pan/mdg: Eliminate expand_writemask division
[mesa.git] / src / panfrost / midgard / midgard_emit.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 static midgard_int_mod
28 mir_get_imod(bool shift, nir_alu_type T, bool half, bool scalar)
29 {
30 if (!half) {
31 assert(!shift);
32 /* Sign-extension, really... */
33 return scalar ? 0 : midgard_int_normal;
34 }
35
36 if (shift)
37 return midgard_int_shift;
38
39 if (nir_alu_type_get_base_type(T) == nir_type_int)
40 return midgard_int_sign_extend;
41 else
42 return midgard_int_zero_extend;
43 }
44
45 static unsigned
46 mir_pack_mod(midgard_instruction *ins, unsigned i, bool scalar)
47 {
48 bool integer = midgard_is_integer_op(ins->alu.op);
49 unsigned base_size = (8 << ins->alu.reg_mode);
50 unsigned sz = nir_alu_type_get_type_size(ins->src_types[i]);
51 bool half = (sz == (base_size >> 1));
52
53 return integer ?
54 mir_get_imod(ins->src_shift[i], ins->src_types[i], half, scalar) :
55 ((ins->src_abs[i] << 0) |
56 ((ins->src_neg[i] << 1)));
57 }
58
59 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
60 * use scalar ALU instructions, for functional or performance reasons. To do
61 * this, we just demote vector ALU payloads to scalar. */
62
63 static int
64 component_from_mask(unsigned mask)
65 {
66 for (int c = 0; c < 8; ++c) {
67 if (mask & (1 << c))
68 return c;
69 }
70
71 assert(0);
72 return 0;
73 }
74
75 static unsigned
76 mir_pack_scalar_source(unsigned mod, bool is_full, unsigned component)
77 {
78 midgard_scalar_alu_src s = {
79 .mod = mod,
80 .full = is_full,
81 .component = component << (is_full ? 1 : 0)
82 };
83
84 unsigned o;
85 memcpy(&o, &s, sizeof(s));
86
87 return o & ((1 << 6) - 1);
88 }
89
90 static midgard_scalar_alu
91 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
92 {
93 bool is_full = nir_alu_type_get_type_size(ins->dest_type) == 32;
94
95 bool half_0 = nir_alu_type_get_type_size(ins->src_types[0]) == 16;
96 bool half_1 = nir_alu_type_get_type_size(ins->src_types[1]) == 16;
97 unsigned comp = component_from_mask(ins->mask);
98
99 unsigned packed_src[2] = {
100 mir_pack_scalar_source(mir_pack_mod(ins, 0, true), !half_0, ins->swizzle[0][comp]),
101 mir_pack_scalar_source(mir_pack_mod(ins, 1, true), !half_1, ins->swizzle[1][comp])
102 };
103
104 /* The output component is from the mask */
105 midgard_scalar_alu s = {
106 .op = v.op,
107 .src1 = packed_src[0],
108 .src2 = packed_src[1],
109 .unknown = 0,
110 .outmod = v.outmod,
111 .output_full = is_full,
112 .output_component = comp
113 };
114
115 /* Full components are physically spaced out */
116 if (is_full) {
117 assert(s.output_component < 4);
118 s.output_component <<= 1;
119 }
120
121 /* Inline constant is passed along rather than trying to extract it
122 * from v */
123
124 if (ins->has_inline_constant) {
125 uint16_t imm = 0;
126 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
127 imm |= (lower_11 >> 9) & 3;
128 imm |= (lower_11 >> 6) & 4;
129 imm |= (lower_11 >> 2) & 0x38;
130 imm |= (lower_11 & 63) << 6;
131
132 s.src2 = imm;
133 }
134
135 return s;
136 }
137
138 /* 64-bit swizzles are super easy since there are 2 components of 2 components
139 * in an 8-bit field ... lots of duplication to go around!
