util/disk_cache: fix stored_keys index
[mesa.git] / src / util / disk_cache.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifdef ENABLE_SHADER_CACHE
25
26 #include <ctype.h>
27 #include <ftw.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <sys/file.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/statvfs.h>
35 #include <sys/mman.h>
36 #include <unistd.h>
37 #include <fcntl.h>
38 #include <pwd.h>
39 #include <errno.h>
40 #include <dirent.h>
41 #include "zlib.h"
42
43 #include "util/crc32.h"
44 #include "util/u_atomic.h"
45 #include "util/u_queue.h"
46 #include "util/mesa-sha1.h"
47 #include "util/ralloc.h"
48 #include "main/errors.h"
49 #include "util/macros.h"
50
51 #include "disk_cache.h"
52
53 /* Number of bits to mask off from a cache key to get an index. */
54 #define CACHE_INDEX_KEY_BITS 16
55
56 /* Mask for computing an index from a key. */
57 #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
58
59 /* The number of keys that can be stored in the index. */
60 #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
61
62 struct disk_cache {
63 /* The path to the cache directory. */
64 char *path;
65
66 /* Thread queue for compressing and writing cache entries to disk */
67 struct util_queue cache_queue;
68
69 /* A pointer to the mmapped index file within the cache directory. */
70 uint8_t *index_mmap;
71 size_t index_mmap_size;
72
73 /* Pointer to total size of all objects in cache (within index_mmap) */
74 uint64_t *size;
75
76 /* Pointer to stored keys, (within index_mmap). */
77 uint8_t *stored_keys;
78
79 /* Maximum size of all cached objects (in bytes). */
80 uint64_t max_size;
81 };
82
83 struct disk_cache_put_job {
84 struct util_queue_fence fence;
85
86 struct disk_cache *cache;
87
88 cache_key key;
89
90 /* Copy of cache data to be compressed and written. */
91 void *data;
92
93 /* Size of data to be compressed and written. */
94 size_t size;
95 };
96
97 /* Create a directory named 'path' if it does not already exist.
98 *
99 * Returns: 0 if path already exists as a directory or if created.
100 * -1 in all other cases.
101 */
102 static int
103 mkdir_if_needed(const char *path)
104 {
105 struct stat sb;
106
107 /* If the path exists already, then our work is done if it's a
108 * directory, but it's an error if it is not.
109 */
110 if (stat(path, &sb) == 0) {
111 if (S_ISDIR(sb.st_mode)) {
112 return 0;
113 } else {
114 fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
115 "---disabling.\n", path);
116 return -1;
117 }
118 }
119
120 int ret = mkdir(path, 0755);
121 if (ret == 0 || (ret == -1 && errno == EEXIST))
122 return 0;
123
124 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
125 path, strerror(errno));
126
127 return -1;
128 }
129
130 /* Concatenate an existing path and a new name to form a new path. If the new
131 * path does not exist as a directory, create it then return the resulting
132 * name of the new path (ralloc'ed off of 'ctx').
133 *
134 * Returns NULL on any error, such as:
135 *
136 * <path> does not exist or is not a directory
137 * <path>/<name> exists but is not a directory
138 * <path>/<name> cannot be created as a directory
139 */
140 static char *
141 concatenate_and_mkdir(void *ctx, const char *path, const char *name)
142 {
143 char *new_path;
144 struct stat sb;
145
146 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
147 return NULL;
148
149 new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
150
151 if (mkdir_if_needed(new_path) == 0)
152 return new_path;
153 else
154 return NULL;
155 }
156
157 static int
158 remove_dir(const char *fpath, const struct stat *sb,
159 int typeflag, struct FTW *ftwbuf)
160 {
161 if (S_ISREG(sb->st_mode))
162 unlink(fpath);
163 else if (S_ISDIR(sb->st_mode))
164 rmdir(fpath);
165
166 return 0;
167 }
168
169 static void
170 remove_old_cache_directories(void *mem_ctx, const char *path,
171 const char *timestamp)
172 {
173 DIR *dir = opendir(path);
174
175 struct dirent* d_entry;
176 while((d_entry = readdir(dir)) != NULL)
177 {
178 char *full_path =
179 ralloc_asprintf(mem_ctx, "%s/%s", path, d_entry->d_name);
180
181 struct stat sb;
182 if (stat(full_path, &sb) == 0 && S_ISDIR(sb.st_mode) &&
183 strcmp(d_entry->d_name, timestamp) != 0 &&
184 strcmp(d_entry->d_name, "..") != 0 &&
185 strcmp(d_entry->d_name, ".") != 0) {
186 nftw(full_path, remove_dir, 20, FTW_DEPTH);
187 }
188 }
189
190 closedir(dir);
191 }
192
193 static char *
194 create_mesa_cache_dir(void *mem_ctx, const char *path, const char *timestamp,
195 const char *gpu_name)
196 {
197 char *new_path = concatenate_and_mkdir(mem_ctx, path, "mesa");
198 if (new_path == NULL)
199 return NULL;
200
201 /* Create a parent architecture directory so that we don't remove cache
202 * files for other architectures. In theory we could share the cache
203 * between architectures but we have no way of knowing if they were created
204 * by a compatible Mesa version.
