util/disk_cache: check for write() failure in the zstd path
[mesa.git] / src / util / disk_cache.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifdef ENABLE_SHADER_CACHE
25
26 #include <ctype.h>
27 #include <ftw.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <sys/file.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/mman.h>
35 #include <unistd.h>
36 #include <fcntl.h>
37 #include <pwd.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include <inttypes.h>
41 #include "zlib.h"
42
43 #ifdef HAVE_ZSTD
44 #include "zstd.h"
45 #endif
46
47 #include "util/crc32.h"
48 #include "util/debug.h"
49 #include "util/rand_xor.h"
50 #include "util/u_atomic.h"
51 #include "util/u_queue.h"
52 #include "util/mesa-sha1.h"
53 #include "util/ralloc.h"
54 #include "main/compiler.h"
55 #include "main/errors.h"
56
57 #include "disk_cache.h"
58
59 /* Number of bits to mask off from a cache key to get an index. */
60 #define CACHE_INDEX_KEY_BITS 16
61
62 /* Mask for computing an index from a key. */
63 #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
64
65 /* The number of keys that can be stored in the index. */
66 #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
67
68 /* The cache version should be bumped whenever a change is made to the
69 * structure of cache entries or the index. This will give any 3rd party
70 * applications reading the cache entries a chance to adjust to the changes.
71 *
72 * - The cache version is checked internally when reading a cache entry. If we
73 * ever have a mismatch we are in big trouble as this means we had a cache
74 * collision. In case of such an event please check the skys for giant
75 * asteroids and that the entire Mesa team hasn't been eaten by wolves.
76 *
77 * - There is no strict requirement that cache versions be backwards
78 * compatible but effort should be taken to limit disruption where possible.
79 */
80 #define CACHE_VERSION 1
81
82 /* 3 is the recomended level, with 22 as the absolute maximum */
83 #define ZSTD_COMPRESSION_LEVEL 3
84
85 struct disk_cache {
86 /* The path to the cache directory. */
87 char *path;
88 bool path_init_failed;
89
90 /* Thread queue for compressing and writing cache entries to disk */
91 struct util_queue cache_queue;
92
93 /* Seed for rand, which is used to pick a random directory */
94 uint64_t seed_xorshift128plus[2];
95
96 /* A pointer to the mmapped index file within the cache directory. */
97 uint8_t *index_mmap;
98 size_t index_mmap_size;
99
100 /* Pointer to total size of all objects in cache (within index_mmap) */
101 uint64_t *size;
102
103 /* Pointer to stored keys, (within index_mmap). */
104 uint8_t *stored_keys;
105
106 /* Maximum size of all cached objects (in bytes). */
107 uint64_t max_size;
108
109 /* Driver cache keys. */
110 uint8_t *driver_keys_blob;
111 size_t driver_keys_blob_size;
112
113 disk_cache_put_cb blob_put_cb;
114 disk_cache_get_cb blob_get_cb;
115 };
116
117 struct disk_cache_put_job {
118 struct util_queue_fence fence;
119
120 struct disk_cache *cache;
121
122 cache_key key;
123
124 /* Copy of cache data to be compressed and written. */
125 void *data;
126
127 /* Size of data to be compressed and written. */
128 size_t size;
129
130 struct cache_item_metadata cache_item_metadata;
131 };
132
133 /* Create a directory named 'path' if it does not already exist.
134 *
135 * Returns: 0 if path already exists as a directory or if created.
136 * -1 in all other cases.
137 */
138 static int
139 mkdir_if_needed(const char *path)
140 {
141 struct stat sb;
142
143 /* If the path exists already, then our work is done if it's a
144 * directory, but it's an error if it is not.
145 */
146 if (stat(path, &sb) == 0) {
147 if (S_ISDIR(sb.st_mode)) {
148 return 0;
149 } else {
150 fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
151 "---disabling.\n", path);
152 return -1;
153 }
154 }
155
156 int ret = mkdir(path, 0755);
157 if (ret == 0 || (ret == -1 && errno == EEXIST))
158 return 0;
159
160 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
161 path, strerror(errno));
162
163 return -1;
164 }
165
166 /* Concatenate an existing path and a new name to form a new path. If the new
167 * path does not exist as a directory, create it then return the resulting
168 * name of the new path (ralloc'ed off of 'ctx').