140 *
141 * Swizzles of 32-bit vectors accessed from 64-bit instructions are a little
142 * funny -- pack them *as if* they were native 64-bit, using rep_* flags to
143 * flag upper. For instance, xy would become 64-bit XY but that's just xyzw
144 * native. Likewise, zz would become 64-bit XX with rep* so it would be xyxy
145 * with rep. Pretty nifty, huh? */
146
147 static unsigned
148 mir_pack_swizzle_64(unsigned *swizzle, unsigned max_component)
149 {
150 unsigned packed = 0;
151
152 for (unsigned i = 0; i < 2; ++i) {
153 assert(swizzle[i] <= max_component);
154
155 unsigned a = (swizzle[i] & 1) ?
156 (COMPONENT_W << 2) | COMPONENT_Z :
157 (COMPONENT_Y << 2) | COMPONENT_X;
158
159 packed |= a << (i * 4);
160 }
161
162 return packed;
163 }
164
165 static void
166 mir_pack_mask_alu(midgard_instruction *ins)
167 {
168 unsigned effective = ins->mask;
169
170 /* If we have a destination override, we need to figure out whether to
171 * override to the lower or upper half, shifting the effective mask in
172 * the latter, so AAAA.... becomes AAAA */
173
174 unsigned inst_size = 8 << ins->alu.reg_mode;
175 signed upper_shift = mir_upper_override(ins, inst_size);
176
177 if (upper_shift >= 0) {
178 effective >>= upper_shift;
179 ins->alu.dest_override = upper_shift ?
180 midgard_dest_override_upper :
181 midgard_dest_override_lower;
182 } else {
183 ins->alu.dest_override = midgard_dest_override_none;
184 }
185
186 if (ins->alu.reg_mode == midgard_reg_mode_32)
187 ins->alu.mask = expand_writemask(effective, 2);
188 else if (ins->alu.reg_mode == midgard_reg_mode_64)
189 ins->alu.mask = expand_writemask(effective, 1);
190 else
191 ins->alu.mask = effective;
192 }
193
194 static unsigned
195 mir_pack_swizzle(unsigned mask, unsigned *swizzle,
196 nir_alu_type T, midgard_reg_mode reg_mode,
197 bool op_channeled, bool *rep_low, bool *rep_high)
198 {
199 unsigned packed = 0;
200 unsigned sz = nir_alu_type_get_type_size(T);
201
202 if (reg_mode == midgard_reg_mode_64) {
203 unsigned components = 64 / sz;
204
205 packed = mir_pack_swizzle_64(swizzle, components);
206
207 if (sz == 32) {
208 bool lo = swizzle[0] >= COMPONENT_Z;
209 bool hi = swizzle[1] >= COMPONENT_Z;
210
211 if (mask & 0x1) {
212 /* We can't mix halves... */
213 if (mask & 2)
214 assert(lo == hi);
215
216 *rep_low = lo;
217 } else {
218 *rep_low = hi;
219 }
220 } else if (sz < 32) {
221 unreachable("Cannot encode 8/16 swizzle in 64-bit");
222 }
223 } else {
224 /* For 32-bit, swizzle packing is stupid-simple. For 16-bit,
225 * the strategy is to check whether the nibble we're on is
226 * upper or lower. We need all components to be on the same
227 * "side"; that much is enforced by the ISA and should have
228 * been lowered. TODO: 8-bit packing. TODO: vec8 */
229
230 unsigned first = mask ? ffs(mask) - 1 : 0;
231 bool upper = swizzle[first] > 3;
232
233 if (upper && mask)
234 assert(sz <= 16);
235
236 bool dest_up = !op_channeled && (first >= 4);
237
238 for (unsigned c = (dest_up ? 4 : 0); c < (dest_up ? 8 : 4); ++c) {
239 unsigned v = swizzle[c];
240
241 bool t_upper = v > 3;
242
243 /* Ensure we're doing something sane */
244
245 if (mask & (1 << c)) {
246 assert(t_upper == upper);
247 assert(v <= 7);
248 }
249
250 /* Use the non upper part */
251 v &= 0x3;
252
253 packed |= v << (2 * (c % 4));
254 }
255
256
257 /* Replicate for now.. should really pick a side for