205 */
206 new_path = concatenate_and_mkdir(mem_ctx, new_path, get_arch_bitness_str());
207 if (new_path == NULL)
208 return NULL;
209
210 /* Remove cache directories for old Mesa versions */
211 remove_old_cache_directories(mem_ctx, new_path, timestamp);
212
213 new_path = concatenate_and_mkdir(mem_ctx, new_path, timestamp);
214 if (new_path == NULL)
215 return NULL;
216
217 new_path = concatenate_and_mkdir(mem_ctx, new_path, gpu_name);
218 if (new_path == NULL)
219 return NULL;
220
221 return new_path;
222 }
223
224 struct disk_cache *
225 disk_cache_create(const char *gpu_name, const char *timestamp)
226 {
227 void *local;
228 struct disk_cache *cache = NULL;
229 char *path, *max_size_str;
230 uint64_t max_size;
231 int fd = -1;
232 struct stat sb;
233 struct statvfs vfs = { 0 };
234 size_t size;
235
236 /* If running as a users other than the real user disable cache */
237 if (geteuid() != getuid())
238 return NULL;
239
240 /* A ralloc context for transient data during this invocation. */
241 local = ralloc_context(NULL);
242 if (local == NULL)
243 goto fail;
244
245 /* At user request, disable shader cache entirely. */
246 if (getenv("MESA_GLSL_CACHE_DISABLE"))
247 goto fail;
248
249 /* Determine path for cache based on the first defined name as follows:
250 *
251 * $MESA_GLSL_CACHE_DIR
252 * $XDG_CACHE_HOME/mesa
253 * <pwd.pw_dir>/.cache/mesa
254 */
255 path = getenv("MESA_GLSL_CACHE_DIR");
256 if (path) {
257 if (mkdir_if_needed(path) == -1)
258 goto fail;
259
260 path = create_mesa_cache_dir(local, path, timestamp,
261 gpu_name);
262 if (path == NULL)
263 goto fail;
264 }
265
266 if (path == NULL) {
267 char *xdg_cache_home = getenv("XDG_CACHE_HOME");
268
269 if (xdg_cache_home) {
270 if (mkdir_if_needed(xdg_cache_home) == -1)
271 goto fail;
272
273 path = create_mesa_cache_dir(local, xdg_cache_home, timestamp,
274 gpu_name);
275 if (path == NULL)
276 goto fail;
277 }
278 }
279
280 if (path == NULL) {
281 char *buf;
282 size_t buf_size;
283 struct passwd pwd, *result;
284
285 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
286 if (buf_size == -1)
287 buf_size = 512;
288
289 /* Loop until buf_size is large enough to query the directory */
290 while (1) {
291 buf = ralloc_size(local, buf_size);
292
293 getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
294 if (result)
295 break;
296
297 if (errno == ERANGE) {
298 ralloc_free(buf);
299 buf = NULL;
300 buf_size *= 2;
301 } else {
302 goto fail;
303 }
304 }
305
306 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
307 if (path == NULL)
308 goto fail;
309
310 path = create_mesa_cache_dir(local, path, timestamp, gpu_name);
311 if (path == NULL)
312 goto fail;
313 }
314
315 cache = ralloc(NULL, struct disk_cache);
316 if (cache == NULL)
317 goto fail;
318
319 cache->path = ralloc_strdup(cache, path);
320 if (cache->path == NULL)
321 goto fail;
322
323 path = ralloc_asprintf(local, "%s/index", cache->path);
324 if (path == NULL)
325 goto fail;
326
327 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
328 if (fd == -1)
329 goto fail;
330
331 if (fstat(fd, &sb) == -1)
332 goto fail;
333
334 /* Force the index file to be the expected size. */
335 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
336 if (sb.st_size != size) {
337 if (ftruncate(fd, size) == -1)
338 goto fail;
339 }
340
341 /* We map this shared so that other processes see updates that we
342 * make.
