util: Use ZSTD for shader cache if possible
[mesa.git] / src / util / disk_cache.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifdef ENABLE_SHADER_CACHE
25
26 #include <ctype.h>
27 #include <ftw.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <sys/file.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/mman.h>
35 #include <unistd.h>
36 #include <fcntl.h>
37 #include <pwd.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include <inttypes.h>
41 #include "zlib.h"
42
43 #ifdef HAVE_ZSTD
44 #include "zstd.h"
45 #endif
46
47 #include "util/crc32.h"
48 #include "util/debug.h"
49 #include "util/rand_xor.h"
50 #include "util/u_atomic.h"
51 #include "util/u_queue.h"
52 #include "util/mesa-sha1.h"
53 #include "util/ralloc.h"
54 #include "main/compiler.h"
55 #include "main/errors.h"
56
57 #include "disk_cache.h"
58
59 /* Number of bits to mask off from a cache key to get an index. */
60 #define CACHE_INDEX_KEY_BITS 16
61
62 /* Mask for computing an index from a key. */
63 #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
64
65 /* The number of keys that can be stored in the index. */
66 #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
67
68 /* The cache version should be bumped whenever a change is made to the
69 * structure of cache entries or the index. This will give any 3rd party
70 * applications reading the cache entries a chance to adjust to the changes.
71 *
72 * - The cache version is checked internally when reading a cache entry. If we
73 * ever have a mismatch we are in big trouble as this means we had a cache
74 * collision. In case of such an event please check the skys for giant
75 * asteroids and that the entire Mesa team hasn't been eaten by wolves.
76 *
77 * - There is no strict requirement that cache versions be backwards
78 * compatible but effort should be taken to limit disruption where possible.
79 */
80 #define CACHE_VERSION 1
81
82 /* 3 is the recomended level, with 22 as the absolute maximum */
83 #define ZSTD_COMPRESSION_LEVEL 3
84
85 struct disk_cache {
86 /* The path to the cache directory. */
87 char *path;
88 bool path_init_failed;
89
90 /* Thread queue for compressing and writing cache entries to disk */
91 struct util_queue cache_queue;
92
93 /* Seed for rand, which is used to pick a random directory */
94 uint64_t seed_xorshift128plus[2];
95
96 /* A pointer to the mmapped index file within the cache directory. */
97 uint8_t *index_mmap;
98 size_t index_mmap_size;
99
100 /* Pointer to total size of all objects in cache (within index_mmap) */
101 uint64_t *size;
102
103 /* Pointer to stored keys, (within index_mmap). */
104 uint8_t *stored_keys;
105
106 /* Maximum size of all cached objects (in bytes). */
107 uint64_t max_size;
108
109 /* Driver cache keys. */
110 uint8_t *driver_keys_blob;
111 size_t driver_keys_blob_size;
112
113 disk_cache_put_cb blob_put_cb;
114 disk_cache_get_cb blob_get_cb;
115 };
116
117 struct disk_cache_put_job {
118 struct util_queue_fence fence;
119
120 struct disk_cache *cache;
121
122 cache_key key;
123
124 /* Copy of cache data to be compressed and written. */
125 void *data;
126
127 /* Size of data to be compressed and written. */
128 size_t size;
129
130 struct cache_item_metadata cache_item_metadata;
131 };
132
133 /* Create a directory named 'path' if it does not already exist.
134 *
135 * Returns: 0 if path already exists as a directory or if created.
136 * -1 in all other cases.
137 */
138 static int
139 mkdir_if_needed(const char *path)
140 {
141 struct stat sb;
142
143 /* If the path exists already, then our work is done if it's a
144 * directory, but it's an error if it is not.
145 */
146 if (stat(path, &sb) == 0) {
147 if (S_ISDIR(sb.st_mode)) {
148 return 0;
149 } else {
150 fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
151 "---disabling.\n", path);
152 return -1;
153 }
154 }
155
156 int ret = mkdir(path, 0755);
157 if (ret == 0 || (ret == -1 && errno == EEXIST))
158 return 0;
159
160 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
161 path, strerror(errno));
162
163 return -1;
164 }
165
166 /* Concatenate an existing path and a new name to form a new path. If the new
167 * path does not exist as a directory, create it then return the resulting
168 * name of the new path (ralloc'ed off of 'ctx').
