component] : cons->u32[component];
2146
2147 bool is_vector = false;
2148 unsigned mask = effective_writemask(&ins->alu, ins->mask);
2149
2150 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
2151 /* We only care if this component is actually used */
2152 if (!(mask & (1 << c)))
2153 continue;
2154
2155 uint32_t test = is_16 ?
2156 cons->u16[ins->swizzle[1][c]] :
2157 cons->u32[ins->swizzle[1][c]];
2158
2159 if (test != value) {
2160 is_vector = true;
2161 break;
2162 }
2163 }
2164
2165 if (is_vector)
2166 continue;
2167
2168 /* Get rid of the embedded constant */
2169 ins->has_constants = false;
2170 ins->src[1] = ~0;
2171 ins->has_inline_constant = true;
2172 ins->inline_constant = scaled_constant;
2173 }
2174 }
2175 }
2176
2177 /* Dead code elimination for branches at the end of a block - only one branch
2178 * per block is legal semantically */
2179
2180 static void
2181 midgard_cull_dead_branch(compiler_context *ctx, midgard_block *block)
2182 {
2183 bool branched = false;
2184
2185 mir_foreach_instr_in_block_safe(block, ins) {
2186 if (!midgard_is_branch_unit(ins->unit)) continue;
2187
2188 if (branched)
2189 mir_remove_instruction(ins);
2190
2191 branched = true;
2192 }
2193 }
2194
2195 static unsigned
2196 emit_fragment_epilogue(compiler_context *ctx, unsigned rt)
2197 {
2198 /* Loop to ourselves */
2199 midgard_instruction *br = ctx->writeout_branch[rt];
2200 struct midgard_instruction ins = v_branch(false, false);
2201 ins.writeout = true;
2202 ins.writeout_depth = br->writeout_depth;
2203 ins.writeout_stencil = br->writeout_stencil;
2204 ins.branch.target_block = ctx->block_count - 1;
2205 ins.constants.u32[0] = br->constants.u32[0];
2206 emit_mir_instruction(ctx, ins);
2207
2208 ctx->current_block->epilogue = true;
2209 schedule_barrier(ctx);
2210 return ins.branch.target_block;
2211 }
2212
2213 static midgard_block *
2214 emit_block(compiler_context *ctx, nir_block *block)
2215 {
2216 midgard_block *this_block = ctx->after_block;
2217 ctx->after_block = NULL;
2218
2219 if (!this_block)
2220 this_block = create_empty_block(ctx);
2221
2222 list_addtail(&this_block->base.link, &ctx->blocks);
2223
2224 this_block->scheduled = false;
2225 ++ctx->block_count;
2226
2227 /* Set up current block */
2228 list_inithead(&this_block->base.instructions);
2229 ctx->current_block = this_block;
2230
2231 nir_foreach_instr(instr, block) {
2232 emit_instr(ctx, instr);
2233 ++ctx->instruction_count;
2234 }
2235
2236 return this_block;
2237 }
2238
2239 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
2240
2241 static void
2242 emit_if(struct compiler_context *ctx, nir_if *nif)
2243 {
2244 midgard_block *before_block = ctx->current_block;
2245
2246 /* Speculatively emit the branch, but we can't fill it in until later */
2247 bool inv = false;
2248 EMIT(branch, true, true);
2249 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
2250 then_branch->src[0] = mir_get_branch_cond(&nif->condition, &inv);
2251 then_branch->src_types[0] = nir_type_uint32;
2252 then_branch->branch.invert_conditional = !inv;
2253
2254 /* Emit the two subblocks. */
2255 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
2256 midgard_block *end_then_block = ctx->current_block;
2257
2258 /* Emit a jump from the end of the then block to the end of the else */
2259 EMIT(branch, false, false);
2260 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
2261
2262 /* Emit second block, and check if it's empty */
2263
2264 int else_idx = ctx->block_count;
2265 int count_in = ctx->instruction_count;
2266 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
2267 midgard_block *end_else_block = ctx->current_block;
2268 int after_else_idx = ctx->block_count;
2269
2270 /* Now that we have the subblocks emitted, fix up the branches */
2271
2272 assert(then_block);
2273 assert(else_block);
2274
2275 if (ctx->instruction_count == count_in) {
2276 /* The else block is empty, so don't emit an exit jump */
2277 mir_remove_instruction(then_exit);
2278 then_branch->branch.target_block = after_else_idx;
2279 } else {