343 *
344 * Note: We do use atomic addition to ensure that multiple
345 * processes don't scramble the cache size recorded in the
346 * index. But we don't use any locking to prevent multiple
347 * processes from updating the same entry simultaneously. The idea
348 * is that if either result lands entirely in the index, then
349 * that's equivalent to a well-ordered write followed by an
350 * eviction and a write. On the other hand, if the simultaneous
351 * writes result in a corrupt entry, that's not really any
352 * different than both entries being evicted, (since within the
353 * guarantees of the cryptographic hash, a corrupt entry is
354 * unlikely to ever match a real cache key).
355 */
356 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
357 MAP_SHARED, fd, 0);
358 if (cache->index_mmap == MAP_FAILED)
359 goto fail;
360 cache->index_mmap_size = size;
361
362 close(fd);
363
364 cache->size = (uint64_t *) cache->index_mmap;
365 cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
366
367 max_size = 0;
368
369 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
370 if (max_size_str) {
371 char *end;
372 max_size = strtoul(max_size_str, &end, 10);
373 if (end == max_size_str) {
374 max_size = 0;
375 } else {
376 switch (*end) {
377 case 'K':
378 case 'k':
379 max_size *= 1024;
380 break;
381 case 'M':
382 case 'm':
383 max_size *= 1024*1024;
384 break;
385 case '\0':
386 case 'G':
387 case 'g':
388 default:
389 max_size *= 1024*1024*1024;
390 break;
391 }
392 }
393 }
394
395 /* Default to 1GB or 10% of filesystem for maximum cache size. */
396 if (max_size == 0) {
397 statvfs(path, &vfs);
398 max_size = MAX2(1024*1024*1024, vfs.f_blocks * vfs.f_bsize / 10);
399 }
400
401 cache->max_size = max_size;
402
403 /* A limit of 32 jobs was choosen as observations of Deus Ex start-up times
404 * showed that we reached at most 11 jobs on an Intel i5-6400 CPU@2.70GHz
405 * (a fairly modest desktop CPU). 1 thread was chosen because we don't
406 * really care about getting things to disk quickly just that it's not
407 * blocking other tasks.
408 */
409 util_queue_init(&cache->cache_queue, "disk_cache", 32, 1);
410
411 ralloc_free(local);
412
413 return cache;
414
415 fail:
416 if (fd != -1)
417 close(fd);
418 if (cache)
419 ralloc_free(cache);
420 ralloc_free(local);
421
422 return NULL;
423 }
424
425 void
426 disk_cache_destroy(struct disk_cache *cache)
427 {
428 if (cache) {
429 util_queue_destroy(&cache->cache_queue);
430 munmap(cache->index_mmap, cache->index_mmap_size);
431 }
432
433 ralloc_free(cache);
434 }
435
436 /* Return a filename within the cache's directory corresponding to 'key'. The
437 * returned filename is ralloced with 'cache' as the parent context.
438 *
439 * Returns NULL if out of memory.
440 */
441 static char *
442 get_cache_file(struct disk_cache *cache, const cache_key key)
443 {
444 char buf[41];
445 char *filename;
446
447 _mesa_sha1_format(buf, key);
448 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
449 buf[1], buf + 2) == -1)
450 return NULL;
451
452 return filename;
453 }
454
455 /* Create the directory that will be needed for the cache file for \key.