169 *
170 * Returns NULL on any error, such as:
171 *
172 * <path> does not exist or is not a directory
173 * <path>/<name> exists but is not a directory
174 * <path>/<name> cannot be created as a directory
175 */
176 static char *
177 concatenate_and_mkdir(void *ctx, const char *path, const char *name)
178 {
179 char *new_path;
180 struct stat sb;
181
182 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
183 return NULL;
184
185 new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
186
187 if (mkdir_if_needed(new_path) == 0)
188 return new_path;
189 else
190 return NULL;
191 }
192
193 #define DRV_KEY_CPY(_dst, _src, _src_size) \
194 do { \
195 memcpy(_dst, _src, _src_size); \
196 _dst += _src_size; \
197 } while (0);
198
199 struct disk_cache *
200 disk_cache_create(const char *gpu_name, const char *driver_id,
201 uint64_t driver_flags)
202 {
203 void *local;
204 struct disk_cache *cache = NULL;
205 char *path, *max_size_str;
206 uint64_t max_size;
207 int fd = -1;
208 struct stat sb;
209 size_t size;
210
211 uint8_t cache_version = CACHE_VERSION;
212 size_t cv_size = sizeof(cache_version);
213
214 /* If running as a users other than the real user disable cache */
215 if (geteuid() != getuid())
216 return NULL;
217
218 /* A ralloc context for transient data during this invocation. */
219 local = ralloc_context(NULL);
220 if (local == NULL)
221 goto fail;
222
223 /* At user request, disable shader cache entirely. */
224 if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
225 goto fail;
226
227 cache = rzalloc(NULL, struct disk_cache);
228 if (cache == NULL)
229 goto fail;
230
231 /* Assume failure. */
232 cache->path_init_failed = true;
233
234 /* Determine path for cache based on the first defined name as follows:
235 *
236 * $MESA_GLSL_CACHE_DIR
237 * $XDG_CACHE_HOME/mesa_shader_cache
238 * <pwd.pw_dir>/.cache/mesa_shader_cache
239 */
240 path = getenv("MESA_GLSL_CACHE_DIR");
241 if (path) {
242 if (mkdir_if_needed(path) == -1)
243 goto path_fail;
244
245 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
246 if (path == NULL)
247 goto path_fail;
248 }
249
250 if (path == NULL) {
251 char *xdg_cache_home = getenv("XDG_CACHE_HOME");
252
253 if (xdg_cache_home) {
254 if (mkdir_if_needed(xdg_cache_home) == -1)
255 goto path_fail;
256
257 path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME);
258 if (path == NULL)
259 goto path_fail;
260 }
261 }
262
263 if (path == NULL) {
264 char *buf;
265 size_t buf_size;
266 struct passwd pwd, *result;
267
268 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
269 if (buf_size == -1)
270 buf_size = 512;
271
272 /* Loop until buf_size is large enough to query the directory */
273 while (1) {
274 buf = ralloc_size(local, buf_size);
275
276 getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
277 if (result)
278 break;
279
280 if (errno == ERANGE) {
281 ralloc_free(buf);
282 buf = NULL;
283 buf_size *= 2;
284 } else {
285 goto path_fail;
286 }
287 }
288
289 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
290 if (path == NULL)
291 goto path_fail;
292
293 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
294 if (path == NULL)
295 goto path_fail;
296 }
297
298 cache->path = ralloc_strdup(cache, path);
299 if (cache->path == NULL)
300 goto path_fail;
301
302 path = ralloc_asprintf(local, "%s/index", cache->path);
303 if (path == NULL)
304 goto path_fail;
305
306 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
307 if (fd == -1)
308 goto path_fail;
309
310 if (fstat(fd, &sb) == -1)
311 goto path_fail;
312
313 /* Force the index file to be the expected size. */
314 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
315 if (sb.st_size != size) {
316 if (ftruncate(fd, size) == -1)
317 goto path_fail;
318 }
319
320 /* We map this shared so that other processes see updates that we
321 * make.
322 *
323 * Note: We do use atomic addition to ensure that multiple
324 * processes don't scramble the cache size recorded in the
325 * index. But we don't use any locking to prevent multiple
326 * processes from updating the same entry simultaneously. The idea
327 * is that if either result lands entirely in the index, then
328 * that's equivalent to a well-ordered write followed by an
329 * eviction and a write. On the other hand, if the simultaneous
330 * writes result in a corrupt entry, that's not really any
331 * different than both entries being evicted, (since within the
332 * guarantees of the cryptographic hash, a corrupt entry is
333 * unlikely to ever match a real cache key).