2280 then_branch->branch.target_block = else_idx;
2281 then_exit->branch.target_block = after_else_idx;
2282 }
2283
2284 /* Wire up the successors */
2285
2286 ctx->after_block = create_empty_block(ctx);
2287
2288 pan_block_add_successor(&before_block->base, &then_block->base);
2289 pan_block_add_successor(&before_block->base, &else_block->base);
2290
2291 pan_block_add_successor(&end_then_block->base, &ctx->after_block->base);
2292 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base);
2293 }
2294
2295 static void
2296 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
2297 {
2298 /* Remember where we are */
2299 midgard_block *start_block = ctx->current_block;
2300
2301 /* Allocate a loop number, growing the current inner loop depth */
2302 int loop_idx = ++ctx->current_loop_depth;
2303
2304 /* Get index from before the body so we can loop back later */
2305 int start_idx = ctx->block_count;
2306
2307 /* Emit the body itself */
2308 midgard_block *loop_block = emit_cf_list(ctx, &nloop->body);
2309
2310 /* Branch back to loop back */
2311 struct midgard_instruction br_back = v_branch(false, false);
2312 br_back.branch.target_block = start_idx;
2313 emit_mir_instruction(ctx, br_back);
2314
2315 /* Mark down that branch in the graph. */
2316 pan_block_add_successor(&start_block->base, &loop_block->base);
2317 pan_block_add_successor(&ctx->current_block->base, &loop_block->base);
2318
2319 /* Find the index of the block about to follow us (note: we don't add
2320 * one; blocks are 0-indexed so we get a fencepost problem) */
2321 int break_block_idx = ctx->block_count;
2322
2323 /* Fix up the break statements we emitted to point to the right place,
2324 * now that we can allocate a block number for them */
2325 ctx->after_block = create_empty_block(ctx);
2326
2327 mir_foreach_block_from(ctx, start_block, _block) {
2328 mir_foreach_instr_in_block(((midgard_block *) _block), ins) {
2329 if (ins->type != TAG_ALU_4) continue;
2330 if (!ins->compact_branch) continue;
2331
2332 /* We found a branch -- check the type to see if we need to do anything */
2333 if (ins->branch.target_type != TARGET_BREAK) continue;
2334
2335 /* It's a break! Check if it's our break */
2336 if (ins->branch.target_break != loop_idx) continue;
2337
2338 /* Okay, cool, we're breaking out of this loop.
2339 * Rewrite from a break to a goto */
2340
2341 ins->branch.target_type = TARGET_GOTO;
2342 ins->branch.target_block = break_block_idx;
2343
2344 pan_block_add_successor(_block, &ctx->after_block->base);
2345 }
2346 }
2347
2348 /* Now that we've finished emitting the loop, free up the depth again
2349 * so we play nice with recursion amid nested loops */
2350 --ctx->current_loop_depth;
2351
2352 /* Dump loop stats */
2353 ++ctx->loop_count;
2354 }
2355
2356 static midgard_block *
2357 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
2358 {
2359 midgard_block *start_block = NULL;
2360
2361 foreach_list_typed(nir_cf_node, node, node, list) {
2362 switch (node->type) {
2363 case nir_cf_node_block: {
2364 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
2365
2366 if (!start_block)
2367 start_block = block;
2368
2369 break;
2370 }
2371
2372 case nir_cf_node_if:
2373 emit_if(ctx, nir_cf_node_as_if(node));
2374 break;
2375
2376 case nir_cf_node_loop:
2377 emit_loop(ctx, nir_cf_node_as_loop(node));
2378 break;
2379
2380 case nir_cf_node_function:
2381 assert(0);
2382 break;
2383 }
2384 }
2385
2386 return start_block;
2387 }
2388
2389 /* Due to lookahead, we need to report the first tag executed in the command
2390 * stream and in branch targets. An initial block might be empty, so iterate
2391 * until we find one that 'works' */
2392
2393 static unsigned
2394 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
2395 {
2396 midgard_block *initial_block = mir_get_block(ctx, block_idx);
2397
2398 mir_foreach_block_from(ctx, initial_block, _v) {
2399 midgard_block *v = (midgard_block *) _v;
2400 if (v->quadword_count) {
2401 midgard_bundle *initial_bundle =
2402 util_dynarray_element(&v->bundles, midgard_bundle, 0);
2403