169 *
170 * Returns NULL on any error, such as:
171 *
172 * <path> does not exist or is not a directory
173 * <path>/<name> exists but is not a directory
174 * <path>/<name> cannot be created as a directory
175 */
176 static char *
177 concatenate_and_mkdir(void *ctx, const char *path, const char *name)
178 {
179 char *new_path;
180 struct stat sb;
181
182 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
183 return NULL;
184
185 new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
186
187 if (mkdir_if_needed(new_path) == 0)
188 return new_path;
189 else
190 return NULL;
191 }
192
193 #define DRV_KEY_CPY(_dst, _src, _src_size) \
194 do { \
195 memcpy(_dst, _src, _src_size); \
196 _dst += _src_size; \
197 } while (0);
198
199 struct disk_cache *
200 disk_cache_create(const char *gpu_name, const char *driver_id,
201 uint64_t driver_flags)
202 {
203 void *local;
204 struct disk_cache *cache = NULL;
205 char *path, *max_size_str;
206 uint64_t max_size;
207 int fd = -1;
208 struct stat sb;
209 size_t size;
210
211 uint8_t cache_version = CACHE_VERSION;
212 size_t cv_size = sizeof(cache_version);
213
214 /* If running as a users other than the real user disable cache */
215 if (geteuid() != getuid())
216 return NULL;
217
218 /* A ralloc context for transient data during this invocation. */
219 local = ralloc_context(NULL);
220 if (local == NULL)
221 goto fail;
222
223 /* At user request, disable shader cache entirely. */
224 if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
225 goto fail;
226
227 cache = rzalloc(NULL, struct disk_cache);
228 if (cache == NULL)
229 goto fail;
230
231 /* Assume failure. */
232 cache->path_init_failed = true;
233
234 /* Determine path for cache based on the first defined name as follows:
235 *
236 * $MESA_GLSL_CACHE_DIR
237 * $XDG_CACHE_HOME/mesa_shader_cache
238 * <pwd.pw_dir>/.cache/mesa_shader_cache
239 */
240 path = getenv("MESA_GLSL_CACHE_DIR");
241 if (path) {
242 if (mkdir_if_needed(path) == -1)
243 goto path_fail;
244
245 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
246 if (path == NULL)
247 goto path_fail;
248 }
249
250 if (path == NULL) {
251 char *xdg_cache_home = getenv("XDG_CACHE_HOME");
252
253 if (xdg_cache_home) {
254 if (mkdir_if_needed(xdg_cache_home) == -1)
255 goto path_fail;
256
257 path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME);
258 if (path == NULL)
259 goto path_fail;
260 }
261 }
262
263 if (path == NULL) {
264 char *buf;
265 size_t buf_size;
266 struct passwd pwd, *result;
267
268 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
269 if (buf_size == -1)
270 buf_size = 512;
271
272 /* Loop until buf_size is large enough to query the directory */
273 while (1) {
274 buf = ralloc_size(local, buf_size);
275
276 getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
277 if (result)
278 break;
279
280 if (errno == ERANGE) {
281 ralloc_free(buf);
282 buf = NULL;
283 buf_size *= 2;
284 } else {
285 goto path_fail;
286 }
287 }
288
289 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
290 if (path == NULL)
291 goto path_fail;
292
293 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
294 if (path == NULL)
295 goto path_fail;
296 }
297
298 cache->path = ralloc_strdup(cache, path);
299 if (cache->path == NULL)
300 goto path_fail;
301
302 path = ralloc_asprintf(local, "%s/index", cache->path);
303 if (path == NULL)
304 goto path_fail;
305
306 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
307 if (fd == -1)
308 goto path_fail;
309
310 if (fstat(fd, &sb) == -1)
311 goto path_fail;
312
313 /* Force the index file to be the expected size. */
314 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
315 if (sb.st_size != size) {
316 if (ftruncate(fd, size) == -1)
317 goto path_fail;
318 }
319
320 /* We map this shared so that other processes see updates that we
321 * make.
322 *
323 * Note: We do use atomic addition to ensure that multiple
324 * processes don't scramble the cache size recorded in the
325 * index. But we don't use any locking to prevent multiple
326 * processes from updating the same entry simultaneously. The idea
327 * is that if either result lands entirely in the index, then
328 * that's equivalent to a well-ordered write followed by an
329 * eviction and a write. On the other hand, if the simultaneous
330 * writes result in a corrupt entry, that's not really any
331 * different than both entries being evicted, (since within the
332 * guarantees of the cryptographic hash, a corrupt entry is
333 * unlikely to ever match a real cache key).