258 * dot products */
259
260 if (reg_mode == midgard_reg_mode_16 && sz == 16) {
261 *rep_low = !upper;
262 *rep_high = upper;
263 } else if (reg_mode == midgard_reg_mode_16 && sz == 8) {
264 *rep_low = upper;
265 *rep_high = upper;
266 } else if (reg_mode == midgard_reg_mode_32) {
267 *rep_low = upper;
268 } else {
269 unreachable("Unhandled reg mode");
270 }
271 }
272
273 return packed;
274 }
275
276 static void
277 mir_pack_vector_srcs(midgard_instruction *ins)
278 {
279 bool channeled = GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props);
280
281 midgard_reg_mode mode = ins->alu.reg_mode;
282 unsigned base_size = (8 << mode);
283
284 for (unsigned i = 0; i < 2; ++i) {
285 if (ins->has_inline_constant && (i == 1))
286 continue;
287
288 if (ins->src[i] == ~0)
289 continue;
290
291 bool rep_lo = false, rep_hi = false;
292 unsigned sz = nir_alu_type_get_type_size(ins->src_types[i]);
293 bool half = (sz == (base_size >> 1));
294
295 assert((sz == base_size) || half);
296
297 unsigned swizzle = mir_pack_swizzle(ins->mask, ins->swizzle[i],
298 ins->src_types[i], ins->alu.reg_mode,
299 channeled, &rep_lo, &rep_hi);
300
301 midgard_vector_alu_src pack = {
302 .mod = mir_pack_mod(ins, i, false),
303 .rep_low = rep_lo,
304 .rep_high = rep_hi,
305 .half = half,
306 .swizzle = swizzle
307 };
308
309 unsigned p = vector_alu_srco_unsigned(pack);
310
311 if (i == 0)
312 ins->alu.src1 = p;
313 else
314 ins->alu.src2 = p;
315 }
316 }
317
318 static void
319 mir_pack_swizzle_ldst(midgard_instruction *ins)
320 {
321 /* TODO: non-32-bit, non-vec4 */
322 for (unsigned c = 0; c < 4; ++c) {
323 unsigned v = ins->swizzle[0][c];
324
325 /* Check vec4 */
326 assert(v <= 3);
327
328 ins->load_store.swizzle |= v << (2 * c);
329 }
330
331 /* TODO: arg_1/2 */
332 }
333
334 static void
335 mir_pack_swizzle_tex(midgard_instruction *ins)
336 {
337 for (unsigned i = 0; i < 2; ++i) {
338 unsigned packed = 0;
339
340 for (unsigned c = 0; c < 4; ++c) {
341 unsigned v = ins->swizzle[i][c];
342
343 /* Check vec4 */
344 assert(v <= 3);
345
346 packed |= v << (2 * c);
347 }
348
349 if (i == 0)
350 ins->texture.swizzle = packed;
351 else
352 ins->texture.in_reg_swizzle = packed;
353 }
354
355 /* TODO: bias component */
356 }
357
358 /* Load store masks are 4-bits. Load/store ops pack for that. vec4 is the
359 * natural mask width; vec8 is constrained to be in pairs, vec2 is duplicated. TODO: 8-bit?
360 */
361
362 static void
363 mir_pack_ldst_mask(midgard_instruction *ins)
364 {
365 unsigned sz = nir_alu_type_get_type_size(ins->dest_type);
366 unsigned packed = ins->mask;
367
368 if (sz == 64) {
369 packed = ((ins->mask & 0x2) ? (0x8 | 0x4) : 0) |
370 ((ins->mask & 0x1) ? (0x2 | 0x1) : 0);
371 } else if (sz == 16) {
372 packed = 0;
373
374 for (unsigned i = 0; i < 4; ++i) {
375 /* Make sure we're duplicated */
376 bool u = (ins->mask & (1 << (2*i + 0))) != 0;
377 bool v = (ins->mask & (1 << (2*i + 1))) != 0;
378 assert(u == v);
379
380 packed |= (u << i);
381 }
382 } else {
383 assert(sz == 32);
384 }
385
386 ins->load_store.mask = packed;
387 }
388
389 static void
390 mir_lower_inverts(midgard_instruction *ins)
391 {
392 bool inv[3] = {
393 ins->src_invert[0],
394 ins->src_invert[1],
395 ins->src_invert[2]
396 };
397
398 switch (ins->alu.op) {
399 case midgard_alu_op_iand:
400 /* a & ~b = iandnot(a, b) */
