panfrost/midgard: Implement load/store scratch opcodes
[mesa.git] / src / panfrost / midgard / midgard_ra.c
1 /*
2 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 * Copyright (C) 2019 Collabora, Ltd.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/register_allocate.h"
28 #include "util/u_math.h"
29
30 /* For work registers, we can subdivide in various ways. So we create
31 * classes for the various sizes and conflict accordingly, keeping in
32 * mind that physical registers are divided along 128-bit boundaries.
33 * The important part is that 128-bit boundaries are not crossed.
34 *
35 * For each 128-bit register, we can subdivide to 32-bits 10 ways
36 *
37 * vec4: xyzw
38 * vec3: xyz, yzw
39 * vec2: xy, yz, zw,
40 * vec1: x, y, z, w
41 *
42 * For each 64-bit register, we can subdivide similarly to 16-bit
43 * (TODO: half-float RA, not that we support fp16 yet)
44 */
45
46 #define WORK_STRIDE 10
47
48 /* Prepacked masks/swizzles for virtual register types */
49 static unsigned reg_type_to_mask[WORK_STRIDE] = {
50 0xF, /* xyzw */
51 0x7, 0x7 << 1, /* xyz */
52 0x3, 0x3 << 1, 0x3 << 2, /* xy */
53 0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3 /* x */
54 };
55
56 static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
57 SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
58
59 SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
60 SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
61
62 SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
63 SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
64 SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
65
66 SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
67 SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
68 SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
69 SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
70 };
71
72 struct phys_reg {
73 unsigned reg;
74 unsigned mask;
75 unsigned swizzle;
76 };
77
78 /* Given the mask/swizzle of both the register and the original source,
79 * compose to find the actual mask/swizzle to give the hardware */
80
81 static unsigned
82 compose_writemask(unsigned mask, struct phys_reg reg)
83 {
84 /* Note: the reg mask is guaranteed to be contiguous. So we shift
85 * into the X place, compose via a simple AND, and shift back */
86
87 unsigned shift = __builtin_ctz(reg.mask);
88 return ((reg.mask >> shift) & mask) << shift;
89 }
90
91 static unsigned
92 compose_swizzle(unsigned swizzle, unsigned mask,
93 struct phys_reg reg, struct phys_reg dst)
94 {
95 unsigned out = pan_compose_swizzle(swizzle, reg.swizzle);
96
97 /* Based on the register mask, we need to adjust over. E.g if we're
98 * writing to yz, a base swizzle of xy__ becomes _xy_. Save the
99 * original first component (x). But to prevent duplicate shifting
100 * (only applies to ALU -- mask param is set to xyzw out on L/S to
101 * prevent changes), we have to account for the shift inherent to the
102 * original writemask */
103
104 unsigned rep = out & 0x3;
105 unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
106 unsigned shifted = out << (2*shift);
107
108 /* ..but we fill in the gaps so it appears to replicate */
109
110 for (unsigned s = 0; s < shift; ++s)
111 shifted |= rep << (2*s);
112
113 return shifted;
114 }
115
116 /* When we're 'squeezing down' the values in the IR, we maintain a hash
117 * as such */
118
119 static unsigned
120 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
121 {
122 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
123 return hash;
124
125 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(
126 ctx->hash_to_temp, hash + 1);
127
128 if (temp)
129 return temp - 1;
130
131 /* If no temp is find, allocate one */
132 temp = ctx->temp_count++;
133 ctx->max_hash = MAX2(ctx->max_hash, hash);
134
135 _mesa_hash_table_u64_insert(ctx->hash_to_temp,
136 hash + 1, (void *) ((uintptr_t) temp + 1));
137
138 return temp;
139 }
140
141 /* Helper to return the default phys_reg for a given register */
142
143 static struct phys_reg
144 default_phys_reg(int reg)
145 {
146 struct phys_reg r = {
147 .reg = reg,
148 .mask = 0xF, /* xyzw */
149 .swizzle = 0xE4 /* xyzw */
150 };
151
152 return r;
153 }
154
155 /* Determine which physical register, swizzle, and mask a virtual
156 * register corresponds to */
157
158 static struct phys_reg
159 index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
160 {
161 /* Check for special cases */
162 if (reg >= SSA_FIXED_MINIMUM)