334 */
335 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
336 MAP_SHARED, fd, 0);
337 if (cache->index_mmap == MAP_FAILED)
338 goto path_fail;
339 cache->index_mmap_size = size;
340
341 cache->size = (uint64_t *) cache->index_mmap;
342 cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
343
344 max_size = 0;
345
346 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
347 if (max_size_str) {
348 char *end;
349 max_size = strtoul(max_size_str, &end, 10);
350 if (end == max_size_str) {
351 max_size = 0;
352 } else {
353 switch (*end) {
354 case 'K':
355 case 'k':
356 max_size *= 1024;
357 break;
358 case 'M':
359 case 'm':
360 max_size *= 1024*1024;
361 break;
362 case '\0':
363 case 'G':
364 case 'g':
365 default:
366 max_size *= 1024*1024*1024;
367 break;
368 }
369 }
370 }
371
372 /* Default to 1GB for maximum cache size. */
373 if (max_size == 0) {
374 max_size = 1024*1024*1024;
375 }
376
377 cache->max_size = max_size;
378
379 /* 4 threads were chosen below because just about all modern CPUs currently
380 * available that run Mesa have *at least* 4 cores. For these CPUs allowing
381 * more threads can result in the queue being processed faster, thus
382 * avoiding excessive memory use due to a backlog of cache entrys building
383 * up in the queue. Since we set the UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY
384 * flag this should have little negative impact on low core systems.
385 *
386 * The queue will resize automatically when it's full, so adding new jobs
387 * doesn't stall.
388 */
389 util_queue_init(&cache->cache_queue, "disk$", 32, 4,
390 UTIL_QUEUE_INIT_RESIZE_IF_FULL |
391 UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
392 UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY);
393
394 cache->path_init_failed = false;
395
396 path_fail:
397
398 if (fd != -1)
399 close(fd);
400
401 cache->driver_keys_blob_size = cv_size;
402
403 /* Create driver id keys */
404 size_t id_size = strlen(driver_id) + 1;
405 size_t gpu_name_size = strlen(gpu_name) + 1;
406 cache->driver_keys_blob_size += id_size;
407 cache->driver_keys_blob_size += gpu_name_size;
408
409 /* We sometimes store entire structs that contains a pointers in the cache,
410 * use pointer size as a key to avoid hard to debug issues.
411 */
412 uint8_t ptr_size = sizeof(void *);
413 size_t ptr_size_size = sizeof(ptr_size);
414 cache->driver_keys_blob_size += ptr_size_size;
415
416 size_t driver_flags_size = sizeof(driver_flags);
417 cache->driver_keys_blob_size += driver_flags_size;
418
419 cache->driver_keys_blob =
420 ralloc_size(cache, cache->driver_keys_blob_size);
421 if (!cache->driver_keys_blob)
422 goto fail;
423
424 uint8_t *drv_key_blob = cache->driver_keys_blob;
425 DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
426 DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
427 DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
428 DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
429 DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
430
431 /* Seed our rand function */
432 s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
433
434 ralloc_free(local);
435
436 return cache;
437
438 fail:
439 if (cache)
440 ralloc_free(cache);
441 ralloc_free(local);
442
443 return NULL;
444 }
445
446 void
447 disk_cache_destroy(struct disk_cache *cache)
448 {
449 if (cache && !cache->path_init_failed) {
450 util_queue_finish(&cache->cache_queue);
451 util_queue_destroy(&cache->cache_queue);
452 munmap(cache->index_mmap, cache->index_mmap_size);
453 }
454
455 ralloc_free(cache);
456 }
457
458 /* Return a filename within the cache's directory corresponding to 'key'. The
459 * returned filename is ralloced with 'cache' as the parent context.
460 *
461 * Returns NULL if out of memory.
462 */
463 static char *
464 get_cache_file(struct disk_cache *cache, const cache_key key)
465 {
466 char buf[41];
467 char *filename;
468
469 if (cache->path_init_failed)
470 return NULL;
471
472 _mesa_sha1_format(buf, key);
473 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
474 buf[1], buf + 2) == -1)
475 return NULL;
476
477 return filename;
478 }
479
480 /* Create the directory that will be needed for the cache file for \key.
481 *
482 * Obviously, the implementation here must closely match
483 * _get_cache_file above.
484 */
485 static void
486 make_cache_file_directory(struct disk_cache *cache, const cache_key key)
487 {
488 char *dir;
489 char buf[41];
490
491 _mesa_sha1_format(buf, key);
492 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
493 return;
494
495 mkdir_if_needed(dir);
496 free(dir);
497 }
498
499 /* Given a directory path and predicate function, find the entry with
500 * the oldest access time in that directory for which the predicate
501 * returns true.
502 *
503 * Returns: A malloc'ed string for the path to the chosen file, (or
504 * NULL on any error). The caller should free the string when
505 * finished.