401 /* ~a & ~b = ~(a | b) = inor(a, b) */
402
403 if (inv[0] && inv[1])
404 ins->alu.op = midgard_alu_op_inor;
405 else if (inv[1])
406 ins->alu.op = midgard_alu_op_iandnot;
407
408 break;
409 case midgard_alu_op_ior:
410 /* a | ~b = iornot(a, b) */
411 /* ~a | ~b = ~(a & b) = inand(a, b) */
412
413 if (inv[0] && inv[1])
414 ins->alu.op = midgard_alu_op_inand;
415 else if (inv[1])
416 ins->alu.op = midgard_alu_op_iornot;
417
418 break;
419
420 case midgard_alu_op_ixor:
421 /* ~a ^ b = a ^ ~b = ~(a ^ b) = inxor(a, b) */
422 /* ~a ^ ~b = a ^ b */
423
424 if (inv[0] ^ inv[1])
425 ins->alu.op = midgard_alu_op_inxor;
426
427 break;
428
429 default:
430 break;
431 }
432 }
433
434 static void
435 emit_alu_bundle(compiler_context *ctx,
436 midgard_bundle *bundle,
437 struct util_dynarray *emission,
438 unsigned lookahead)
439 {
440 /* Emit the control word */
441 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
442
443 /* Next up, emit register words */
444 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
445 midgard_instruction *ins = bundle->instructions[i];
446
447 /* Check if this instruction has registers */
448 if (ins->compact_branch) continue;
449
450 /* Otherwise, just emit the registers */
451 uint16_t reg_word = 0;
452 memcpy(&reg_word, &ins->registers, sizeof(uint16_t));
453 util_dynarray_append(emission, uint16_t, reg_word);
454 }
455
456 /* Now, we emit the body itself */
457 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
458 midgard_instruction *ins = bundle->instructions[i];
459
460 /* Where is this body */
461 unsigned size = 0;
462 void *source = NULL;
463
464 /* In case we demote to a scalar */
465 midgard_scalar_alu scalarized;
466
467 if (!ins->compact_branch)
468 mir_lower_inverts(ins);
469
470 if (ins->unit & UNITS_ANY_VECTOR) {
471 mir_pack_mask_alu(ins);
472 mir_pack_vector_srcs(ins);
473 size = sizeof(midgard_vector_alu);
474 source = &ins->alu;
475 } else if (ins->unit == ALU_ENAB_BR_COMPACT) {
476 size = sizeof(midgard_branch_cond);
477 source = &ins->br_compact;
478 } else if (ins->compact_branch) { /* misnomer */
479 size = sizeof(midgard_branch_extended);
480 source = &ins->branch_extended;
481 } else {
482 size = sizeof(midgard_scalar_alu);
483 scalarized = vector_to_scalar_alu(ins->alu, ins);
484 source = &scalarized;
485 }
486
487 memcpy(util_dynarray_grow_bytes(emission, size, 1), source, size);
488 }
489
490 /* Emit padding (all zero) */
491 memset(util_dynarray_grow_bytes(emission, bundle->padding, 1), 0, bundle->padding);
492
493 /* Tack on constants */
494
495 if (bundle->has_embedded_constants)
496 util_dynarray_append(emission, midgard_constants, bundle->constants);
497 }
498
499 /* Shift applied to the immediate used as an offset. Probably this is papering
500 * over some other semantic distinction else well, but it unifies things in the
501 * compiler so I don't mind. */
502
503 static unsigned
504 mir_ldst_imm_shift(midgard_load_store_op op)
505 {
506 if (OP_IS_UBO_READ(op))
507 return 3;
508 else
509 return 1;
510 }
511
512 static enum mali_sampler_type
513 midgard_sampler_type(nir_alu_type t) {
514 switch (nir_alu_type_get_base_type(t))
515 {
516 case nir_type_float:
517 return MALI_SAMPLER_FLOAT;
518 case nir_type_int:
519 return MALI_SAMPLER_SIGNED;
520 case nir_type_uint:
521 return MALI_SAMPLER_UNSIGNED;
522 default:
523 unreachable("Unknown sampler type");
524 }
525 }