456 *
457 * Obviously, the implementation here must closely match
458 * _get_cache_file above.
459 */
460 static void
461 make_cache_file_directory(struct disk_cache *cache, const cache_key key)
462 {
463 char *dir;
464 char buf[41];
465
466 _mesa_sha1_format(buf, key);
467 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
468 return;
469
470 mkdir_if_needed(dir);
471 free(dir);
472 }
473
474 /* Given a directory path and predicate function, find the entry with
475 * the oldest access time in that directory for which the predicate
476 * returns true.
477 *
478 * Returns: A malloc'ed string for the path to the chosen file, (or
479 * NULL on any error). The caller should free the string when
480 * finished.
481 */
482 static char *
483 choose_lru_file_matching(const char *dir_path,
484 bool (*predicate)(const char *dir_path,
485 const struct stat *,
486 const char *, const size_t))
487 {
488 DIR *dir;
489 struct dirent *entry;
490 char *filename;
491 char *lru_name = NULL;
492 time_t lru_atime = 0;
493
494 dir = opendir(dir_path);
495 if (dir == NULL)
496 return NULL;
497
498 while (1) {
499 entry = readdir(dir);
500 if (entry == NULL)
501 break;
502
503 struct stat sb;
504 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
505 if (!lru_atime || (sb.st_atime < lru_atime)) {
506 size_t len = strlen(entry->d_name);
507
508 if (!predicate(dir_path, &sb, entry->d_name, len))
509 continue;
510
511 char *tmp = realloc(lru_name, len + 1);
512 if (tmp) {
513 lru_name = tmp;
514 memcpy(lru_name, entry->d_name, len + 1);
515 lru_atime = sb.st_atime;
516 }
517 }
518 }
519 }
520
521 if (lru_name == NULL) {
522 closedir(dir);
523 return NULL;
524 }
525
526 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
527 filename = NULL;
528
529 free(lru_name);
530 closedir(dir);
531
532 return filename;
533 }
534
535 /* Is entry a regular file, and not having a name with a trailing
536 * ".tmp"
537 */
538 static bool
539 is_regular_non_tmp_file(const char *path, const struct stat *sb,
540 const char *d_name, const size_t len)
541 {
542 if (!S_ISREG(sb->st_mode))
543 return false;
544
545 if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
546 return false;
547
548 return true;
549 }
550
551 /* Returns the size of the deleted file, (or 0 on any error). */
552 static size_t
553 unlink_lru_file_from_directory(const char *path)
554 {
555 struct stat sb;
556 char *filename;
557
558 filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
559 if (filename == NULL)
560 return 0;
561
562 if (stat(filename, &sb) == -1) {
563 free (filename);
564 return 0;
565 }
566
567 unlink(filename);
568 free (filename);
569
570 return sb.st_size;
571 }
572
573 /* Is entry a directory with a two-character name, (and not the
574 * special name of ".."). We also return false if the dir is empty.
575 */
576 static bool
577 is_two_character_sub_directory(const char *path, const struct stat *sb,
578 const char *d_name, const size_t len)
579 {
580 if (!S_ISDIR(sb->st_mode))
581 return false;
582
583 if (len != 2)
584 return false;
585
586 if (strcmp(d_name, "..") == 0)
587 return false;
588
589 char *subdir;
590 if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
591 return false;
592 DIR *dir = opendir(subdir);
593 free(subdir);
594
595 if (dir == NULL)
596 return false;
597
598 unsigned subdir_entries = 0;
599 struct dirent *d;
600 while ((d = readdir(dir)) != NULL) {
601 if(++subdir_entries > 2)
602 break;
603 }
604 closedir(dir);
605
606 /* If dir only contains '.' and '..' it must be empty */
607 if (subdir_entries <= 2)
608 return false;
609
610 return true;
611 }
612
613 static void
614 evict_lru_item(struct disk_cache *cache)
615 {
616 const char hex[] = "0123456789abcde";
617 char *dir_path;
618 int a, b;
619 size_t size;
620
621 /* With a reasonably-sized, full cache, (and with keys generated
622 * from a cryptographic hash), we can choose two random hex digits
623 * and reasonably expect the directory to exist with a file in it.
