01cd4ca6657387a65f6ae49e732403a9c30d2b22
[mesa.git] / src / panfrost / shared / pan_tiling.c
1 /*
2 * Copyright (c) 2011-2013 Luc Verhaegen <libv@skynet.be>
3 * Copyright (c) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
4 * Copyright (c) 2018 Vasily Khoruzhick <anarsoul@gmail.com>
5 * Copyright (c) 2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sub license,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 *
26 */
27
28 #include "pan_tiling.h"
29 #include <stdbool.h>
30 #include "util/macros.h"
31
32 /* This file implements software encode/decode of the tiling format used for
33 * textures and framebuffers primarily on Utgard GPUs. Names for this format
34 * include "Utgard-style tiling", "(Mali) swizzled textures", and
35 * "U-interleaved" (the former two names being used in the community
36 * Lima/Panfrost drivers; the latter name used internally at Arm).
37 * Conceptually, like any tiling scheme, the pixel reordering attempts to 2D
38 * spatial locality, to improve cache locality in both horizontal and vertical
39 * directions.
40 *
41 * This format is tiled: first, the image dimensions must be aligned to 16
42 * pixels in each axis. Once aligned, the image is divided into 16x16 tiles.
43 * This size harmonizes with other properties of the GPU; on Midgard,
44 * framebuffer tiles are logically 16x16 (this is the tile size used in
45 * Transaction Elimination and the minimum tile size used in Hierarchical
46 * Tiling). Conversely, for a standard 4 bytes-per-pixel format (like
47 * RGBA8888), 16 pixels * 4 bytes/pixel = 64 bytes, equal to the cache line
48 * size.
49 *
50 * Within each 16x16 block, the bits are reordered according to this pattern:
51 *
52 * | y3 | (x3 ^ y3) | y2 | (y2 ^ x2) | y1 | (y1 ^ x1) | y0 | (y0 ^ x0) |
53 *
54 * Basically, interleaving the X and Y bits, with XORs thrown in for every
55 * adjacent bit pair.
56 *
57 * This is cheap to implement both encode/decode in both hardware and software.
58 * In hardware, lines are simply rerouted to reorder and some XOR gates are
59 * thrown in. Software has to be a bit more clever.
60 *
61 * In software, the trick is to divide the pattern into two lines:
62 *
63 * | y3 | y3 | y2 | y2 | y1 | y1 | y0 | y0 |
64 * ^ | 0 | x3 | 0 | x2 | 0 | x1 | 0 | x0 |
65 *
66 * That is, duplicate the bits of the Y and space out the bits of the X. The
67 * top line is a function only of Y, so it can be calculated once per row and
68 * stored in a register. The bottom line is simply X with the bits spaced out.
69 * Spacing out the X is easy enough with a LUT, or by subtracting+ANDing the
70 * mask pattern (abusing carry bits).
71 *
72 * This format is also supported on Midgard GPUs, where it *can* be used for
73 * textures and framebuffers. That said, in practice it is usually as a
74 * fallback layout; Midgard introduces Arm FrameBuffer Compression, which is
75 * significantly more efficient than Utgard-style tiling and preferred for both
76 * textures and framebuffers, where possible. For unsupported texture types,
77 * for instance sRGB textures and framebuffers, this tiling scheme is used at a
78 * performance penalty, as AFBC is not compatible.
79 */
80
81 /* Given the lower 4-bits of the Y coordinate, we would like to
82 * duplicate every bit over. So instead of 0b1010, we would like
83 * 0b11001100. The idea is that for the bits in the solely Y place, we
84 * get a Y place, and the bits in the XOR place *also* get a Y. */
85
86 const uint32_t bit_duplication[16] = {
87 0b00000000,
88 0b00000011,
89 0b00001100,
90 0b00001111,
91 0b00110000,
92 0b00110011,
93 0b00111100,
94 0b00111111,
95 0b11000000,
96 0b11000011,
97 0b11001100,
98 0b11001111,
99 0b11110000,
100 0b11110011,
101 0b11111100,
102 0b11111111,
103 };
104
105 /* Space the bits out of a 4-bit nibble */
106
107 const unsigned space_4[16] = {
108 0b0000000,
109 0b0000001,
110 0b0000100,
111 0b0000101,
112 0b0010000,
113 0b0010001,
114 0b0010100,
115 0b0010101,
116 0b1000000,
117 0b1000001,
118 0b1000100,
119 0b1000101,
120 0b1010000,
121 0b1010001,
122 0b1010100,
123 0b1010101
124 };
125
126 /* The scheme uses 16x16 tiles */
127
128 #define TILE_WIDTH 16
129 #define TILE_HEIGHT 16
130 #define PIXELS_PER_TILE (TILE_WIDTH * TILE_HEIGHT)
131
132 /* We need a 128-bit type for idiomatically tiling bpp128 formats. The type must
133 * only support copies and sizeof, so emulating with a packed structure works
134 * well enough, but if there's a native 128-bit type we may we well prefer
135 * that. */
136
137 #ifdef __SIZEOF_INT128__
138 typedef __uint128_t pan_uint128_t;
139 #else
140 typedef struct {
141 uint64_t lo;
142 uint64_t hi;
143 } __attribute__((packed)) pan_uint128_t;
144 #endif
145
146 /* Optimized routine to tile an aligned (w & 0xF == 0) texture. Explanation:
147 *
148 * dest_start precomputes the offset to the beginning of the first horizontal
149 * tile we're writing to, knowing that x is 16-aligned. Tiles themselves are
150 * stored linearly, so we get the X tile number by shifting and then multiply
151 * by the bytes per tile .