163 return default_phys_reg(SSA_REG_FROM_FIXED(reg));
164 else if ((reg < 0) || !g)
165 return default_phys_reg(REGISTER_UNUSED);
166
167 /* Special cases aside, we pick the underlying register */
168 int virt = ra_get_node_reg(g, reg);
169
170 /* Divide out the register and classification */
171 int phys = virt / WORK_STRIDE;
172 int type = virt % WORK_STRIDE;
173
174 struct phys_reg r = {
175 .reg = phys,
176 .mask = reg_type_to_mask[type],
177 .swizzle = reg_type_to_swizzle[type]
178 };
179
180 /* Report that we actually use this register, and return it */
181 ctx->work_registers = MAX2(ctx->work_registers, phys);
182 return r;
183 }
184
185 /* This routine performs the actual register allocation. It should be succeeded
186 * by install_registers */
187
188 struct ra_graph *
189 allocate_registers(compiler_context *ctx, bool *spilled)
190 {
191 /* The number of vec4 work registers available depends on when the
192 * uniforms start, so compute that first */
193
194 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
195
196 int virtual_count = work_count * WORK_STRIDE;
197
198 /* First, initialize the RA */
199 struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
200
201 int work_vec4 = ra_alloc_reg_class(regs);
202 int work_vec3 = ra_alloc_reg_class(regs);
203 int work_vec2 = ra_alloc_reg_class(regs);
204 int work_vec1 = ra_alloc_reg_class(regs);
205
206 unsigned classes[4] = {
207 work_vec1,
208 work_vec2,
209 work_vec3,
210 work_vec4
211 };
212
213 /* Add the full set of work registers */
214 for (unsigned i = 0; i < work_count; ++i) {
215 int base = WORK_STRIDE * i;
216
217 /* Build a full set of subdivisions */
218 ra_class_add_reg(regs, work_vec4, base);
219 ra_class_add_reg(regs, work_vec3, base + 1);
220 ra_class_add_reg(regs, work_vec3, base + 2);
221 ra_class_add_reg(regs, work_vec2, base + 3);
222 ra_class_add_reg(regs, work_vec2, base + 4);
223 ra_class_add_reg(regs, work_vec2, base + 5);
224 ra_class_add_reg(regs, work_vec1, base + 6);
225 ra_class_add_reg(regs, work_vec1, base + 7);
226 ra_class_add_reg(regs, work_vec1, base + 8);
227 ra_class_add_reg(regs, work_vec1, base + 9);
228
229 for (unsigned a = 0; a < 10; ++a) {
230 unsigned mask1 = reg_type_to_mask[a];
231
232 for (unsigned b = 0; b < 10; ++b) {
233 unsigned mask2 = reg_type_to_mask[b];
234
235 if (mask1 & mask2)
236 ra_add_reg_conflict(regs,
237 base + a, base + b);
238 }
239 }
240 }
241
242 /* We're done setting up */
243 ra_set_finalize(regs, NULL);
244
245 /* Transform the MIR into squeezed index form */
246 mir_foreach_block(ctx, block) {
247 mir_foreach_instr_in_block(block, ins) {
248 if (ins->compact_branch) continue;
249
250 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
251 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
252
253 if (!ins->ssa_args.inline_constant)
254 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
255
256 }
257 }
258
259 /* No register allocation to do with no SSA */
260
261 if (!ctx->temp_count)
262 return NULL;
263
264 /* Let's actually do register allocation */
265 int nodes = ctx->temp_count;
266 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
267
268 /* Determine minimum size needed to hold values, to indirectly
269 * determine class */
270
271 unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
272
273 mir_foreach_block(ctx, block) {
274 mir_foreach_instr_in_block(block, ins) {
275 if (ins->compact_branch) continue;
276 if (ins->ssa_args.dest < 0) continue;
277 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
278
279 int class = util_logbase2(ins->mask) + 1;
280
281 /* Use the largest class if there's ambiguity, this
282 * handles partial writes */
283
284 int dest = ins->ssa_args.dest;
285 found_class[dest] = MAX2(found_class[dest], class);
286 }
287 }
288
289 for (unsigned i = 0; i < ctx->temp_count; ++i) {
290 unsigned class = found_class[i];
291 if (!class) continue;
292 ra_set_node_class(g, i, classes[class - 1]);
293 }
294
295 /* Determine liveness */
296
297 int *live_start = malloc(nodes * sizeof(int));
298 int *live_end = malloc(nodes * sizeof(int));
299
300 /* Initialize as non-existent */
301
302 for (int i = 0; i < nodes; ++i) {
303 live_start[i] = live_end[i] = -1;
304 }
305
306 int d = 0;
307
308 mir_foreach_block(ctx, block) {
309 mir_foreach_instr_in_block(block, ins) {
310 if (ins->compact_branch) continue;
311
312 /* Dest is < 0 for st_vary instructions, which break
313 * the usual SSA conventions. Liveness analysis doesn't
314 * make sense on these instructions, so skip them to