624 * Provides pseudo-LRU eviction to reduce checking all cache files.
625 */
626 a = rand() % 16;
627 b = rand() % 16;
628
629 if (asprintf(&dir_path, "%s/%c%c", cache->path, hex[a], hex[b]) < 0)
630 return;
631
632 size = unlink_lru_file_from_directory(dir_path);
633
634 free(dir_path);
635
636 if (size) {
637 p_atomic_add(cache->size, - (uint64_t)size);
638 return;
639 }
640
641 /* In the case where the random choice of directory didn't find
642 * something, we choose the least recently accessed from the
643 * existing directories.
644 *
645 * Really, the only reason this code exists is to allow the unit
646 * tests to work, (which use an artificially-small cache to be able
647 * to force a single cached item to be evicted).
648 */
649 dir_path = choose_lru_file_matching(cache->path,
650 is_two_character_sub_directory);
651 if (dir_path == NULL)
652 return;
653
654 size = unlink_lru_file_from_directory(dir_path);
655
656 free(dir_path);
657
658 if (size)
659 p_atomic_add(cache->size, - (uint64_t)size);
660 }
661
662 void
663 disk_cache_remove(struct disk_cache *cache, const cache_key key)
664 {
665 struct stat sb;
666
667 char *filename = get_cache_file(cache, key);
668 if (filename == NULL) {
669 return;
670 }
671
672 if (stat(filename, &sb) == -1) {
673 free(filename);
674 return;
675 }
676
677 unlink(filename);
678 free(filename);
679
680 if (sb.st_size)
681 p_atomic_add(cache->size, - (uint64_t)sb.st_size);
682 }
683
684 /* From the zlib docs:
685 * "If the memory is available, buffers sizes on the order of 128K or 256K
686 * bytes should be used."
687 */
688 #define BUFSIZE 256 * 1024
689
690 /**
691 * Compresses cache entry in memory and writes it to disk. Returns the size
692 * of the data written to disk.
693 */
694 static size_t
695 deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
696 const char *filename)
697 {
698 unsigned char out[BUFSIZE];
699
700 /* allocate deflate state */
701 z_stream strm;
702 strm.zalloc = Z_NULL;
703 strm.zfree = Z_NULL;
704 strm.opaque = Z_NULL;
705 strm.next_in = (uint8_t *) in_data;
706 strm.avail_in = in_data_size;
707
708 int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
709 if (ret != Z_OK)
710 return 0;
711
712 /* compress until end of in_data */
713 size_t compressed_size = 0;
714 int flush;
715 do {
716 int remaining = in_data_size - BUFSIZE;
717 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
718 in_data_size -= BUFSIZE;
719
720 /* Run deflate() on input until the output buffer is not full (which
721 * means there is no more data to deflate).
722 */
723 do {
724 strm.avail_out = BUFSIZE;
725 strm.next_out = out;
726
727 ret = deflate(&strm, flush); /* no bad return value */
728 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
729
730 size_t have = BUFSIZE - strm.avail_out;
731 compressed_size += have;
732
733 size_t written = 0;
734 for (size_t len = 0; len < have; len += written) {
735 written = write(dest, out + len, have - len);
736 if (written == -1) {
737 (void)deflateEnd(&strm);
738 return 0;
739 }
740 }
741 } while (strm.avail_out == 0);
742
743 /* all input should be used */
744 assert(strm.avail_in == 0);
745
746 } while (flush != Z_FINISH);
747
748 /* stream should be complete */
749 assert(ret == Z_STREAM_END);
750
751 /* clean up and return */
752 (void)deflateEnd(&strm);
753 return compressed_size;
754 }
755
756 static struct disk_cache_put_job *
757 create_put_job(struct disk_cache *cache, const cache_key key,
758 const void *data, size_t size)
759 {
760 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
761 malloc(sizeof(struct disk_cache_put_job) + size);
762
763 if (dc_job) {
764 dc_job->cache = cache;
765 memcpy(dc_job->key, key, sizeof(cache_key));
766 dc_job->data = dc_job + 1;
767 memcpy(dc_job->data, data, size);
768 dc_job->size = size;
769 }
770
771 return dc_job;
772 }
773
774 static void
775 destroy_put_job(void *job, int thread_index)
776 {
777 if (job) {
778 free(job);
779 }
780 }
781
782 struct cache_entry_file_data {
783 uint32_t crc32;
784 uint32_t uncompressed_size;
785 };
786
787 static void
788 cache_put(void *job, int thread_index)
789 {
790 assert(job);
791
792 int fd = -1, fd_final = -1, err, ret;
793 unsigned i = 0;
794 size_t len;
795 char *filename = NULL, *filename_tmp = NULL;
796 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
797
798 filename = get_cache_file(dc_job->cache, dc_job->key);
799 if (filename == NULL)
800 goto done;
801
802 /* If the cache is too large, evict something else first. */
803 while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
804 i < 8) {
805 evict_lru_item(dc_job->cache);
806 i++;
807 }
808
809 /* Write to a temporary file to allow for an atomic rename to the
810 * final destination filename, (to prevent any readers from seeing
811 * a partially written file).
