pan/midgard: Fix quadword_count handling
[mesa.git] / src / panfrost / midgard / mir.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
28 {
29 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
30 if (ins->src[i] == old)
31 ins->src[i] = new;
32 }
33 }
34
35 void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
36 {
37 if (ins->dest == old)
38 ins->dest = new;
39 }
40
41 static midgard_vector_alu_src
42 mir_get_alu_src(midgard_instruction *ins, unsigned idx)
43 {
44 unsigned b = (idx == 0) ? ins->alu.src1 : ins->alu.src2;
45 return vector_alu_from_unsigned(b);
46 }
47
48 static void
49 mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
50 {
51 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
52 if (ins->src[i] != old) continue;
53
54 ins->src[i] = new;
55 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
56 }
57 }
58
59 void
60 mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
61 {
62 mir_foreach_instr_global(ctx, ins) {
63 mir_rewrite_index_src_single(ins, old, new);
64 }
65 }
66
67 void
68 mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
69 {
70 mir_foreach_instr_global(ctx, ins) {
71 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
72 }
73 }
74
75 void
76 mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
77 {
78 mir_foreach_instr_global(ctx, ins) {
79 mir_rewrite_index_dst_single(ins, old, new);
80 }
81 }
82
83 void
84 mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
85 {
86 mir_rewrite_index_src(ctx, old, new);
87 mir_rewrite_index_dst(ctx, old, new);
88 }
89
90 unsigned
91 mir_use_count(compiler_context *ctx, unsigned value)
92 {
93 unsigned used_count = 0;
94
95 mir_foreach_instr_global(ctx, ins) {
96 if (mir_has_arg(ins, value))
97 ++used_count;
98 }
99
100 return used_count;
101 }
102
103 /* Checks if a value is used only once (or totally dead), which is an important
104 * heuristic to figure out if certain optimizations are Worth It (TM) */
105
106 bool
107 mir_single_use(compiler_context *ctx, unsigned value)
108 {
109 /* We can replicate constants in places so who cares */
110 if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
111 return true;
112
113 return mir_use_count(ctx, value) <= 1;
114 }
115
116 static bool
117 mir_nontrivial_raw_mod(midgard_vector_alu_src src, bool is_int)
118 {
119 if (is_int)
120 return src.mod == midgard_int_shift;
121 else
122 return src.mod;
123 }
124
125 static bool
126 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask, unsigned *swizzle)
127 {
128 if (mir_nontrivial_raw_mod(src, is_int)) return true;
129
130 /* size-conversion */
131 if (src.half) return true;
132
133 for (unsigned c = 0; c < 16; ++c) {
134 if (!(mask & (1 << c))) continue;
135 if (swizzle[c] != c) return true;
136 }
137
138 return false;
139 }
140
141 bool
142 mir_nontrivial_source2_mod(midgard_instruction *ins)
143 {
144 bool is_int = midgard_is_integer_op(ins->alu.op);
145
146 midgard_vector_alu_src src2 =
147 vector_alu_from_unsigned(ins->alu.src2);
148
149 return mir_nontrivial_mod(src2, is_int, ins->mask, ins->swizzle[1]);
150 }
151
152 bool
153 mir_nontrivial_source2_mod_simple(midgard_instruction *ins)
154 {
155 bool is_int = midgard_is_integer_op(ins->alu.op);
156
157 midgard_vector_alu_src src2 =
158 vector_alu_from_unsigned(ins->alu.src2);
159
160 return mir_nontrivial_raw_mod(src2, is_int) || src2.half;
161 }
162
163 bool
164 mir_nontrivial_outmod(midgard_instruction *ins)
165 {
166 bool is_int = midgard_is_integer_op(ins->alu.op);
167 unsigned mod = ins->alu.outmod;
168
169 /* Pseudo-outmod */
170 if (ins->invert)
171 return true;
172
173 /* Type conversion is a sort of outmod */
174 if (ins->alu.dest_override != midgard_dest_override_none)
175 return true;
176
177 if (is_int)
178 return mod != midgard_outmod_int_wrap;
179 else
180 return mod != midgard_outmod_none;
181 }
182