152 *
153 * We iterate across the pixels we're trying to store in source-order. For each
154 * row in the destination image, we figure out which row of 16x16 block we're
155 * in, by slicing off the lower 4-bits (block_y).
156 *
157 * dest then precomputes the location of the top-left corner of the block the
158 * row starts in. In pixel coordinates (where the origin is the top-left),
159 * (block_y, 0) is the top-left corner of the leftmost tile in this row. While
160 * pixels are reordered within a block, the blocks themselves are stored
161 * linearly, so multiplying block_y by the pixel stride of the destination
162 * image equals the byte offset of that top-left corner of the block this row
163 * is in.
164 *
165 * On the other hand, the source is linear so we compute the locations of the
166 * start and end of the row in the source by a simple linear addressing.
167 *
168 * For indexing within the tile, we need to XOR with the [y3 y3 y2 y2 y1 y1 y0
169 * y0] value. Since this is constant across a row, we look it up per-row and
170 * store in expanded_y.
171 *
172 * Finally, we iterate each row in source order. In the outer loop, we iterate
173 * each 16 pixel tile. Within each tile, we iterate the 16 pixels (this should
174 * be unrolled), calculating the index within the tile and writing.
175 */
176
177 #define TILED_STORE_TYPE(pixel_t, shift) \
178 static void \
179 panfrost_store_tiled_image_##pixel_t \
180 (void *dst, const void *src, \
181 uint16_t sx, uint16_t sy, \
182 uint16_t w, uint16_t h, \
183 uint32_t dst_stride, \
184 uint32_t src_stride) \
185 { \
186 uint8_t *dest_start = dst + ((sx >> 4) * PIXELS_PER_TILE * sizeof(pixel_t)); \
187 for (int y = sy, src_y = 0; src_y < h; ++y, ++src_y) { \
188 uint16_t block_y = y & ~0x0f; \
189 uint8_t *dest = (uint8_t *) (dest_start + (block_y * dst_stride)); \
190 const pixel_t *source = src + (src_y * src_stride); \
191 const pixel_t *source_end = source + w; \
192 unsigned expanded_y = bit_duplication[y & 0xF] << shift; \
193 for (; source < source_end; dest += (PIXELS_PER_TILE << shift)) { \
194 for (uint8_t i = 0; i < 16; ++i) { \
195 unsigned index = expanded_y ^ (space_4[i] << shift); \
196 *((pixel_t *) (dest + index)) = *(source++); \
197 } \
198 } \
199 } \
200 } \
201
202 TILED_STORE_TYPE(uint8_t, 0);
203 TILED_STORE_TYPE(uint16_t, 1);
204 TILED_STORE_TYPE(uint32_t, 2);
205 TILED_STORE_TYPE(uint64_t, 3);
206 TILED_STORE_TYPE(pan_uint128_t, 4);
207
208 #define TILED_UNALIGNED_TYPE(pixel_t, is_store, tile_shift) { \
209 const unsigned mask = (1 << tile_shift) - 1; \
210 for (int y = sy, src_y = 0; src_y < h; ++y, ++src_y) { \
211 unsigned block_y = y & ~mask; \
212 unsigned block_start_s = block_y * dst_stride; \
213 unsigned source_start = src_y * src_stride; \
214 unsigned expanded_y = bit_duplication[y & mask]; \
215 \
216 for (int x = sx, src_x = 0; src_x < w; ++x, ++src_x) { \
217 unsigned block_x_s = (x >> tile_shift) * (1 << (tile_shift * 2)); \
218 unsigned index = expanded_y ^ space_4[x & mask]; \
219 uint8_t *source = src + source_start + sizeof(pixel_t) * src_x; \
220 uint8_t *dest = dst + block_start_s + sizeof(pixel_t) * (block_x_s + index); \
221 \
222 pixel_t *outp = (pixel_t *) (is_store ? dest : source); \
223 pixel_t *inp = (pixel_t *) (is_store ? source : dest); \
224 *outp = *inp; \
225 } \
226 } \
227 }
228
229 #define TILED_UNALIGNED_TYPES(store, shift) { \
230 if (bpp == 8) \
231 TILED_UNALIGNED_TYPE(uint8_t, store, shift) \
232 else if (bpp == 16) \
233 TILED_UNALIGNED_TYPE(uint16_t, store, shift) \
234 else if (bpp == 32) \
235 TILED_UNALIGNED_TYPE(uint32_t, store, shift) \
236 else if (bpp == 64) \
237 TILED_UNALIGNED_TYPE(uint64_t, store, shift) \
238 else if (bpp == 128) \
239 TILED_UNALIGNED_TYPE(pan_uint128_t, store, shift) \
240 }
241
242 static void
243 panfrost_access_tiled_image_generic(void *dst, void *src,