812 */
813 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
814 goto done;
815
816 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
817
818 /* Make the two-character subdirectory within the cache as needed. */
819 if (fd == -1) {
820 if (errno != ENOENT)
821 goto done;
822
823 make_cache_file_directory(dc_job->cache, dc_job->key);
824
825 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
826 if (fd == -1)
827 goto done;
828 }
829
830 /* With the temporary file open, we take an exclusive flock on
831 * it. If the flock fails, then another process still has the file
832 * open with the flock held. So just let that file be responsible
833 * for writing the file.
834 */
835 err = flock(fd, LOCK_EX | LOCK_NB);
836 if (err == -1)
837 goto done;
838
839 /* Now that we have the lock on the open temporary file, we can
840 * check to see if the destination file already exists. If so,
841 * another process won the race between when we saw that the file
842 * didn't exist and now. In this case, we don't do anything more,
843 * (to ensure the size accounting of the cache doesn't get off).
844 */
845 fd_final = open(filename, O_RDONLY | O_CLOEXEC);
846 if (fd_final != -1)
847 goto done;
848
849 /* OK, we're now on the hook to write out a file that we know is
850 * not in the cache, and is also not being written out to the cache
851 * by some other process.
852 *
853 * Create CRC of the data and store at the start of the file. We will
854 * read this when restoring the cache and use it to check for corruption.
855 */
856 struct cache_entry_file_data cf_data;
857 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
858 cf_data.uncompressed_size = dc_job->size;
859
860 size_t cf_data_size = sizeof(cf_data);
861 for (len = 0; len < cf_data_size; len += ret) {
862 ret = write(fd, ((uint8_t *) &cf_data) + len, cf_data_size - len);
863 if (ret == -1) {
864 unlink(filename_tmp);
865 goto done;
866 }
867 }
868
869 /* Now, finally, write out the contents to the temporary file, then
870 * rename them atomically to the destination filename, and also
871 * perform an atomic increment of the total cache size.
872 */
873 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
874 fd, filename_tmp);
875 if (file_size == 0) {
876 unlink(filename_tmp);
877 goto done;
878 }
879 rename(filename_tmp, filename);
880
881 file_size += cf_data_size;
882 p_atomic_add(dc_job->cache->size, file_size);
883
884 done:
885 if (fd_final != -1)
886 close(fd_final);
887 /* This close finally releases the flock, (now that the final dile
888 * has been renamed into place and the size has been added).
889 */
890 if (fd != -1)
891 close(fd);
892 if (filename_tmp)
893 free(filename_tmp);
894 if (filename)
895 free(filename);
896 }
897
898 void
899 disk_cache_put(struct disk_cache *cache, const cache_key key,
900 const void *data, size_t size)
901 {
902 struct disk_cache_put_job *dc_job =
903 create_put_job(cache, key, data, size);
904
905 if (dc_job) {
906 util_queue_fence_init(&dc_job->fence);
907 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
908 cache_put, destroy_put_job);
909 }
910 }
911
912 /**
913 * Decompresses cache entry, returns true if successful.