315 * avoid memory corruption */
316
317 if (ins->ssa_args.dest < 0) continue;
318
319 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
320 /* If this destination is not yet live, it is
321 * now since we just wrote it */
322
323 int dest = ins->ssa_args.dest;
324
325 if (live_start[dest] == -1)
326 live_start[dest] = d;
327 }
328
329 /* Since we just used a source, the source might be
330 * dead now. Scan the rest of the block for
331 * invocations, and if there are none, the source dies
332 * */
333
334 int sources[2] = {
335 ins->ssa_args.src0, ins->ssa_args.src1
336 };
337
338 for (int src = 0; src < 2; ++src) {
339 int s = sources[src];
340
341 if (s < 0) continue;
342
343 if (s >= SSA_FIXED_MINIMUM) continue;
344
345 if (!mir_is_live_after(ctx, block, ins, s)) {
346 live_end[s] = d;
347 }
348 }
349
350 ++d;
351 }
352 }
353
354 /* If a node still hasn't been killed, kill it now */
355
356 for (int i = 0; i < nodes; ++i) {
357 /* live_start == -1 most likely indicates a pinned output */
358
359 if (live_end[i] == -1)
360 live_end[i] = d;
361 }
362
363 /* Setup interference between nodes that are live at the same time */
364
365 for (int i = 0; i < nodes; ++i) {
366 for (int j = i + 1; j < nodes; ++j) {
367 bool j_overlaps_i = live_start[j] < live_end[i];
368 bool i_overlaps_j = live_end[j] < live_start[i];
369
370 if (i_overlaps_j || j_overlaps_i)
371 ra_add_node_interference(g, i, j);
372 }
373 }
374
375 /* Cleanup */
376 free(live_start);
377 free(live_end);
378
379 if (!ra_allocate(g)) {
380 *spilled = true;
381 return NULL;
382 }
383
384 return g;
385 }
386
387 /* Once registers have been decided via register allocation
388 * (allocate_registers), we need to rewrite the MIR to use registers instead of
389 * indices */
390
391 static void
392 install_registers_instr(
393 compiler_context *ctx,
394 struct ra_graph *g,
395 midgard_instruction *ins)
396 {
397 ssa_args args = ins->ssa_args;
398
399 switch (ins->type) {
400 case TAG_ALU_4: {
401 int adjusted_src = args.inline_constant ? -1 : args.src1;
402 struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
403 struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
404 struct phys_reg dest = index_to_reg(ctx, g, args.dest);
405
406 unsigned uncomposed_mask = ins->mask;
407 ins->mask = compose_writemask(uncomposed_mask, dest);
408
409 /* Adjust the dest mask if necessary. Mostly this is a no-op
410 * but it matters for dot products */
411 dest.mask = effective_writemask(&ins->alu, ins->mask);
412
413 midgard_vector_alu_src mod1 =
414 vector_alu_from_unsigned(ins->alu.src1);
415 mod1.swizzle = compose_swizzle(mod1.swizzle, uncomposed_mask, src1, dest);
416 ins->alu.src1 = vector_alu_srco_unsigned(mod1);
417
418 ins->registers.src1_reg = src1.reg;
419
420 ins->registers.src2_imm = args.inline_constant;
421
422 if (args.inline_constant) {
423 /* Encode inline 16-bit constant. See disassembler for
424 * where the algorithm is from */
425
426 ins->registers.src2_reg = ins->inline_constant >> 11;
427
428 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
429 uint16_t imm = ((lower_11 >> 8) & 0x7) |
430 ((lower_11 & 0xFF) << 3);
431
432 ins->alu.src2 = imm << 2;
433 } else {
434 midgard_vector_alu_src mod2 =
435 vector_alu_from_unsigned(ins->alu.src2);
436 mod2.swizzle = compose_swizzle(
437 mod2.swizzle, uncomposed_mask, src2, dest);
438 ins->alu.src2 = vector_alu_srco_unsigned(mod2);
439
440 ins->registers.src2_reg = src2.reg;
441 }
442
443 ins->registers.out_reg = dest.reg;
444 break;
445 }
446
447 case TAG_LOAD_STORE_4: {
448 if (OP_IS_STORE_R26(ins->load_store.op)) {
449 /* TODO: use ssa_args for st_vary */
450 ins->load_store.reg = 0;
451 } else {
452 /* Which physical register we read off depends on
453 * whether we are loading or storing -- think about the
454 * logical dataflow */
455
456 unsigned r = OP_IS_STORE(ins->load_store.op) ?
457 args.src0 : args.dest;
458 struct phys_reg src = index_to_reg(ctx, g, r);
459
460 ins->load_store.reg = src.reg;
461
462 ins->load_store.swizzle = compose_swizzle(
463 ins->load_store.swizzle, 0xF,
464 default_phys_reg(0), src);
465
466 ins->mask = compose_writemask(
467 ins->mask, src);
468 }
469
470 break;
471 }
472
473 default:
474 break;
475 }
476 }
477
478 void
479 install_registers(compiler_context *ctx, struct ra_graph *g)
480 {
481 mir_foreach_block(ctx, block) {
482 mir_foreach_instr_in_block(block, ins) {
483 if (ins->compact_branch) continue;
484 install_registers_instr(ctx, g, ins);
485 }
486 }
487
488 }