244 unsigned sx, unsigned sy,
245 unsigned w, unsigned h,
246 uint32_t dst_stride,
247 uint32_t src_stride,
248 const struct util_format_description *desc,
249 bool _is_store)
250 {
251 unsigned bpp = desc->block.bits;
252
253 if (desc->block.width > 1) {
254 w = DIV_ROUND_UP(w, desc->block.width);
255 h = DIV_ROUND_UP(h, desc->block.height);
256
257 if (_is_store)
258 TILED_UNALIGNED_TYPES(true, 2)
259 else
260 TILED_UNALIGNED_TYPES(false, 2)
261 } else {
262 if (_is_store)
263 TILED_UNALIGNED_TYPES(true, 4)
264 else
265 TILED_UNALIGNED_TYPES(false, 4)
266 }
267 }
268
269 #define OFFSET(src, _x, _y) (void *) ((uint8_t *) src + ((_y) - orig_y) * src_stride + (((_x) - orig_x) * (bpp / 8)))
270
271 void
272 panfrost_store_tiled_image(void *dst, const void *src,
273 unsigned x, unsigned y,
274 unsigned w, unsigned h,
275 uint32_t dst_stride,
276 uint32_t src_stride,
277 enum pipe_format format)
278 {
279 const struct util_format_description *desc = util_format_description(format);
280
281 if (desc->block.width > 1) {
282 panfrost_access_tiled_image_generic(dst, (void *) src,
283 x, y, w, h,
284 dst_stride, src_stride, desc, true);
285
286 return;
287 }
288
289 unsigned bpp = desc->block.bits;
290 unsigned first_full_tile_x = DIV_ROUND_UP(x, TILE_WIDTH) * TILE_WIDTH;
291 unsigned first_full_tile_y = DIV_ROUND_UP(y, TILE_HEIGHT) * TILE_HEIGHT;
292 unsigned last_full_tile_x = ((x + w) / TILE_WIDTH) * TILE_WIDTH;
293 unsigned last_full_tile_y = ((y + h) / TILE_HEIGHT) * TILE_HEIGHT;
294
295 /* First, tile the top portion */
296
297 unsigned orig_x = x, orig_y = y;
298
299 if (first_full_tile_y != y) {
300 unsigned dist = MIN2(first_full_tile_y - y, h);
301
302 panfrost_access_tiled_image_generic(dst, OFFSET(src, x, y),
303 x, y, w, dist,
304 dst_stride, src_stride, desc, true);
305
306 if (dist == h)
307 return;
308
309 y += dist;
310 h -= dist;
311 }
312
313 /* Next, the bottom portion */
314 if (last_full_tile_y != (y + h)) {
315 unsigned dist = (y + h) - last_full_tile_y;
316
317 panfrost_access_tiled_image_generic(dst, OFFSET(src, x, last_full_tile_y),
318 x, last_full_tile_y, w, dist,
319 dst_stride, src_stride, desc, true);
320
321 h -= dist;
322 }
323
324 /* The left portion */
325 if (first_full_tile_x != x) {
326 unsigned dist = MIN2(first_full_tile_x - x, w);
327
328 panfrost_access_tiled_image_generic(dst, OFFSET(src, x, y),
329 x, y, dist, h,
330 dst_stride, src_stride, desc, true);
331
332 if (dist == w)
333 return;
334
335 x += dist;
336 w -= dist;
337 }
338
339 /* Finally, the right portion */
340 if (last_full_tile_x != (x + w)) {
341 unsigned dist = (x + w) - last_full_tile_x;
342
343 panfrost_access_tiled_image_generic(dst, OFFSET(src, last_full_tile_x, y),
344 last_full_tile_x, y, dist, h,
345 dst_stride, src_stride, desc, true);
346
347 w -= dist;
348 }
349
350 if (bpp == 8)
351 panfrost_store_tiled_image_uint8_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride);
352 else if (bpp == 16)
353 panfrost_store_tiled_image_uint16_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride);
354 else if (bpp == 32)
355 panfrost_store_tiled_image_uint32_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride);
356 else if (bpp == 64)
357 panfrost_store_tiled_image_uint64_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride);
358 else if (bpp == 128)
359 panfrost_store_tiled_image_pan_uint128_t(dst, OFFSET(src, x, y), x, y, w, h, dst_stride, src_stride);
360 }
361
362 void
363 panfrost_load_tiled_image(void *dst, const void *src,
364 unsigned x, unsigned y,
365 unsigned w, unsigned h,
366 uint32_t dst_stride,
367 uint32_t src_stride,
368 enum pipe_format format)
369 {
370 const struct util_format_description *desc = util_format_description(format);
371 panfrost_access_tiled_image_generic((void *) src, dst, x, y, w, h, src_stride, dst_stride, desc, false);
372 }