334 */
335 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
336 MAP_SHARED, fd, 0);
337 if (cache->index_mmap == MAP_FAILED)
338 goto path_fail;
339 cache->index_mmap_size = size;
340
341 cache->size = (uint64_t *) cache->index_mmap;
342 cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
343
344 max_size = 0;
345
346 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
347 if (max_size_str) {
348 char *end;
349 max_size = strtoul(max_size_str, &end, 10);
350 if (end == max_size_str) {
351 max_size = 0;
352 } else {
353 switch (*end) {
354 case 'K':
355 case 'k':
356 max_size *= 1024;
357 break;
358 case 'M':
359 case 'm':
360 max_size *= 1024*1024;
361 break;
362 case '\0':
363 case 'G':
364 case 'g':
365 default:
366 max_size *= 1024*1024*1024;
367 break;
368 }
369 }
370 }
371
372 /* Default to 1GB for maximum cache size. */
373 if (max_size == 0) {
374 max_size = 1024*1024*1024;
375 }
376
377 cache->max_size = max_size;
378
379 /* 4 threads were chosen below because just about all modern CPUs currently
380 * available that run Mesa have *at least* 4 cores. For these CPUs allowing
381 * more threads can result in the queue being processed faster, thus
382 * avoiding excessive memory use due to a backlog of cache entrys building
383 * up in the queue. Since we set the UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY
384 * flag this should have little negative impact on low core systems.
385 *
386 * The queue will resize automatically when it's full, so adding new jobs
387 * doesn't stall.
388 */
389 util_queue_init(&cache->cache_queue, "disk$", 32, 4,
390 UTIL_QUEUE_INIT_RESIZE_IF_FULL |
391 UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
392 UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY);
393
394 cache->path_init_failed = false;
395
396 path_fail:
397
398 if (fd != -1)
399 close(fd);
400
401 cache->driver_keys_blob_size = cv_size;
402
403 /* Create driver id keys */
404 size_t id_size = strlen(driver_id) + 1;
405 size_t gpu_name_size = strlen(gpu_name) + 1;
406 cache->driver_keys_blob_size += id_size;
407 cache->driver_keys_blob_size += gpu_name_size;
408
409 /* We sometimes store entire structs that contains a pointers in the cache,
410 * use pointer size as a key to avoid hard to debug issues.
411 */
412 uint8_t ptr_size = sizeof(void *);
413 size_t ptr_size_size = sizeof(ptr_size);
414 cache->driver_keys_blob_size += ptr_size_size;
415
416 size_t driver_flags_size = sizeof(driver_flags);
417 cache->driver_keys_blob_size += driver_flags_size;
418
419 cache->driver_keys_blob =
420 ralloc_size(cache, cache->driver_keys_blob_size);
421 if (!cache->driver_keys_blob)
422 goto fail;
423
424 uint8_t *drv_key_blob = cache->driver_keys_blob;
425 DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
426 DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
427 DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
428 DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
429 DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
430
431 /* Seed our rand function */
432 s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
433
434 ralloc_free(local);
435
436 return cache;
437
438 fail:
439 if (cache)
440 ralloc_free(cache);
441 ralloc_free(local);
442
443 return NULL;
444 }
445
446 void
447 disk_cache_destroy(struct disk_cache *cache)
448 {
449 if (cache && !cache->path_init_failed) {
450 util_queue_finish(&cache->cache_queue);
451 util_queue_destroy(&cache->cache_queue);
452 munmap(cache->index_mmap, cache->index_mmap_size);
453 }
454
455 ralloc_free(cache);
456 }
457
458 /* Return a filename within the cache's directory corresponding to 'key'. The
459 * returned filename is ralloced with 'cache' as the parent context.
460 *
461 * Returns NULL if out of memory.
462 */
463 static char *
464 get_cache_file(struct disk_cache *cache, const cache_key key)
465 {
466 char buf[41];
467 char *filename;
468
469 if (cache->path_init_failed)
470 return NULL;
471
472 _mesa_sha1_format(buf, key);
473 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
474 buf[1], buf + 2) == -1)
475 return NULL;
476
477 return filename;
478 }
479
480 /* Create the directory that will be needed for the cache file for \key.
481 *
482 * Obviously, the implementation here must closely match
483 * _get_cache_file above.
484 */
485 static void
486 make_cache_file_directory(struct disk_cache *cache, const cache_key key)
487 {
488 char *dir;
489 char buf[41];
490
491 _mesa_sha1_format(buf, key);
492 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
493 return;
494
495 mkdir_if_needed(dir);
496 free(dir);
497 }
498
499 /* Given a directory path and predicate function, find the entry with
500 * the oldest access time in that directory for which the predicate
501 * returns true.
502 *
503 * Returns: A malloc'ed string for the path to the chosen file, (or
504 * NULL on any error). The caller should free the string when
505 * finished.