183 /* Checks if an index will be used as a special register -- basically, if we're
184 * used as the input to a non-ALU op */
185
186 bool
187 mir_special_index(compiler_context *ctx, unsigned idx)
188 {
189 mir_foreach_instr_global(ctx, ins) {
190 bool is_ldst = ins->type == TAG_LOAD_STORE_4;
191 bool is_tex = ins->type == TAG_TEXTURE_4;
192 bool is_writeout = ins->compact_branch && ins->writeout;
193
194 if (!(is_ldst || is_tex || is_writeout))
195 continue;
196
197 if (mir_has_arg(ins, idx))
198 return true;
199 }
200
201 return false;
202 }
203
204 /* Is a node written before a given instruction? */
205
206 bool
207 mir_is_written_before(compiler_context *ctx, midgard_instruction *ins, unsigned node)
208 {
209 if (node >= SSA_FIXED_MINIMUM)
210 return true;
211
212 mir_foreach_instr_global(ctx, q) {
213 if (q == ins)
214 break;
215
216 if (q->dest == node)
217 return true;
218 }
219
220 return false;
221 }
222
223 /* Grabs the type size. */
224
225 midgard_reg_mode
226 mir_typesize(midgard_instruction *ins)
227 {
228 if (ins->compact_branch)
229 return midgard_reg_mode_32;
230
231 /* TODO: Type sizes for texture */
232 if (ins->type == TAG_TEXTURE_4)
233 return midgard_reg_mode_32;
234
235 if (ins->type == TAG_LOAD_STORE_4)
236 return GET_LDST_SIZE(load_store_opcode_props[ins->load_store.op].props);
237
238 if (ins->type == TAG_ALU_4) {
239 midgard_reg_mode mode = ins->alu.reg_mode;
240
241 /* If we have an override, step down by half */
242 if (ins->alu.dest_override != midgard_dest_override_none) {
243 assert(mode > midgard_reg_mode_8);
244 mode--;
245 }
246
247 return mode;
248 }
249
250 unreachable("Invalid instruction type");
251 }
252
253 /* Grabs the size of a source */
254
255 midgard_reg_mode
256 mir_srcsize(midgard_instruction *ins, unsigned i)
257 {
258 /* TODO: 16-bit textures/ldst */
259 if (ins->type == TAG_TEXTURE_4 || ins->type == TAG_LOAD_STORE_4)
260 return midgard_reg_mode_32;
261
262 /* TODO: 16-bit branches */
263 if (ins->compact_branch)
264 return midgard_reg_mode_32;
265
266 if (i >= 2) {
267 /* TODO: 16-bit conditions, ffma */
268 assert(i == 2);
269 return midgard_reg_mode_32;
270 }
271
272 /* Default to type of the instruction */
273
274 midgard_reg_mode mode = ins->alu.reg_mode;
275
276 /* If we have a half modifier, step down by half */
277
278 if ((mir_get_alu_src(ins, i)).half) {
279 assert(mode > midgard_reg_mode_8);
280 mode--;
281 }
282
283 return mode;
284 }
285
286 /* Converts per-component mask to a byte mask */
287
288 static uint16_t
289 mir_to_bytemask(midgard_reg_mode mode, unsigned mask)
290 {
291 switch (mode) {
292 case midgard_reg_mode_8:
293 return mask;
294
295 case midgard_reg_mode_16: {
296 unsigned space =
297 ((mask & 0x1) << (0 - 0)) |
298 ((mask & 0x2) << (2 - 1)) |
299 ((mask & 0x4) << (4 - 2)) |
300 ((mask & 0x8) << (6 - 3)) |
301 ((mask & 0x10) << (8 - 4)) |
302 ((mask & 0x20) << (10 - 5)) |
303 ((mask & 0x40) << (12 - 6)) |
304 ((mask & 0x80) << (14 - 7));
305
306 return space | (space << 1);
307 }
308
309 case midgard_reg_mode_32: {
310 unsigned space =
311 ((mask & 0x1) << (0 - 0)) |
312 ((mask & 0x2) << (4 - 1)) |
313 ((mask & 0x4) << (8 - 2)) |
314 ((mask & 0x8) << (12 - 3));
315
316 return space | (space << 1) | (space << 2) | (space << 3);
317 }
318
319 case midgard_reg_mode_64: {
320 unsigned A = (mask & 0x1) ? 0xFF : 0x00;
321 unsigned B = (mask & 0x2) ? 0xFF : 0x00;
322 return A | (B << 8);
323 }
324
325 default:
326 unreachable("Invalid register mode");
327 }
328 }
329
330 /* ...and the inverse */
331
332 unsigned
333 mir_bytes_for_mode(midgard_reg_mode mode)
334 {
335 switch (mode) {
336 case midgard_reg_mode_8:
337 return 1;
338 case midgard_reg_mode_16:
339 return 2;
340 case midgard_reg_mode_32:
341 return 4;
342 case midgard_reg_mode_64:
343 return 8;
344 default:
345 unreachable("Invalid register mode");
346 }
347 }
348
349 uint16_t
