pan/mdg: Streamline dest_override handling
[mesa.git] / src / panfrost / midgard / mir.c
1 /*
2 * Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "compiler.h"
25 #include "midgard_ops.h"
26
27 void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
28 {
29 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
30 if (ins->src[i] == old)
31 ins->src[i] = new;
32 }
33 }
34
35 void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
36 {
37 if (ins->dest == old)
38 ins->dest = new;
39 }
40
41 static void
42 mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
43 {
44 for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
45 if (ins->src[i] != old) continue;
46
47 ins->src[i] = new;
48 mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
49 }
50 }
51
52 void
53 mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
54 {
55 mir_foreach_instr_global(ctx, ins) {
56 mir_rewrite_index_src_single(ins, old, new);
57 }
58 }
59
60 void
61 mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
62 {
63 mir_foreach_instr_global(ctx, ins) {
64 mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
65 }
66 }
67
68 void
69 mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
70 {
71 mir_foreach_instr_global(ctx, ins) {
72 mir_rewrite_index_dst_single(ins, old, new);
73 }
74 }
75
76 void
77 mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
78 {
79 mir_rewrite_index_src(ctx, old, new);
80 mir_rewrite_index_dst(ctx, old, new);
81 }
82
83 unsigned
84 mir_use_count(compiler_context *ctx, unsigned value)
85 {
86 unsigned used_count = 0;
87
88 mir_foreach_instr_global(ctx, ins) {
89 if (mir_has_arg(ins, value))
90 ++used_count;
91 }
92
93 return used_count;
94 }
95
96 /* Checks if a value is used only once (or totally dead), which is an important
97 * heuristic to figure out if certain optimizations are Worth It (TM) */
98
99 bool
100 mir_single_use(compiler_context *ctx, unsigned value)
101 {
102 /* We can replicate constants in places so who cares */
103 if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
104 return true;
105
106 return mir_use_count(ctx, value) <= 1;
107 }
108
109 bool
110 mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle)
111 {
112 bool is_int = midgard_is_integer_op(ins->alu.op);
113
114 if (is_int) {
115 if (ins->src_shift[i]) return true;
116 } else {
117 if (ins->src_neg[i]) return true;
118 if (ins->src_abs[i]) return true;
119 }
120
121 if (ins->dest_type != ins->src_types[i]) return true;
122
123 if (check_swizzle) {
124 for (unsigned c = 0; c < 16; ++c) {
125 if (!(ins->mask & (1 << c))) continue;
126 if (ins->swizzle[i][c] != c) return true;
127 }
128 }
129
130 return false;
131 }
132
133 bool
134 mir_nontrivial_outmod(midgard_instruction *ins)
135 {
136 bool is_int = midgard_is_integer_op(ins->alu.op);
137 unsigned mod = ins->alu.outmod;
138
139 if (ins->dest_type != ins->src_types[1])
140 return true;
141
142 if (is_int)
143 return mod != midgard_outmod_int_wrap;
144 else
145 return mod != midgard_outmod_none;
146 }
147
148 uint16_t
149 mir_from_bytemask(uint16_t bytemask, unsigned bits)
150 {
151 unsigned value = 0;
152 unsigned count = bits / 8;
153
154 for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
155 bool a = (bytemask & (1 << c)) != 0;
156
157 for (unsigned q = c; q < count; ++q)
158 assert(((bytemask & (1 << q)) != 0) == a);
159
160 value |= (a << d);
161 }
162
163 return value;
164 }
165
166 /* Rounds up a bytemask to fill a given component count. Iterate each
167 * component, and check if any bytes in the component are masked on */
168
169 uint16_t
170 mir_round_bytemask_up(uint16_t mask, unsigned bits)
171 {
172 unsigned bytes = bits / 8;
173 unsigned maxmask = mask_of(bytes);
174 unsigned channels = 16 / bytes;
175
176 for (unsigned c = 0; c < channels; ++c) {
177 unsigned submask = maxmask << (c * bytes);
178
179 if (mask & submask)
180 mask |= submask;
181 }
182
183 return mask;
184 }
185
186 /* Grabs the per-byte mask of an instruction (as opposed to per-component) */