506 */
507 static char *
508 choose_lru_file_matching(const char *dir_path,
509 bool (*predicate)(const char *dir_path,
510 const struct stat *,
511 const char *, const size_t))
512 {
513 DIR *dir;
514 struct dirent *entry;
515 char *filename;
516 char *lru_name = NULL;
517 time_t lru_atime = 0;
518
519 dir = opendir(dir_path);
520 if (dir == NULL)
521 return NULL;
522
523 while (1) {
524 entry = readdir(dir);
525 if (entry == NULL)
526 break;
527
528 struct stat sb;
529 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
530 if (!lru_atime || (sb.st_atime < lru_atime)) {
531 size_t len = strlen(entry->d_name);
532
533 if (!predicate(dir_path, &sb, entry->d_name, len))
534 continue;
535
536 char *tmp = realloc(lru_name, len + 1);
537 if (tmp) {
538 lru_name = tmp;
539 memcpy(lru_name, entry->d_name, len + 1);
540 lru_atime = sb.st_atime;
541 }
542 }
543 }
544 }
545
546 if (lru_name == NULL) {
547 closedir(dir);
548 return NULL;
549 }
550
551 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
552 filename = NULL;
553
554 free(lru_name);
555 closedir(dir);
556
557 return filename;
558 }
559
560 /* Is entry a regular file, and not having a name with a trailing
561 * ".tmp"
562 */
563 static bool
564 is_regular_non_tmp_file(const char *path, const struct stat *sb,
565 const char *d_name, const size_t len)
566 {
567 if (!S_ISREG(sb->st_mode))
568 return false;
569
570 if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
571 return false;
572
573 return true;
574 }
575
576 /* Returns the size of the deleted file, (or 0 on any error). */
577 static size_t
578 unlink_lru_file_from_directory(const char *path)
579 {
580 struct stat sb;
581 char *filename;
582
583 filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
584 if (filename == NULL)
585 return 0;
586
587 if (stat(filename, &sb) == -1) {
588 free (filename);
589 return 0;
590 }
591
592 unlink(filename);
593 free (filename);
594
595 return sb.st_blocks * 512;
596 }
597
598 /* Is entry a directory with a two-character name, (and not the
599 * special name of ".."). We also return false if the dir is empty.
600 */
601 static bool
602 is_two_character_sub_directory(const char *path, const struct stat *sb,
603 const char *d_name, const size_t len)
604 {
605 if (!S_ISDIR(sb->st_mode))
606 return false;
607
608 if (len != 2)
609 return false;
610
611 if (strcmp(d_name, "..") == 0)
612 return false;
613
614 char *subdir;
615 if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
616 return false;
617 DIR *dir = opendir(subdir);
618 free(subdir);
619
620 if (dir == NULL)
621 return false;
622
623 unsigned subdir_entries = 0;
624 struct dirent *d;
625 while ((d = readdir(dir)) != NULL) {
626 if(++subdir_entries > 2)
627 break;
628 }
629 closedir(dir);
630
631 /* If dir only contains '.' and '..' it must be empty */
632 if (subdir_entries <= 2)
633 return false;
634
635 return true;
636 }
637
638 static void
639 evict_lru_item(struct disk_cache *cache)
640 {
641 char *dir_path;
642
643 /* With a reasonably-sized, full cache, (and with keys generated
644 * from a cryptographic hash), we can choose two random hex digits
645 * and reasonably expect the directory to exist with a file in it.
646 * Provides pseudo-LRU eviction to reduce checking all cache files.
647 */
648 uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
649 if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
650 return;
651
652 size_t size = unlink_lru_file_from_directory(dir_path);
653
654 free(dir_path);
655
656 if (size) {
657 p_atomic_add(cache->size, - (uint64_t)size);
658 return;
659 }
660
661 /* In the case where the random choice of directory didn't find
662 * something, we choose the least recently accessed from the
663 * existing directories.
664 *
665 * Really, the only reason this code exists is to allow the unit
666 * tests to work, (which use an artificially-small cache to be able
667 * to force a single cached item to be evicted).