526
527 /* After everything is scheduled, emit whole bundles at a time */
528
529 void
530 emit_binary_bundle(compiler_context *ctx,
531 midgard_bundle *bundle,
532 struct util_dynarray *emission,
533 int next_tag)
534 {
535 int lookahead = next_tag << 4;
536
537 switch (bundle->tag) {
538 case TAG_ALU_4:
539 case TAG_ALU_8:
540 case TAG_ALU_12:
541 case TAG_ALU_16:
542 case TAG_ALU_4 + 4:
543 case TAG_ALU_8 + 4:
544 case TAG_ALU_12 + 4:
545 case TAG_ALU_16 + 4:
546 emit_alu_bundle(ctx, bundle, emission, lookahead);
547 break;
548
549 case TAG_LOAD_STORE_4: {
550 /* One or two composing instructions */
551
552 uint64_t current64, next64 = LDST_NOP;
553
554 /* Copy masks */
555
556 for (unsigned i = 0; i < bundle->instruction_count; ++i) {
557 mir_pack_ldst_mask(bundle->instructions[i]);
558
559 mir_pack_swizzle_ldst(bundle->instructions[i]);
560
561 /* Apply a constant offset */
562 unsigned offset = bundle->instructions[i]->constants.u32[0];
563
564 if (offset) {
565 unsigned shift = mir_ldst_imm_shift(bundle->instructions[i]->load_store.op);
566 unsigned upper_shift = 10 - shift;
567
568 bundle->instructions[i]->load_store.varying_parameters |= (offset & ((1 << upper_shift) - 1)) << shift;
569 bundle->instructions[i]->load_store.address |= (offset >> upper_shift);
570 }
571 }
572
573 memcpy(&current64, &bundle->instructions[0]->load_store, sizeof(current64));
574
575 if (bundle->instruction_count == 2)
576 memcpy(&next64, &bundle->instructions[1]->load_store, sizeof(next64));
577
578 midgard_load_store instruction = {
579 .type = bundle->tag,
580 .next_type = next_tag,
581 .word1 = current64,
582 .word2 = next64
583 };
584
585 util_dynarray_append(emission, midgard_load_store, instruction);
586
587 break;
588 }
589
590 case TAG_TEXTURE_4:
591 case TAG_TEXTURE_4_VTX:
592 case TAG_TEXTURE_4_BARRIER: {
593 /* Texture instructions are easy, since there is no pipelining
594 * nor VLIW to worry about. We may need to set .cont/.last
595 * flags. */
596
597 midgard_instruction *ins = bundle->instructions[0];
598
599 ins->texture.type = bundle->tag;
600 ins->texture.next_type = next_tag;
601
602 /* Nothing else to pack for barriers */
603 if (ins->texture.op == TEXTURE_OP_BARRIER) {
604 ins->texture.cont = ins->texture.last = 1;
605 util_dynarray_append(emission, midgard_texture_word, ins->texture);
606 return;
607 }
608
609 signed override = mir_upper_override(ins, 32);
610
611 ins->texture.mask = override > 0 ?
612 ins->mask >> override :
613 ins->mask;
614
615 mir_pack_swizzle_tex(ins);
616
617 unsigned osz = nir_alu_type_get_type_size(ins->dest_type);
618 unsigned isz = nir_alu_type_get_type_size(ins->src_types[1]);
619
620 assert(osz == 32 || osz == 16);
621 assert(isz == 32 || isz == 16);
622
623 ins->texture.out_full = (osz == 32);
624 ins->texture.out_upper = override > 0;
625 ins->texture.in_reg_full = (isz == 32);
626 ins->texture.sampler_type = midgard_sampler_type(ins->dest_type);
627
628 if (mir_op_computes_derivatives(ctx->stage, ins->texture.op)) {
629 ins->texture.cont = !ins->helper_terminate;
630 ins->texture.last = ins->helper_terminate || ins->helper_execute;
631 } else {
632 ins->texture.cont = ins->texture.last = 1;
633 }
634
635 util_dynarray_append(emission, midgard_texture_word, ins->texture);
636 break;
637 }
638
639 default:
640 unreachable("Unknown midgard instruction type\n");
641 }
642 }