2404 return initial_bundle->tag;
2405 }
2406 }
2407
2408 /* Default to a tag 1 which will break from the shader, in case we jump
2409 * to the exit block (i.e. `return` in a compute shader) */
2410
2411 return 1;
2412 }
2413
2414 /* For each fragment writeout instruction, generate a writeout loop to
2415 * associate with it */
2416
2417 static void
2418 mir_add_writeout_loops(compiler_context *ctx)
2419 {
2420 for (unsigned rt = 0; rt < ARRAY_SIZE(ctx->writeout_branch); ++rt) {
2421 midgard_instruction *br = ctx->writeout_branch[rt];
2422 if (!br) continue;
2423
2424 unsigned popped = br->branch.target_block;
2425 pan_block_add_successor(&(mir_get_block(ctx, popped - 1)->base), &ctx->current_block->base);
2426 br->branch.target_block = emit_fragment_epilogue(ctx, rt);
2427 br->branch.target_type = TARGET_GOTO;
2428
2429 /* If we have more RTs, we'll need to restore back after our
2430 * loop terminates */
2431
2432 if ((rt + 1) < ARRAY_SIZE(ctx->writeout_branch) && ctx->writeout_branch[rt + 1]) {
2433 midgard_instruction uncond = v_branch(false, false);
2434 uncond.branch.target_block = popped;
2435 uncond.branch.target_type = TARGET_GOTO;
2436 emit_mir_instruction(ctx, uncond);
2437 pan_block_add_successor(&ctx->current_block->base, &(mir_get_block(ctx, popped)->base));
2438 schedule_barrier(ctx);
2439 } else {
2440 /* We're last, so we can terminate here */
2441 br->last_writeout = true;
2442 }
2443 }
2444 }
2445
2446 int
2447 midgard_compile_shader_nir(nir_shader *nir, panfrost_program *program, bool is_blend, unsigned blend_rt, unsigned gpu_id, bool shaderdb)
2448 {
2449 struct util_dynarray *compiled = &program->compiled;
2450
2451 midgard_debug = debug_get_option_midgard_debug();
2452
2453 /* TODO: Bound against what? */
2454 compiler_context *ctx = rzalloc(NULL, compiler_context);
2455
2456 ctx->nir = nir;
2457 ctx->stage = nir->info.stage;
2458 ctx->is_blend = is_blend;
2459 ctx->alpha_ref = program->alpha_ref;
2460 ctx->blend_rt = MIDGARD_COLOR_RT0 + blend_rt;
2461 ctx->quirks = midgard_get_quirks(gpu_id);
2462
2463 /* Start off with a safe cutoff, allowing usage of all 16 work
2464 * registers. Later, we'll promote uniform reads to uniform registers
2465 * if we determine it is beneficial to do so */
2466 ctx->uniform_cutoff = 8;
2467
2468 /* Initialize at a global (not block) level hash tables */
2469
2470 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
2471 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
2472
2473 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
2474 * (so we don't accidentally duplicate the epilogue since mesa/st has
2475 * messed with our I/O quite a bit already) */
2476
2477 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2478
2479 if (ctx->stage == MESA_SHADER_VERTEX) {
2480 NIR_PASS_V(nir, nir_lower_viewport_transform);
2481 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
2482 }
2483
2484 NIR_PASS_V(nir, nir_lower_var_copies);
2485 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2486 NIR_PASS_V(nir, nir_split_var_copies);
2487 NIR_PASS_V(nir, nir_lower_var_copies);
2488 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
2489 NIR_PASS_V(nir, nir_lower_var_copies);
2490 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
2491
2492 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
2493 NIR_PASS_V(nir, nir_lower_ssbo);
2494 NIR_PASS_V(nir, midgard_nir_lower_zs_store);
2495
2496 /* Optimisation passes */
2497
2498 optimise_nir(nir, ctx->quirks);
2499
2500 if (midgard_debug & MIDGARD_DBG_SHADERS) {
2501 nir_print_shader(nir, stdout);
2502 }
2503
2504 /* Assign sysvals and counts, now that we're sure
2505 * (post-optimisation) */
2506
2507 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
2508 program->sysval_count = ctx->sysvals.sysval_count;
2509 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
2510
2511 nir_foreach_function(func, nir) {
2512 if (!func->impl)
2513 continue;
2514
2515 list_inithead(&ctx->blocks);
2516 ctx->block_count = 0;
2517 ctx->func = func;