668 */
669 dir_path = choose_lru_file_matching(cache->path,
670 is_two_character_sub_directory);
671 if (dir_path == NULL)
672 return;
673
674 size = unlink_lru_file_from_directory(dir_path);
675
676 free(dir_path);
677
678 if (size)
679 p_atomic_add(cache->size, - (uint64_t)size);
680 }
681
682 void
683 disk_cache_remove(struct disk_cache *cache, const cache_key key)
684 {
685 struct stat sb;
686
687 char *filename = get_cache_file(cache, key);
688 if (filename == NULL) {
689 return;
690 }
691
692 if (stat(filename, &sb) == -1) {
693 free(filename);
694 return;
695 }
696
697 unlink(filename);
698 free(filename);
699
700 if (sb.st_blocks)
701 p_atomic_add(cache->size, - (uint64_t)sb.st_blocks * 512);
702 }
703
704 static ssize_t
705 read_all(int fd, void *buf, size_t count)
706 {
707 char *in = buf;
708 ssize_t read_ret;
709 size_t done;
710
711 for (done = 0; done < count; done += read_ret) {
712 read_ret = read(fd, in + done, count - done);
713 if (read_ret == -1 || read_ret == 0)
714 return -1;
715 }
716 return done;
717 }
718
719 static ssize_t
720 write_all(int fd, const void *buf, size_t count)
721 {
722 const char *out = buf;
723 ssize_t written;
724 size_t done;
725
726 for (done = 0; done < count; done += written) {
727 written = write(fd, out + done, count - done);
728 if (written == -1)
729 return -1;
730 }
731 return done;
732 }
733
734 /* From the zlib docs:
735 * "If the memory is available, buffers sizes on the order of 128K or 256K
736 * bytes should be used."
737 */
738 #define BUFSIZE 256 * 1024
739
740 /**
741 * Compresses cache entry in memory and writes it to disk. Returns the size
742 * of the data written to disk.
743 */
744 static size_t
745 deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
746 const char *filename)
747 {
748 #ifdef HAVE_ZSTD
749 /* from the zstd docs (https://facebook.github.io/zstd/zstd_manual.html):
750 * compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`.
751 */
752 size_t out_size = ZSTD_compressBound(in_data_size);
753 void * out = malloc(out_size);
754
755 size_t ret = ZSTD_compress(out, out_size, in_data, in_data_size,
756 ZSTD_COMPRESSION_LEVEL);
757 if (ZSTD_isError(ret)) {
758 free(out);
759 return 0;
760 }
761 write_all(dest, out, ret);
762 free(out);
763 return ret;
764 #else
765 unsigned char *out;
766
767 /* allocate deflate state */
768 z_stream strm;
769 strm.zalloc = Z_NULL;
770 strm.zfree = Z_NULL;
771 strm.opaque = Z_NULL;
772 strm.next_in = (uint8_t *) in_data;
773 strm.avail_in = in_data_size;
774
775 int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
776 if (ret != Z_OK)
777 return 0;
778
779 /* compress until end of in_data */
780 size_t compressed_size = 0;
781 int flush;
782
783 out = malloc(BUFSIZE * sizeof(unsigned char));
784 if (out == NULL)
785 return 0;
786
787 do {
788 int remaining = in_data_size - BUFSIZE;
789 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
790 in_data_size -= BUFSIZE;
791
792 /* Run deflate() on input until the output buffer is not full (which
793 * means there is no more data to deflate).
794 */
795 do {
796 strm.avail_out = BUFSIZE;
797 strm.next_out = out;
798
799 ret = deflate(&strm, flush); /* no bad return value */
800 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
801
802 size_t have = BUFSIZE - strm.avail_out;
803 compressed_size += have;
804
805 ssize_t written = write_all(dest, out, have);
806 if (written == -1) {
807 (void)deflateEnd(&strm);
808 free(out);
809 return 0;
810 }
811 } while (strm.avail_out == 0);
812
813 /* all input should be used */
814 assert(strm.avail_in == 0);
815
816 } while (flush != Z_FINISH);
817
818 /* stream should be complete */
819 assert(ret == Z_STREAM_END);
820
821 /* clean up and return */
822 (void)deflateEnd(&strm);
823 free(out);
824 return compressed_size;
825 # endif
826 }
827
828 static struct disk_cache_put_job *
829 create_put_job(struct disk_cache *cache, const cache_key key,
830 const void *data, size_t size,
831 struct cache_item_metadata *cache_item_metadata)
832 {
833 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
834 malloc(sizeof(struct disk_cache_put_job) + size);
835
836 if (dc_job) {
837 dc_job->cache = cache;
838 memcpy(dc_job->key, key, sizeof(cache_key));
839 dc_job->data = dc_job + 1;
840 memcpy(dc_job->data, data, size);
841 dc_job->size = size;
842
843 /* Copy the cache item metadata */
844 if (cache_item_metadata) {
845 dc_job->cache_item_metadata.type = cache_item_metadata->type;
846 if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
847 dc_job->cache_item_metadata.num_keys =
848 cache_item_metadata->num_keys;
849 dc_job->cache_item_metadata.keys = (cache_key *)
850 malloc(cache_item_metadata->num_keys * sizeof(cache_key));
851
852 if (!dc_job->cache_item_metadata.keys)
853 goto fail;
854
855 memcpy(dc_job->cache_item_metadata.keys,
856 cache_item_metadata->keys,
857 sizeof(cache_key) * cache_item_metadata->num_keys);
858 }
859 } else {
860 dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
861 dc_job->cache_item_metadata.keys = NULL;
862 }
863 }
864
865 return dc_job;
866
867 fail:
868 free(dc_job);
869
870 return NULL;
871 }
872
873 static void
874 destroy_put_job(void *job, int thread_index)
875 {
876 if (job) {
877 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
878 free(dc_job->cache_item_metadata.keys);
879
880 free(job);
881 }
882 }
883
884 struct cache_entry_file_data {
885 uint32_t crc32;
886 uint32_t uncompressed_size;
887 };
888
889 static void
890 cache_put(void *job, int thread_index)
891 {
892 assert(job);
893
894 int fd = -1, fd_final = -1, err, ret;
895 unsigned i = 0;
896 char *filename = NULL, *filename_tmp = NULL;
897 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
898
899 filename = get_cache_file(dc_job->cache, dc_job->key);
900 if (filename == NULL)
901 goto done;
902
903 /* If the cache is too large, evict something else first. */
904 while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
905 i < 8) {
906 evict_lru_item(dc_job->cache);
907 i++;
908 }
909
910 /* Write to a temporary file to allow for an atomic rename to the
911 * final destination filename, (to prevent any readers from seeing
912 * a partially written file).