506 */
507 static char *
508 choose_lru_file_matching(const char *dir_path,
509 bool (*predicate)(const char *dir_path,
510 const struct stat *,
511 const char *, const size_t))
512 {
513 DIR *dir;
514 struct dirent *entry;
515 char *filename;
516 char *lru_name = NULL;
517 time_t lru_atime = 0;
518
519 dir = opendir(dir_path);
520 if (dir == NULL)
521 return NULL;
522
523 while (1) {
524 entry = readdir(dir);
525 if (entry == NULL)
526 break;
527
528 struct stat sb;
529 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
530 if (!lru_atime || (sb.st_atime < lru_atime)) {
531 size_t len = strlen(entry->d_name);
532
533 if (!predicate(dir_path, &sb, entry->d_name, len))
534 continue;
535
536 char *tmp = realloc(lru_name, len + 1);
537 if (tmp) {
538 lru_name = tmp;
539 memcpy(lru_name, entry->d_name, len + 1);
540 lru_atime = sb.st_atime;
541 }
542 }
543 }
544 }
545
546 if (lru_name == NULL) {
547 closedir(dir);
548 return NULL;
549 }
550
551 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
552 filename = NULL;
553
554 free(lru_name);
555 closedir(dir);
556
557 return filename;
558 }
559
560 /* Is entry a regular file, and not having a name with a trailing
561 * ".tmp"
562 */
563 static bool
564 is_regular_non_tmp_file(const char *path, const struct stat *sb,
565 const char *d_name, const size_t len)
566 {
567 if (!S_ISREG(sb->st_mode))
568 return false;
569
570 if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
571 return false;
572
573 return true;
574 }
575
576 /* Returns the size of the deleted file, (or 0 on any error). */
577 static size_t
578 unlink_lru_file_from_directory(const char *path)
579 {
580 struct stat sb;
581 char *filename;
582
583 filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
584 if (filename == NULL)
585 return 0;
586
587 if (stat(filename, &sb) == -1) {
588 free (filename);
589 return 0;
590 }
591
592 unlink(filename);
593 free (filename);
594
595 return sb.st_blocks * 512;
596 }
597
598 /* Is entry a directory with a two-character name, (and not the
599 * special name of ".."). We also return false if the dir is empty.
600 */
601 static bool
602 is_two_character_sub_directory(const char *path, const struct stat *sb,
603 const char *d_name, const size_t len)
604 {
605 if (!S_ISDIR(sb->st_mode))
606 return false;
607
608 if (len != 2)
609 return false;
610
611 if (strcmp(d_name, "..") == 0)
612 return false;
613
614 char *subdir;
615 if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
616 return false;
617 DIR *dir = opendir(subdir);
618 free(subdir);
619
620 if (dir == NULL)
621 return false;
622
623 unsigned subdir_entries = 0;
624 struct dirent *d;
625 while ((d = readdir(dir)) != NULL) {
626 if(++subdir_entries > 2)
627 break;
628 }
629 closedir(dir);
630
631 /* If dir only contains '.' and '..' it must be empty */
632 if (subdir_entries <= 2)
633 return false;
634
635 return true;
636 }
637
638 static void
639 evict_lru_item(struct disk_cache *cache)
640 {
641 char *dir_path;
642
643 /* With a reasonably-sized, full cache, (and with keys generated
644 * from a cryptographic hash), we can choose two random hex digits
645 * and reasonably expect the directory to exist with a file in it.
646 * Provides pseudo-LRU eviction to reduce checking all cache files.
647 */
648 uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
649 if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
650 return;
651
652 size_t size = unlink_lru_file_from_directory(dir_path);
653
654 free(dir_path);
655
656 if (size) {
657 p_atomic_add(cache->size, - (uint64_t)size);
658 return;
659 }
660
661 /* In the case where the random choice of directory didn't find
662 * something, we choose the least recently accessed from the
663 * existing directories.
664 *
665 * Really, the only reason this code exists is to allow the unit
666 * tests to work, (which use an artificially-small cache to be able
667 * to force a single cached item to be evicted).