2518 ctx->already_emitted = calloc(BITSET_WORDS(func->impl->ssa_alloc), sizeof(BITSET_WORD));
2519
2520 emit_cf_list(ctx, &func->impl->body);
2521 free(ctx->already_emitted);
2522 break; /* TODO: Multi-function shaders */
2523 }
2524
2525 util_dynarray_init(compiled, NULL);
2526
2527 /* Per-block lowering before opts */
2528
2529 mir_foreach_block(ctx, _block) {
2530 midgard_block *block = (midgard_block *) _block;
2531 inline_alu_constants(ctx, block);
2532 midgard_opt_promote_fmov(ctx, block);
2533 embedded_to_inline_constant(ctx, block);
2534 }
2535 /* MIR-level optimizations */
2536
2537 bool progress = false;
2538
2539 do {
2540 progress = false;
2541
2542 mir_foreach_block(ctx, _block) {
2543 midgard_block *block = (midgard_block *) _block;
2544 progress |= midgard_opt_copy_prop(ctx, block);
2545 progress |= midgard_opt_dead_code_eliminate(ctx, block);
2546 progress |= midgard_opt_combine_projection(ctx, block);
2547 progress |= midgard_opt_varying_projection(ctx, block);
2548 }
2549 } while (progress);
2550
2551 mir_foreach_block(ctx, _block) {
2552 midgard_block *block = (midgard_block *) _block;
2553 midgard_lower_derivatives(ctx, block);
2554 midgard_cull_dead_branch(ctx, block);
2555 }
2556
2557 if (ctx->stage == MESA_SHADER_FRAGMENT)
2558 mir_add_writeout_loops(ctx);
2559
2560 /* Analyze now that the code is known but before scheduling creates
2561 * pipeline registers which are harder to track */
2562 mir_analyze_helper_terminate(ctx);
2563 mir_analyze_helper_requirements(ctx);
2564
2565 /* Schedule! */
2566 midgard_schedule_program(ctx);
2567 mir_ra(ctx);
2568
2569 /* Now that all the bundles are scheduled and we can calculate block
2570 * sizes, emit actual branch instructions rather than placeholders */
2571
2572 int br_block_idx = 0;
2573
2574 mir_foreach_block(ctx, _block) {
2575 midgard_block *block = (midgard_block *) _block;
2576 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2577 for (int c = 0; c < bundle->instruction_count; ++c) {
2578 midgard_instruction *ins = bundle->instructions[c];
2579
2580 if (!midgard_is_branch_unit(ins->unit)) continue;
2581
2582 /* Parse some basic branch info */
2583 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
2584 bool is_conditional = ins->branch.conditional;
2585 bool is_inverted = ins->branch.invert_conditional;
2586 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
2587 bool is_writeout = ins->writeout;
2588
2589 /* Determine the block we're jumping to */
2590 int target_number = ins->branch.target_block;
2591
2592 /* Report the destination tag */
2593 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
2594
2595 /* Count up the number of quadwords we're
2596 * jumping over = number of quadwords until
2597 * (br_block_idx, target_number) */
2598
2599 int quadword_offset = 0;
2600
2601 if (is_discard) {
2602 /* Ignored */
2603 } else if (target_number > br_block_idx) {
2604 /* Jump forward */
2605
2606 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
2607 midgard_block *blk = mir_get_block(ctx, idx);
2608 assert(blk);
2609
2610 quadword_offset += blk->quadword_count;
2611 }
2612 } else {
2613 /* Jump backwards */
2614
2615 for (int idx = br_block_idx; idx >= target_number; --idx) {
2616 midgard_block *blk = mir_get_block(ctx, idx);
2617 assert(blk);
2618
2619 quadword_offset -= blk->quadword_count;
2620 }
2621 }
2622
2623 /* Unconditional extended branches (far jumps)
2624 * have issues, so we always use a conditional
2625 * branch, setting the condition to always for
2626 * unconditional. For compact unconditional
2627 * branches, cond isn't used so it doesn't
2628 * matter what we pick. */
2629
2630 midgard_condition cond =
2631 !is_conditional ? midgard_condition_always :
2632 is_inverted ? midgard_condition_false :
2633 midgard_condition_true;
2634
2635 midgard_jmp_writeout_op op =
2636 is_discard ? midgard_jmp_writeout_op_discard :
2637 is_writeout ? midgard_jmp_writeout_op_writeout :
2638 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
2639 midgard_jmp_writeout_op_branch_cond;
2640
2641 if (!is_compact) {
2642 midgard_branch_extended branch =