913 */
914 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
915 goto done;
916
917 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
918
919 /* Make the two-character subdirectory within the cache as needed. */
920 if (fd == -1) {
921 if (errno != ENOENT)
922 goto done;
923
924 make_cache_file_directory(dc_job->cache, dc_job->key);
925
926 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
927 if (fd == -1)
928 goto done;
929 }
930
931 /* With the temporary file open, we take an exclusive flock on
932 * it. If the flock fails, then another process still has the file
933 * open with the flock held. So just let that file be responsible
934 * for writing the file.
935 */
936 #ifdef HAVE_FLOCK
937 err = flock(fd, LOCK_EX | LOCK_NB);
938 #else
939 struct flock lock = {
940 .l_start = 0,
941 .l_len = 0, /* entire file */
942 .l_type = F_WRLCK,
943 .l_whence = SEEK_SET
944 };
945 err = fcntl(fd, F_SETLK, &lock);
946 #endif
947 if (err == -1)
948 goto done;
949
950 /* Now that we have the lock on the open temporary file, we can
951 * check to see if the destination file already exists. If so,
952 * another process won the race between when we saw that the file
953 * didn't exist and now. In this case, we don't do anything more,
954 * (to ensure the size accounting of the cache doesn't get off).
955 */
956 fd_final = open(filename, O_RDONLY | O_CLOEXEC);
957 if (fd_final != -1) {
958 unlink(filename_tmp);
959 goto done;
960 }
961
962 /* OK, we're now on the hook to write out a file that we know is
963 * not in the cache, and is also not being written out to the cache
964 * by some other process.
965 */
966
967 /* Write the driver_keys_blob, this can be used find information about the
968 * mesa version that produced the entry or deal with hash collisions,
969 * should that ever become a real problem.
970 */
971 ret = write_all(fd, dc_job->cache->driver_keys_blob,
972 dc_job->cache->driver_keys_blob_size);
973 if (ret == -1) {
974 unlink(filename_tmp);
975 goto done;
976 }
977
978 /* Write the cache item metadata. This data can be used to deal with
979 * hash collisions, as well as providing useful information to 3rd party
980 * tools reading the cache files.
981 */
982 ret = write_all(fd, &dc_job->cache_item_metadata.type,
983 sizeof(uint32_t));
984 if (ret == -1) {
985 unlink(filename_tmp);
986 goto done;
987 }
988
989 if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
990 ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
991 sizeof(uint32_t));
992 if (ret == -1) {
993 unlink(filename_tmp);
994 goto done;
995 }
996
997 ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
998 dc_job->cache_item_metadata.num_keys *
999 sizeof(cache_key));
1000 if (ret == -1) {
1001 unlink(filename_tmp);
1002 goto done;
1003 }
1004 }
1005
1006 /* Create CRC of the data. We will read this when restoring the cache and
1007 * use it to check for corruption.
1008 */
1009 struct cache_entry_file_data cf_data;
1010 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
1011 cf_data.uncompressed_size = dc_job->size;
1012
1013 size_t cf_data_size = sizeof(cf_data);
1014 ret = write_all(fd, &cf_data, cf_data_size);
1015 if (ret == -1) {
1016 unlink(filename_tmp);
1017 goto done;
1018 }
1019
1020 /* Now, finally, write out the contents to the temporary file, then
1021 * rename them atomically to the destination filename, and also
1022 * perform an atomic increment of the total cache size.