187
188 uint16_t
189 mir_bytemask(midgard_instruction *ins)
190 {
191 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
192 return pan_to_bytemask(type_size, ins->mask);
193 }
194
195 void
196 mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
197 {
198 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
199 ins->mask = mir_from_bytemask(bytemask, type_size);
200 }
201
202 /* Checks if we should use an upper destination override, rather than the lower
203 * one in the IR. Returns zero if no, returns the bytes to shift otherwise */
204
205 signed
206 mir_upper_override(midgard_instruction *ins, unsigned inst_size)
207 {
208 unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
209
210 /* If the sizes are the same, there's nothing to override */
211 if (type_size == inst_size)
212 return -1;
213
214 /* There are 16 bytes per vector, so there are (16/bytes)
215 * components per vector. So the magic half is half of
216 * (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits
217 * */
218
219 unsigned threshold = 64 / type_size;
220
221 /* How many components did we shift over? */
222 unsigned zeroes = __builtin_ctz(ins->mask);
223
224 /* Did we hit the threshold? */
225 return (zeroes >= threshold) ? threshold : 0;
226 }
227
228 /* Creates a mask of the components of a node read by an instruction, by
229 * analyzing the swizzle with respect to the instruction's mask. E.g.:
230 *
231 * fadd r0.xz, r1.yyyy, r2.zwyx
232 *
233 * will return a mask of Z/Y for r2
234 */
235
236 static uint16_t
237 mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits)
238 {
239 unsigned cmask = 0;
240
241 for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
242 if (!(inmask & (1 << c))) continue;
243 cmask |= (1 << swizzle[c]);
244 }
245
246 return pan_to_bytemask(bits, cmask);
247 }
248
249 uint16_t
250 mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
251 {
252 if (ins->compact_branch && ins->writeout && (i == 0)) {
253 /* Non-ZS writeout uses all components */
254 if (!ins->writeout_depth && !ins->writeout_stencil)
255 return 0xFFFF;
256
257 /* For ZS-writeout, if both Z and S are written we need two
258 * components, otherwise we only need one.
259 */
260 if (ins->writeout_depth && ins->writeout_stencil)
261 return 0xFF;
262 else
263 return 0xF;
264 }
265
266 /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
267 if (ins->compact_branch && ins->branch.conditional && (i == 0))
268 return 0xF;
269
270 /* ALU ops act componentwise so we need to pay attention to
271 * their mask. Texture/ldst does not so we don't clamp source
272 * readmasks based on the writemask */
273 unsigned qmask = (ins->type == TAG_ALU_4) ? ins->mask : ~0;
274
275 /* Handle dot products and things */
276 if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
277 unsigned props = alu_opcode_props[ins->alu.op].props;
278
279 unsigned channel_override = GET_CHANNEL_COUNT(props);
280
281 if (channel_override)
282 qmask = mask_of(channel_override);
283 }
284
285 return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask,
286 nir_alu_type_get_type_size(ins->src_types[i]));
287 }
288
289 uint16_t
290 mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
291 {
292 uint16_t mask = 0;
293
294 if (node == ~0)
295 return 0;
296
297 mir_foreach_src(ins, i) {
298 if (ins->src[i] != node) continue;
299 mask |= mir_bytemask_of_read_components_index(ins, i);
300 }
301
302 return mask;
303 }
304
305 /* Register allocation occurs after instruction scheduling, which is fine until
306 * we start needing to spill registers and therefore insert instructions into
307 * an already-scheduled program. We don't have to be terribly efficient about
308 * this, since spilling is already slow. So just semantically we need to insert
309 * the instruction into a new bundle before/after the bundle of the instruction
310 * in question */
311
312 static midgard_bundle
313 mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
314 {
315 midgard_instruction *u = mir_upload_ins(ctx, ins);