668 */
669 dir_path = choose_lru_file_matching(cache->path,
670 is_two_character_sub_directory);
671 if (dir_path == NULL)
672 return;
673
674 size = unlink_lru_file_from_directory(dir_path);
675
676 free(dir_path);
677
678 if (size)
679 p_atomic_add(cache->size, - (uint64_t)size);
680 }
681
682 void
683 disk_cache_remove(struct disk_cache *cache, const cache_key key)
684 {
685 struct stat sb;
686
687 char *filename = get_cache_file(cache, key);
688 if (filename == NULL) {
689 return;
690 }
691
692 if (stat(filename, &sb) == -1) {
693 free(filename);
694 return;
695 }
696
697 unlink(filename);
698 free(filename);
699
700 if (sb.st_blocks)
701 p_atomic_add(cache->size, - (uint64_t)sb.st_blocks * 512);
702 }
703
704 static ssize_t
705 read_all(int fd, void *buf, size_t count)
706 {
707 char *in = buf;
708 ssize_t read_ret;
709 size_t done;
710
711 for (done = 0; done < count; done += read_ret) {
712 read_ret = read(fd, in + done, count - done);
713 if (read_ret == -1 || read_ret == 0)
714 return -1;
715 }
716 return done;
717 }
718
719 static ssize_t
720 write_all(int fd, const void *buf, size_t count)
721 {
722 const char *out = buf;
723 ssize_t written;
724 size_t done;
725
726 for (done = 0; done < count; done += written) {
727 written = write(fd, out + done, count - done);
728 if (written == -1)
729 return -1;
730 }
731 return done;
732 }
733
734 /* From the zlib docs:
735 * "If the memory is available, buffers sizes on the order of 128K or 256K
736 * bytes should be used."
737 */
738 #define BUFSIZE 256 * 1024
739
740 /**
741 * Compresses cache entry in memory and writes it to disk. Returns the size
742 * of the data written to disk.
743 */
744 static size_t
745 deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
746 const char *filename)
747 {
748 #ifdef HAVE_ZSTD
749 /* from the zstd docs (https://facebook.github.io/zstd/zstd_manual.html):
750 * compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
751 */
752 size_t out_size = ZSTD_compressBound(in_data_size);
753 void * out = malloc(out_size);
754
755 size_t ret = ZSTD_compress(out, out_size, in_data, in_data_size,
756 ZSTD_COMPRESSION_LEVEL);
757 if (ZSTD_isError(ret)) {
758 free(out);
759 return 0;
760 }
761 ssize_t written = write_all(dest, out, ret);
762 if (written == -1) {
763 free(out);
764 return 0;
765 }
766 free(out);
767 return ret;
768 #else
769 unsigned char *out;
770
771 /* allocate deflate state */
772 z_stream strm;
773 strm.zalloc = Z_NULL;
774 strm.zfree = Z_NULL;
775 strm.opaque = Z_NULL;
776 strm.next_in = (uint8_t *) in_data;
777 strm.avail_in = in_data_size;
778
779 int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
780 if (ret != Z_OK)
781 return 0;
782
783 /* compress until end of in_data */
784 size_t compressed_size = 0;
785 int flush;
786
787 out = malloc(BUFSIZE * sizeof(unsigned char));
788 if (out == NULL)
789 return 0;
790
791 do {
792 int remaining = in_data_size - BUFSIZE;
793 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
794 in_data_size -= BUFSIZE;
795
796 /* Run deflate() on input until the output buffer is not full (which
797 * means there is no more data to deflate).
798 */
799 do {
800 strm.avail_out = BUFSIZE;
801 strm.next_out = out;
802
803 ret = deflate(&strm, flush); /* no bad return value */
804 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
805
806 size_t have = BUFSIZE - strm.avail_out;
807 compressed_size += have;
808
809 ssize_t written = write_all(dest, out, have);
810 if (written == -1) {
811 (void)deflateEnd(&strm);
812 free(out);
813 return 0;
814 }
815 } while (strm.avail_out == 0);
816
817 /* all input should be used */
818 assert(strm.avail_in == 0);
819
820 } while (flush != Z_FINISH);
821
822 /* stream should be complete */
823 assert(ret == Z_STREAM_END);
824
825 /* clean up and return */
826 (void)deflateEnd(&strm);
827 free(out);
828 return compressed_size;
829 # endif
830 }
831
832 static struct disk_cache_put_job *
833 create_put_job(struct disk_cache *cache, const cache_key key,
834 const void *data, size_t size,
835 struct cache_item_metadata *cache_item_metadata)
836 {
837 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
838 malloc(sizeof(struct disk_cache_put_job) + size);
839
840 if (dc_job) {
841 dc_job->cache = cache;
842 memcpy(dc_job->key, key, sizeof(cache_key));
843 dc_job->data = dc_job + 1;
844 memcpy(dc_job->data, data, size);
845 dc_job->size = size;
846
847 /* Copy the cache item metadata */
848 if (cache_item_metadata) {
849 dc_job->cache_item_metadata.type = cache_item_metadata->type;
850 if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
851 dc_job->cache_item_metadata.num_keys =
852 cache_item_metadata->num_keys;
853 dc_job->cache_item_metadata.keys = (cache_key *)
854 malloc(cache_item_metadata->num_keys * sizeof(cache_key));
855
856 if (!dc_job->cache_item_metadata.keys)
857 goto fail;
858
859 memcpy(dc_job->cache_item_metadata.keys,
860 cache_item_metadata->keys,
861 sizeof(cache_key) * cache_item_metadata->num_keys);
862 }
863 } else {
864 dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
865 dc_job->cache_item_metadata.keys = NULL;
866 }
867 }
868
869 return dc_job;
870
871 fail:
872 free(dc_job);
873
874 return NULL;
875 }
876
877 static void
878 destroy_put_job(void *job, int thread_index)
879 {
880 if (job) {
881 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
882 free(dc_job->cache_item_metadata.keys);
883
884 free(job);
885 }
886 }
887
888 struct cache_entry_file_data {
889 uint32_t crc32;
890 uint32_t uncompressed_size;
891 };
892
893 static void
894 cache_put(void *job, int thread_index)
895 {
896 assert(job);
897
898 int fd = -1, fd_final = -1, err, ret;
899 unsigned i = 0;
900 char *filename = NULL, *filename_tmp = NULL;
901 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
902
903 filename = get_cache_file(dc_job->cache, dc_job->key);
904 if (filename == NULL)
905 goto done;
906
907 /* If the cache is too large, evict something else first. */
908 while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
909 i < 8) {
910 evict_lru_item(dc_job->cache);
911 i++;
912 }
913
914 /* Write to a temporary file to allow for an atomic rename to the
915 * final destination filename, (to prevent any readers from seeing
916 * a partially written file).