1023 */
1024 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
1025 fd, filename_tmp);
1026 if (file_size == 0) {
1027 unlink(filename_tmp);
1028 goto done;
1029 }
1030 ret = rename(filename_tmp, filename);
1031 if (ret == -1) {
1032 unlink(filename_tmp);
1033 goto done;
1034 }
1035
1036 struct stat sb;
1037 if (stat(filename, &sb) == -1) {
1038 /* Something went wrong remove the file */
1039 unlink(filename);
1040 goto done;
1041 }
1042
1043 p_atomic_add(dc_job->cache->size, sb.st_blocks * 512);
1044
1045 done:
1046 if (fd_final != -1)
1047 close(fd_final);
1048 /* This close finally releases the flock, (now that the final file
1049 * has been renamed into place and the size has been added).
1050 */
1051 if (fd != -1)
1052 close(fd);
1053 free(filename_tmp);
1054 free(filename);
1055 }
1056
1057 void
1058 disk_cache_put(struct disk_cache *cache, const cache_key key,
1059 const void *data, size_t size,
1060 struct cache_item_metadata *cache_item_metadata)
1061 {
1062 if (cache->blob_put_cb) {
1063 cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size);
1064 return;
1065 }
1066
1067 if (cache->path_init_failed)
1068 return;
1069
1070 struct disk_cache_put_job *dc_job =
1071 create_put_job(cache, key, data, size, cache_item_metadata);
1072
1073 if (dc_job) {
1074 util_queue_fence_init(&dc_job->fence);
1075 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
1076 cache_put, destroy_put_job, dc_job->size);
1077 }
1078 }
1079
1080 /**
1081 * Decompresses cache entry, returns true if successful.
1082 */
1083 static bool
1084 inflate_cache_data(uint8_t *in_data, size_t in_data_size,
1085 uint8_t *out_data, size_t out_data_size)
1086 {
1087 #ifdef HAVE_ZSTD
1088 size_t ret = ZSTD_decompress(out_data, out_data_size, in_data, in_data_size);
1089 return !ZSTD_isError(ret);
1090 #else
1091 z_stream strm;
1092
1093 /* allocate inflate state */
1094 strm.zalloc = Z_NULL;
1095 strm.zfree = Z_NULL;
1096 strm.opaque = Z_NULL;
1097 strm.next_in = in_data;
1098 strm.avail_in = in_data_size;
1099 strm.next_out = out_data;
1100 strm.avail_out = out_data_size;
1101
1102 int ret = inflateInit(&strm);
1103 if (ret != Z_OK)
1104 return false;
1105
1106 ret = inflate(&strm, Z_NO_FLUSH);
1107 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
1108
1109 /* Unless there was an error we should have decompressed everything in one
1110 * go as we know the uncompressed file size.
1111 */
1112 if (ret != Z_STREAM_END) {
1113 (void)inflateEnd(&strm);
1114 return false;
1115 }
1116 assert(strm.avail_out == 0);
1117
1118 /* clean up and return */
1119 (void)inflateEnd(&strm);
1120 return true;
1121 #endif
1122 }
1123
1124 void *
1125 disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
1126 {
1127 int fd = -1, ret;
1128 struct stat sb;
1129 char *filename = NULL;
1130 uint8_t *data = NULL;
1131 uint8_t *uncompressed_data = NULL;
1132 uint8_t *file_header = NULL;
1133
1134 if (size)
1135 *size = 0;
1136
1137 if (cache->blob_get_cb) {
1138 /* This is what Android EGL defines as the maxValueSize in egl_cache_t
1139 * class implementation.