350 mir_from_bytemask(uint16_t bytemask, midgard_reg_mode mode)
351 {
352 unsigned value = 0;
353 unsigned count = mir_bytes_for_mode(mode);
354
355 for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
356 bool a = (bytemask & (1 << c)) != 0;
357
358 for (unsigned q = c; q < count; ++q)
359 assert(((bytemask & (1 << q)) != 0) == a);
360
361 value |= (a << d);
362 }
363
364 return value;
365 }
366
367 /* Rounds down a bytemask to fit a given component count. Iterate each
368 * component, and check if all bytes in the component are masked on */
369
370 uint16_t
371 mir_round_bytemask_down(uint16_t mask, midgard_reg_mode mode)
372 {
373 unsigned bytes = mir_bytes_for_mode(mode);
374 unsigned maxmask = mask_of(bytes);
375 unsigned channels = 16 / bytes;
376
377 for (unsigned c = 0; c < channels; ++c) {
378 /* Get bytes in component */
379 unsigned submask = (mask >> c * channels) & maxmask;
380
381 if (submask != maxmask)
382 mask &= ~(maxmask << (c * channels));
383 }
384
385 return mask;
386 }
387
388 /* Grabs the per-byte mask of an instruction (as opposed to per-component) */
389
390 uint16_t
391 mir_bytemask(midgard_instruction *ins)
392 {
393 return mir_to_bytemask(mir_typesize(ins), ins->mask);
394 }
395
396 void
397 mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
398 {
399 ins->mask = mir_from_bytemask(bytemask, mir_typesize(ins));
400 }
401
402 /* Creates a mask of the components of a node read by an instruction, by
403 * analyzing the swizzle with respect to the instruction's mask. E.g.:
404 *
405 * fadd r0.xz, r1.yyyy, r2.zwyx
406 *
407 * will return a mask of Z/Y for r2
408 */
409
410 static uint16_t
411 mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, midgard_reg_mode mode)
412 {
413 unsigned cmask = 0;
414
415 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
416 if (!(inmask & (1 << c))) continue;
417 cmask |= (1 << swizzle[c]);
418 }
419
420 return mir_to_bytemask(mode, cmask);
421 }
422
423 uint16_t
424 mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
425 {
426 uint16_t mask = 0;
427
428 if (node == ~0)
429 return 0;
430
431 mir_foreach_src(ins, i) {
432 if (ins->src[i] != node) continue;
433
434 /* Branch writeout uses all components */
435 if (ins->compact_branch && ins->writeout && (i == 0))
436 return 0xFFFF;
437
438 /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
439 if (ins->compact_branch && !ins->prepacked_branch && ins->branch.conditional && (i == 0))
440 return 0xF;
441
442 /* ALU ops act componentwise so we need to pay attention to
443 * their mask. Texture/ldst does not so we don't clamp source
444 * readmasks based on the writemask */
445 unsigned qmask = (ins->type == TAG_ALU_4) ? ins->mask : ~0;
446
447 /* Handle dot products and things */
448 if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
449 unsigned props = alu_opcode_props[ins->alu.op].props;
450
451 unsigned channel_override = GET_CHANNEL_COUNT(props);
452
453 if (channel_override)
454 qmask = mask_of(channel_override);
455 }
456
457 mask |= mir_bytemask_of_read_components_single(ins->swizzle[i], qmask, mir_srcsize(ins, i));
458 }
459
460 return mask;
461 }
462
463 unsigned
464 mir_ubo_shift(midgard_load_store_op op)
465 {
466 switch (op) {
467 case midgard_op_ld_ubo_char:
468 return 0;
469 case midgard_op_ld_ubo_char2:
470 return 1;
471 case midgard_op_ld_ubo_char4:
472 return 2;
473 case midgard_op_ld_ubo_short4:
474 return 3;
475 case midgard_op_ld_ubo_int4:
476 return 4;
477 default:
478 unreachable("Invalid op");
479 }
480 }
481
482 /* Register allocation occurs after instruction scheduling, which is fine until
483 * we start needing to spill registers and therefore insert instructions into
484 * an already-scheduled program. We don't have to be terribly efficient about
485 * this, since spilling is already slow. So just semantically we need to insert