917 */
918 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
919 goto done;
920
921 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
922
923 /* Make the two-character subdirectory within the cache as needed. */
924 if (fd == -1) {
925 if (errno != ENOENT)
926 goto done;
927
928 make_cache_file_directory(dc_job->cache, dc_job->key);
929
930 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
931 if (fd == -1)
932 goto done;
933 }
934
935 /* With the temporary file open, we take an exclusive flock on
936 * it. If the flock fails, then another process still has the file
937 * open with the flock held. So just let that file be responsible
938 * for writing the file.
939 */
940 #ifdef HAVE_FLOCK
941 err = flock(fd, LOCK_EX | LOCK_NB);
942 #else
943 struct flock lock = {
944 .l_start = 0,
945 .l_len = 0, /* entire file */
946 .l_type = F_WRLCK,
947 .l_whence = SEEK_SET
948 };
949 err = fcntl(fd, F_SETLK, &lock);
950 #endif
951 if (err == -1)
952 goto done;
953
954 /* Now that we have the lock on the open temporary file, we can
955 * check to see if the destination file already exists. If so,
956 * another process won the race between when we saw that the file
957 * didn't exist and now. In this case, we don't do anything more,
958 * (to ensure the size accounting of the cache doesn't get off).
959 */
960 fd_final = open(filename, O_RDONLY | O_CLOEXEC);
961 if (fd_final != -1) {
962 unlink(filename_tmp);
963 goto done;
964 }
965
966 /* OK, we're now on the hook to write out a file that we know is
967 * not in the cache, and is also not being written out to the cache
968 * by some other process.
969 */
970
971 /* Write the driver_keys_blob, this can be used find information about the
972 * mesa version that produced the entry or deal with hash collisions,
973 * should that ever become a real problem.
974 */
975 ret = write_all(fd, dc_job->cache->driver_keys_blob,
976 dc_job->cache->driver_keys_blob_size);
977 if (ret == -1) {
978 unlink(filename_tmp);
979 goto done;
980 }
981
982 /* Write the cache item metadata. This data can be used to deal with
983 * hash collisions, as well as providing useful information to 3rd party
984 * tools reading the cache files.
985 */
986 ret = write_all(fd, &dc_job->cache_item_metadata.type,
987 sizeof(uint32_t));
988 if (ret == -1) {
989 unlink(filename_tmp);
990 goto done;
991 }
992
993 if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
994 ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
995 sizeof(uint32_t));
996 if (ret == -1) {
997 unlink(filename_tmp);
998 goto done;
999 }
1000
1001 ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
1002 dc_job->cache_item_metadata.num_keys *
1003 sizeof(cache_key));
1004 if (ret == -1) {
1005 unlink(filename_tmp);
1006 goto done;
1007 }
1008 }
1009
1010 /* Create CRC of the data. We will read this when restoring the cache and
1011 * use it to check for corruption.
1012 */
1013 struct cache_entry_file_data cf_data;
1014 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
1015 cf_data.uncompressed_size = dc_job->size;
1016
1017 size_t cf_data_size = sizeof(cf_data);
1018 ret = write_all(fd, &cf_data, cf_data_size);
1019 if (ret == -1) {
1020 unlink(filename_tmp);
1021 goto done;
1022 }
1023
1024 /* Now, finally, write out the contents to the temporary file, then
1025 * rename them atomically to the destination filename, and also
1026 * perform an atomic increment of the total cache size.