1140 */
1141 const signed long max_blob_size = 64 * 1024;
1142 void *blob = malloc(max_blob_size);
1143 if (!blob)
1144 return NULL;
1145
1146 signed long bytes =
1147 cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size);
1148
1149 if (!bytes) {
1150 free(blob);
1151 return NULL;
1152 }
1153
1154 if (size)
1155 *size = bytes;
1156 return blob;
1157 }
1158
1159 filename = get_cache_file(cache, key);
1160 if (filename == NULL)
1161 goto fail;
1162
1163 fd = open(filename, O_RDONLY | O_CLOEXEC);
1164 if (fd == -1)
1165 goto fail;
1166
1167 if (fstat(fd, &sb) == -1)
1168 goto fail;
1169
1170 data = malloc(sb.st_size);
1171 if (data == NULL)
1172 goto fail;
1173
1174 size_t ck_size = cache->driver_keys_blob_size;
1175 file_header = malloc(ck_size);
1176 if (!file_header)
1177 goto fail;
1178
1179 if (sb.st_size < ck_size)
1180 goto fail;
1181
1182 ret = read_all(fd, file_header, ck_size);
1183 if (ret == -1)
1184 goto fail;
1185
1186 /* Check for extremely unlikely hash collisions */
1187 if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) {
1188 assert(!"Mesa cache keys mismatch!");
1189 goto fail;
1190 }
1191
1192 size_t cache_item_md_size = sizeof(uint32_t);
1193 uint32_t md_type;
1194 ret = read_all(fd, &md_type, cache_item_md_size);
1195 if (ret == -1)
1196 goto fail;
1197
1198 if (md_type == CACHE_ITEM_TYPE_GLSL) {
1199 uint32_t num_keys;
1200 cache_item_md_size += sizeof(uint32_t);
1201 ret = read_all(fd, &num_keys, sizeof(uint32_t));
1202 if (ret == -1)
1203 goto fail;
1204
1205 /* The cache item metadata is currently just used for distributing
1206 * precompiled shaders, they are not used by Mesa so just skip them for
1207 * now.
1208 * TODO: pass the metadata back to the caller and do some basic
1209 * validation.
1210 */
1211 cache_item_md_size += num_keys * sizeof(cache_key);
1212 ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR);
1213 if (ret == -1)
1214 goto fail;
1215 }
1216
1217 /* Load the CRC that was created when the file was written. */
1218 struct cache_entry_file_data cf_data;
1219 size_t cf_data_size = sizeof(cf_data);
1220 ret = read_all(fd, &cf_data, cf_data_size);
1221 if (ret == -1)
1222 goto fail;
1223
1224 /* Load the actual cache data. */
1225 size_t cache_data_size =
1226 sb.st_size - cf_data_size - ck_size - cache_item_md_size;
1227 ret = read_all(fd, data, cache_data_size);
1228 if (ret == -1)
1229 goto fail;
1230
1231 /* Uncompress the cache data */
1232 uncompressed_data = malloc(cf_data.uncompressed_size);
1233 if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1234 cf_data.uncompressed_size))
1235 goto fail;
1236
1237 /* Check the data for corruption */
1238 if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1239 cf_data.uncompressed_size))
1240 goto fail;
1241
1242 free(data);
1243 free(filename);
1244 free(file_header);
1245 close(fd);
1246
1247 if (size)
1248 *size = cf_data.uncompressed_size;
1249
1250 return uncompressed_data;
1251
1252 fail:
1253 if (data)
1254 free(data);
1255 if (uncompressed_data)
1256 free(uncompressed_data);
1257 if (filename)
1258 free(filename);
1259 if (file_header)
1260 free(file_header);
1261 if (fd != -1)
1262 close(fd);
1263
1264 return NULL;
1265 }
1266
1267 void
1268 disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1269 {
1270 const uint32_t *key_chunk = (const uint32_t *) key;
1271 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1272 unsigned char *entry;
1273
1274 if (cache->blob_put_cb) {
1275 cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
1276 return;
1277 }
1278
1279 if (cache->path_init_failed)
1280 return;
1281
1282 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1283
1284 memcpy(entry, key, CACHE_KEY_SIZE);
1285 }
1286
1287 /* This function lets us test whether a given key was previously
1288 * stored in the cache with disk_cache_put_key(). The implement is
1289 * efficient by not using syscalls or hitting the disk. It's not
1290 * race-free, but the races are benign. If we race with someone else
1291 * calling disk_cache_put_key, then that's just an extra cache miss and an
1292 * extra recompile.
1293 */
1294 bool
1295 disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1296 {
1297 const uint32_t *key_chunk = (const uint32_t *) key;
1298 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1299 unsigned char *entry;
1300
1301 if (cache->blob_get_cb) {
1302 uint32_t blob;
1303 return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
1304 }
1305
1306 if (cache->path_init_failed)
1307 return false;
1308
1309 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1310
1311 return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1312 }
1313
1314 void
1315 disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
1316 cache_key key)
1317 {
1318 struct mesa_sha1 ctx;
1319
1320 _mesa_sha1_init(&ctx);
1321 _mesa_sha1_update(&ctx, cache->driver_keys_blob,
1322 cache->driver_keys_blob_size);
1323 _mesa_sha1_update(&ctx, data, size);
1324 _mesa_sha1_final(&ctx, key);
1325 }
1326
1327 void
1328 disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
1329 disk_cache_get_cb get)
1330 {
1331 cache->blob_put_cb = put;
1332 cache->blob_get_cb = get;
1333 }
1334
1335 #endif /* ENABLE_SHADER_CACHE */