316
317 midgard_bundle bundle = {
318 .tag = ins.type,
319 .instruction_count = 1,
320 .instructions = { u },
321 };
322
323 if (bundle.tag == TAG_ALU_4) {
324 assert(OP_IS_MOVE(u->alu.op));
325 u->unit = UNIT_VMUL;
326
327 size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
328 bundle.padding = ~(bytes_emitted - 1) & 0xF;
329 bundle.control = ins.type | u->unit;
330 }
331
332 return bundle;
333 }
334
335 static unsigned
336 mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
337 {
338 midgard_bundle *bundles =
339 (midgard_bundle *) block->bundles.data;
340
341 size_t count = (block->bundles.size / sizeof(midgard_bundle));
342
343 for (unsigned i = 0; i < count; ++i) {
344 for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
345 if (bundles[i].instructions[j] == tag)
346 return i;
347 }
348 }
349
350 mir_print_instruction(tag);
351 unreachable("Instruction not scheduled in block");
352 }
353
354 void
355 mir_insert_instruction_before_scheduled(
356 compiler_context *ctx,
357 midgard_block *block,
358 midgard_instruction *tag,
359 midgard_instruction ins)
360 {
361 unsigned before = mir_bundle_idx_for_ins(tag, block);
362 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
363 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
364
365 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
366 memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
367 midgard_bundle *before_bundle = bundles + before + 1;
368
369 midgard_bundle new = mir_bundle_for_op(ctx, ins);
370 memcpy(bundles + before, &new, sizeof(new));
371
372 list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
373 block->quadword_count += midgard_tag_props[new.tag].size;
374 }
375
376 void
377 mir_insert_instruction_after_scheduled(
378 compiler_context *ctx,
379 midgard_block *block,
380 midgard_instruction *tag,
381 midgard_instruction ins)
382 {
383 /* We need to grow the bundles array to add our new bundle */
384 size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
385 UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
386
387 /* Find the bundle that we want to insert after */
388 unsigned after = mir_bundle_idx_for_ins(tag, block);
389
390 /* All the bundles after that one, we move ahead by one */
391 midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
392 memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
393 midgard_bundle *after_bundle = bundles + after;
394
395 midgard_bundle new = mir_bundle_for_op(ctx, ins);
396 memcpy(bundles + after + 1, &new, sizeof(new));
397 list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
398 block->quadword_count += midgard_tag_props[new.tag].size;
399 }
400
401 /* Flip the first-two arguments of a (binary) op. Currently ALU
402 * only, no known uses for ldst/tex */
403
404 void
405 mir_flip(midgard_instruction *ins)
406 {
407 unsigned temp = ins->src[0];
408 ins->src[0] = ins->src[1];
409 ins->src[1] = temp;
410
411 assert(ins->type == TAG_ALU_4);
412
413 temp = ins->alu.src1;
414 ins->alu.src1 = ins->alu.src2;
415 ins->alu.src2 = temp;
416
417 temp = ins->src_types[0];
418 ins->src_types[0] = ins->src_types[1];
419 ins->src_types[1] = temp;
420
421 temp = ins->src_abs[0];
422 ins->src_abs[0] = ins->src_abs[1];
423 ins->src_abs[1] = temp;
424
425 temp = ins->src_neg[0];
426 ins->src_neg[0] = ins->src_neg[1];
427 ins->src_neg[1] = temp;
428
429 unsigned temp_swizzle[16];
430 memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
431 memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
432 memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
433 }
434
435 /* Before squashing, calculate ctx->temp_count just by observing the MIR */
436
437 void
438 mir_compute_temp_count(compiler_context *ctx)
439 {
440 if (ctx->temp_count)
441 return;
442
443 unsigned max_dest = 0;
444
445 mir_foreach_instr_global(ctx, ins) {
446 if (ins->dest < SSA_FIXED_MINIMUM)
447 max_dest = MAX2(max_dest, ins->dest + 1);
448 }
449
450 ctx->temp_count = max_dest;
451 }