914 */
915 static bool
916 inflate_cache_data(uint8_t *in_data, size_t in_data_size,
917 uint8_t *out_data, size_t out_data_size)
918 {
919 z_stream strm;
920
921 /* allocate inflate state */
922 strm.zalloc = Z_NULL;
923 strm.zfree = Z_NULL;
924 strm.opaque = Z_NULL;
925 strm.next_in = in_data;
926 strm.avail_in = in_data_size;
927 strm.next_out = out_data;
928 strm.avail_out = out_data_size;
929
930 int ret = inflateInit(&strm);
931 if (ret != Z_OK)
932 return false;
933
934 ret = inflate(&strm, Z_NO_FLUSH);
935 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
936
937 /* Unless there was an error we should have decompressed everything in one
938 * go as we know the uncompressed file size.
939 */
940 if (ret != Z_STREAM_END) {
941 (void)inflateEnd(&strm);
942 return false;
943 }
944 assert(strm.avail_out == 0);
945
946 /* clean up and return */
947 (void)inflateEnd(&strm);
948 return true;
949 }
950
951 void *
952 disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
953 {
954 int fd = -1, ret, len;
955 struct stat sb;
956 char *filename = NULL;
957 uint8_t *data = NULL;
958 uint8_t *uncompressed_data = NULL;
959
960 if (size)
961 *size = 0;
962
963 filename = get_cache_file(cache, key);
964 if (filename == NULL)
965 goto fail;
966
967 fd = open(filename, O_RDONLY | O_CLOEXEC);
968 if (fd == -1)
969 goto fail;
970
971 if (fstat(fd, &sb) == -1)
972 goto fail;
973
974 data = malloc(sb.st_size);
975 if (data == NULL)
976 goto fail;
977
978 /* Load the CRC that was created when the file was written. */
979 struct cache_entry_file_data cf_data;
980 size_t cf_data_size = sizeof(cf_data);
981 assert(sb.st_size > cf_data_size);
982 for (len = 0; len < cf_data_size; len += ret) {
983 ret = read(fd, ((uint8_t *) &cf_data) + len, cf_data_size - len);
984 if (ret == -1)
985 goto fail;
986 }
987
988 /* Load the actual cache data. */
989 size_t cache_data_size = sb.st_size - cf_data_size;
990 for (len = 0; len < cache_data_size; len += ret) {
991 ret = read(fd, data + len, cache_data_size - len);
992 if (ret == -1)
993 goto fail;
994 }
995
996 /* Uncompress the cache data */
997 uncompressed_data = malloc(cf_data.uncompressed_size);
998 if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
999 cf_data.uncompressed_size))
1000 goto fail;
1001
1002 /* Check the data for corruption */
1003 if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1004 cf_data.uncompressed_size))
1005 goto fail;
1006
1007 free(data);
1008 free(filename);
1009 close(fd);
1010
1011 if (size)
1012 *size = cf_data.uncompressed_size;
1013
1014 return uncompressed_data;
1015
1016 fail:
1017 if (data)
1018 free(data);
1019 if (uncompressed_data)
1020 free(uncompressed_data);
1021 if (filename)
1022 free(filename);
1023 if (fd != -1)
1024 close(fd);
1025
1026 return NULL;
1027 }
1028
1029 void
1030 disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1031 {
1032 const uint32_t *key_chunk = (const uint32_t *) key;
1033 int i = *key_chunk & CACHE_INDEX_KEY_MASK;
1034 unsigned char *entry;
1035
1036 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1037
1038 memcpy(entry, key, CACHE_KEY_SIZE);
1039 }
1040
1041 /* This function lets us test whether a given key was previously
1042 * stored in the cache with disk_cache_put_key(). The implement is
1043 * efficient by not using syscalls or hitting the disk. It's not
1044 * race-free, but the races are benign. If we race with someone else
1045 * calling disk_cache_put_key, then that's just an extra cache miss and an
1046 * extra recompile.
1047 */
1048 bool
1049 disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1050 {
1051 const uint32_t *key_chunk = (const uint32_t *) key;
1052 int i = *key_chunk & CACHE_INDEX_KEY_MASK;
1053 unsigned char *entry;
1054
1055 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1056
1057 return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1058 }
1059
1060 #endif /* ENABLE_SHADER_CACHE */