1027 */
1028 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
1029 fd, filename_tmp);
1030 if (file_size == 0) {
1031 unlink(filename_tmp);
1032 goto done;
1033 }
1034 ret = rename(filename_tmp, filename);
1035 if (ret == -1) {
1036 unlink(filename_tmp);
1037 goto done;
1038 }
1039
1040 struct stat sb;
1041 if (stat(filename, &sb) == -1) {
1042 /* Something went wrong remove the file */
1043 unlink(filename);
1044 goto done;
1045 }
1046
1047 p_atomic_add(dc_job->cache->size, sb.st_blocks * 512);
1048
1049 done:
1050 if (fd_final != -1)
1051 close(fd_final);
1052 /* This close finally releases the flock, (now that the final file
1053 * has been renamed into place and the size has been added).
1054 */
1055 if (fd != -1)
1056 close(fd);
1057 free(filename_tmp);
1058 free(filename);
1059 }
1060
1061 void
1062 disk_cache_put(struct disk_cache *cache, const cache_key key,
1063 const void *data, size_t size,
1064 struct cache_item_metadata *cache_item_metadata)
1065 {
1066 if (cache->blob_put_cb) {
1067 cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size);
1068 return;
1069 }
1070
1071 if (cache->path_init_failed)
1072 return;
1073
1074 struct disk_cache_put_job *dc_job =
1075 create_put_job(cache, key, data, size, cache_item_metadata);
1076
1077 if (dc_job) {
1078 util_queue_fence_init(&dc_job->fence);
1079 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
1080 cache_put, destroy_put_job, dc_job->size);
1081 }
1082 }
1083
1084 /**
1085 * Decompresses cache entry, returns true if successful.
1086 */
1087 static bool
1088 inflate_cache_data(uint8_t *in_data, size_t in_data_size,
1089 uint8_t *out_data, size_t out_data_size)
1090 {
1091 #ifdef HAVE_ZSTD
1092 size_t ret = ZSTD_decompress(out_data, out_data_size, in_data, in_data_size);
1093 return !ZSTD_isError(ret);
1094 #else
1095 z_stream strm;
1096
1097 /* allocate inflate state */
1098 strm.zalloc = Z_NULL;
1099 strm.zfree = Z_NULL;
1100 strm.opaque = Z_NULL;
1101 strm.next_in = in_data;
1102 strm.avail_in = in_data_size;
1103 strm.next_out = out_data;
1104 strm.avail_out = out_data_size;
1105
1106 int ret = inflateInit(&strm);
1107 if (ret != Z_OK)
1108 return false;
1109
1110 ret = inflate(&strm, Z_NO_FLUSH);
1111 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
1112
1113 /* Unless there was an error we should have decompressed everything in one
1114 * go as we know the uncompressed file size.
1115 */
1116 if (ret != Z_STREAM_END) {
1117 (void)inflateEnd(&strm);
1118 return false;
1119 }
1120 assert(strm.avail_out == 0);
1121
1122 /* clean up and return */
1123 (void)inflateEnd(&strm);
1124 return true;
1125 #endif
1126 }
1127
1128 void *
1129 disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
1130 {
1131 int fd = -1, ret;
1132 struct stat sb;
1133 char *filename = NULL;
1134 uint8_t *data = NULL;
1135 uint8_t *uncompressed_data = NULL;
1136 uint8_t *file_header = NULL;
1137
1138 if (size)
1139 *size = 0;
1140
1141 if (cache->blob_get_cb) {
1142 /* This is what Android EGL defines as the maxValueSize in egl_cache_t
1143 * class implementation.