2643 midgard_create_branch_extended(
2644 cond, op,
2645 dest_tag,
2646 quadword_offset);
2647
2648 memcpy(&ins->branch_extended, &branch, sizeof(branch));
2649 } else if (is_conditional || is_discard) {
2650 midgard_branch_cond branch = {
2651 .op = op,
2652 .dest_tag = dest_tag,
2653 .offset = quadword_offset,
2654 .cond = cond
2655 };
2656
2657 assert(branch.offset == quadword_offset);
2658
2659 memcpy(&ins->br_compact, &branch, sizeof(branch));
2660 } else {
2661 assert(op == midgard_jmp_writeout_op_branch_uncond);
2662
2663 midgard_branch_uncond branch = {
2664 .op = op,
2665 .dest_tag = dest_tag,
2666 .offset = quadword_offset,
2667 .unknown = 1
2668 };
2669
2670 assert(branch.offset == quadword_offset);
2671
2672 memcpy(&ins->br_compact, &branch, sizeof(branch));
2673 }
2674 }
2675 }
2676
2677 ++br_block_idx;
2678 }
2679
2680 /* Emit flat binary from the instruction arrays. Iterate each block in
2681 * sequence. Save instruction boundaries such that lookahead tags can
2682 * be assigned easily */
2683
2684 /* Cache _all_ bundles in source order for lookahead across failed branches */
2685
2686 int bundle_count = 0;
2687 mir_foreach_block(ctx, _block) {
2688 midgard_block *block = (midgard_block *) _block;
2689 bundle_count += block->bundles.size / sizeof(midgard_bundle);
2690 }
2691 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
2692 int bundle_idx = 0;
2693 mir_foreach_block(ctx, _block) {
2694 midgard_block *block = (midgard_block *) _block;
2695 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
2696 source_order_bundles[bundle_idx++] = bundle;
2697 }
2698 }
2699
2700 int current_bundle = 0;
2701
2702 /* Midgard prefetches instruction types, so during emission we
2703 * need to lookahead. Unless this is the last instruction, in
2704 * which we return 1. */
2705
2706 mir_foreach_block(ctx, _block) {
2707 midgard_block *block = (midgard_block *) _block;
2708 mir_foreach_bundle_in_block(block, bundle) {
2709 int lookahead = 1;
2710
2711 if (!bundle->last_writeout && (current_bundle + 1 < bundle_count))
2712 lookahead = source_order_bundles[current_bundle + 1]->tag;
2713
2714 emit_binary_bundle(ctx, bundle, compiled, lookahead);
2715 ++current_bundle;
2716 }
2717
2718 /* TODO: Free deeper */
2719 //util_dynarray_fini(&block->instructions);
2720 }
2721
2722 free(source_order_bundles);
2723
2724 /* Report the very first tag executed */
2725 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
2726
2727 /* Deal with off-by-one related to the fencepost problem */
2728 program->work_register_count = ctx->work_registers + 1;
2729 program->uniform_cutoff = ctx->uniform_cutoff;
2730
2731 program->blend_patch_offset = ctx->blend_constant_offset;
2732 program->tls_size = ctx->tls_size;
2733
2734 if (midgard_debug & MIDGARD_DBG_SHADERS)
2735 disassemble_midgard(stdout, program->compiled.data, program->compiled.size, gpu_id, ctx->stage);
2736
2737 if (midgard_debug & MIDGARD_DBG_SHADERDB || shaderdb) {
2738 unsigned nr_bundles = 0, nr_ins = 0;
2739
2740 /* Count instructions and bundles */
2741
2742 mir_foreach_block(ctx, _block) {
2743 midgard_block *block = (midgard_block *) _block;
2744 nr_bundles += util_dynarray_num_elements(
2745 &block->bundles, midgard_bundle);
2746
2747 mir_foreach_bundle_in_block(block, bun)
2748 nr_ins += bun->instruction_count;
2749 }
2750
2751 /* Calculate thread count. There are certain cutoffs by
2752 * register count for thread count */
2753
2754 unsigned nr_registers = program->work_register_count;
2755
2756 unsigned nr_threads =
2757 (nr_registers <= 4) ? 4 :
2758 (nr_registers <= 8) ? 2 :
2759 1;
2760
2761 /* Dump stats */
2762
2763 fprintf(stderr, "shader%d - %s shader: "
2764 "%u inst, %u bundles, %u quadwords, "
2765 "%u registers, %u threads, %u loops, "
2766 "%u:%u spills:fills\n",
2767 SHADER_DB_COUNT++,
2768 gl_shader_stage_name(ctx->stage),
2769 nr_ins, nr_bundles, ctx->quadword_count,
2770 nr_registers, nr_threads,
2771 ctx->loop_count,
2772 ctx->spills, ctx->fills);
2773 }
2774
2775 ralloc_free(ctx);
2776
2777 return 0;
2778 }