486 * the instruction into a new bundle before/after the bundle of the instruction
487 * in question */
488
489 static midgard_bundle
490 mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
491 {
492 midgard_instruction *u = mir_upload_ins(ctx, ins);
493
494 midgard_bundle bundle = {
495 .tag = ins.type,
496 .instruction_count = 1,
497 .instructions = { u },
498 };
499
500 if (bundle.tag == TAG_ALU_4) {
501 assert(OP_IS_MOVE(u->alu.op));
502 u->unit = UNIT_VMUL;
503
504 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
505 bundle.padding = ~(bytes_emitted - 1) & 0xF;
506 bundle.control = ins.type | u->unit;
507 }
508
509 return bundle;
510 }
511
512 static unsigned
513 mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
514 {
515 midgard_bundle *bundles =
516 (midgard_bundle *) block->bundles.data;
517
518 size_t count = (block->bundles.size / sizeof(midgard_bundle));
519
520 for (unsigned i = 0; i < count; ++i) {
521 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
522 if (bundles[i].instructions[j] == tag)
523 return i;
524 }
525 }
526
527 mir_print_instruction(tag);
528 unreachable("Instruction not scheduled in block");
529 }
530
531 void
532 mir_insert_instruction_before_scheduled(
533 compiler_context *ctx,
534 midgard_block *block,
535 midgard_instruction *tag,
536 midgard_instruction ins)
537 {
538 unsigned before = mir_bundle_idx_for_ins(tag, block);
539 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
540 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
541
542 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
543 memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
544 midgard_bundle *before_bundle = bundles + before + 1;
545
546 midgard_bundle new = mir_bundle_for_op(ctx, ins);
547 memcpy(bundles + before, &new, sizeof(new));
548
549 list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
550 block->quadword_count += quadword_size(new.tag);
551 }
552
553 void
554 mir_insert_instruction_after_scheduled(
555 compiler_context *ctx,
556 midgard_block *block,
557 midgard_instruction *tag,
558 midgard_instruction ins)
559 {
560 /* We need to grow the bundles array to add our new bundle */
561 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
562 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
563
564 /* Find the bundle that we want to insert after */
565 unsigned after = mir_bundle_idx_for_ins(tag, block);
566
567 /* All the bundles after that one, we move ahead by one */
568 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
569 memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
570 midgard_bundle *after_bundle = bundles + after;
571
572 midgard_bundle new = mir_bundle_for_op(ctx, ins);
573 memcpy(bundles + after + 1, &new, sizeof(new));
574 list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
575 block->quadword_count += quadword_size(new.tag);
576 }
577
578 /* Flip the first-two arguments of a (binary) op. Currently ALU
579 * only, no known uses for ldst/tex */
580
581 void
582 mir_flip(midgard_instruction *ins)
583 {
584 unsigned temp = ins->src[0];
585 ins->src[0] = ins->src[1];
586 ins->src[1] = temp;
587
588 assert(ins->type == TAG_ALU_4);
589
590 temp = ins->alu.src1;
591 ins->alu.src1 = ins->alu.src2;
592 ins->alu.src2 = temp;
593
594 unsigned temp_swizzle[16];
595 memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
596 memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
597 memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
598 }
599
600 /* Before squashing, calculate ctx->temp_count just by observing the MIR */
601
602 void
603 mir_compute_temp_count(compiler_context *ctx)
604 {
605 if (ctx->temp_count)
606 return;
607
608 unsigned max_dest = 0;
609
610 mir_foreach_instr_global(ctx, ins) {
611 if (ins->dest < SSA_FIXED_MINIMUM)
612 max_dest = MAX2(max_dest, ins->dest + 1);
613 }
614
615 ctx->temp_count = max_dest;
616 }