1144 */
1145 const signed long max_blob_size = 64 * 1024;
1146 void *blob = malloc(max_blob_size);
1147 if (!blob)
1148 return NULL;
1149
1150 signed long bytes =
1151 cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size);
1152
1153 if (!bytes) {
1154 free(blob);
1155 return NULL;
1156 }
1157
1158 if (size)
1159 *size = bytes;
1160 return blob;
1161 }
1162
1163 filename = get_cache_file(cache, key);
1164 if (filename == NULL)
1165 goto fail;
1166
1167 fd = open(filename, O_RDONLY | O_CLOEXEC);
1168 if (fd == -1)
1169 goto fail;
1170
1171 if (fstat(fd, &sb) == -1)
1172 goto fail;
1173
1174 data = malloc(sb.st_size);
1175 if (data == NULL)
1176 goto fail;
1177
1178 size_t ck_size = cache->driver_keys_blob_size;
1179 file_header = malloc(ck_size);
1180 if (!file_header)
1181 goto fail;
1182
1183 if (sb.st_size < ck_size)
1184 goto fail;
1185
1186 ret = read_all(fd, file_header, ck_size);
1187 if (ret == -1)
1188 goto fail;
1189
1190 /* Check for extremely unlikely hash collisions */
1191 if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) {
1192 assert(!"Mesa cache keys mismatch!");
1193 goto fail;
1194 }
1195
1196 size_t cache_item_md_size = sizeof(uint32_t);
1197 uint32_t md_type;
1198 ret = read_all(fd, &md_type, cache_item_md_size);
1199 if (ret == -1)
1200 goto fail;
1201
1202 if (md_type == CACHE_ITEM_TYPE_GLSL) {
1203 uint32_t num_keys;
1204 cache_item_md_size += sizeof(uint32_t);
1205 ret = read_all(fd, &num_keys, sizeof(uint32_t));
1206 if (ret == -1)
1207 goto fail;
1208
1209 /* The cache item metadata is currently just used for distributing
1210 * precompiled shaders, they are not used by Mesa so just skip them for
1211 * now.
1212 * TODO: pass the metadata back to the caller and do some basic
1213 * validation.
1214 */
1215 cache_item_md_size += num_keys * sizeof(cache_key);
1216 ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR);
1217 if (ret == -1)
1218 goto fail;
1219 }
1220
1221 /* Load the CRC that was created when the file was written. */
1222 struct cache_entry_file_data cf_data;
1223 size_t cf_data_size = sizeof(cf_data);
1224 ret = read_all(fd, &cf_data, cf_data_size);
1225 if (ret == -1)
1226 goto fail;
1227
1228 /* Load the actual cache data. */
1229 size_t cache_data_size =
1230 sb.st_size - cf_data_size - ck_size - cache_item_md_size;
1231 ret = read_all(fd, data, cache_data_size);
1232 if (ret == -1)
1233 goto fail;
1234
1235 /* Uncompress the cache data */
1236 uncompressed_data = malloc(cf_data.uncompressed_size);
1237 if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1238 cf_data.uncompressed_size))
1239 goto fail;
1240
1241 /* Check the data for corruption */
1242 if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1243 cf_data.uncompressed_size))
1244 goto fail;
1245
1246 free(data);
1247 free(filename);
1248 free(file_header);
1249 close(fd);
1250
1251 if (size)
1252 *size = cf_data.uncompressed_size;
1253
1254 return uncompressed_data;
1255
1256 fail:
1257 if (data)
1258 free(data);
1259 if (uncompressed_data)
1260 free(uncompressed_data);
1261 if (filename)
1262 free(filename);
1263 if (file_header)
1264 free(file_header);
1265 if (fd != -1)
1266 close(fd);
1267
1268 return NULL;
1269 }
1270
1271 void
1272 disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1273 {
1274 const uint32_t *key_chunk = (const uint32_t *) key;
1275 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1276 unsigned char *entry;
1277
1278 if (cache->blob_put_cb) {
1279 cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
1280 return;
1281 }
1282
1283 if (cache->path_init_failed)
1284 return;
1285
1286 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1287
1288 memcpy(entry, key, CACHE_KEY_SIZE);
1289 }
1290
1291 /* This function lets us test whether a given key was previously
1292 * stored in the cache with disk_cache_put_key(). The implement is
1293 * efficient by not using syscalls or hitting the disk. It's not
1294 * race-free, but the races are benign. If we race with someone else
1295 * calling disk_cache_put_key, then that's just an extra cache miss and an
1296 * extra recompile.
1297 */
1298 bool
1299 disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1300 {
1301 const uint32_t *key_chunk = (const uint32_t *) key;
1302 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1303 unsigned char *entry;
1304
1305 if (cache->blob_get_cb) {
1306 uint32_t blob;
1307 return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
1308 }
1309
1310 if (cache->path_init_failed)
1311 return false;
1312
1313 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1314
1315 return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1316 }
1317
1318 void
1319 disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
1320 cache_key key)
1321 {
1322 struct mesa_sha1 ctx;
1323
1324 _mesa_sha1_init(&ctx);
1325 _mesa_sha1_update(&ctx, cache->driver_keys_blob,
1326 cache->driver_keys_blob_size);
1327 _mesa_sha1_update(&ctx, data, size);
1328 _mesa_sha1_final(&ctx, key);
1329 }
1330
1331 void
1332 disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
1333 disk_cache_get_cb get)
1334 {
1335 cache->blob_put_cb = put;
1336 cache->blob_get_cb = get;
1337 }
1338
1339 #endif /* ENABLE_SHADER_CACHE */