util/u_queue: add UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY
[mesa.git] / src / util / disk_cache.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifdef ENABLE_SHADER_CACHE
25
26 #include <ctype.h>
27 #include <ftw.h>
28 #include <string.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <sys/file.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <sys/mman.h>
35 #include <unistd.h>
36 #include <fcntl.h>
37 #include <pwd.h>
38 #include <errno.h>
39 #include <dirent.h>
40 #include "zlib.h"
41
42 #include "util/crc32.h"
43 #include "util/debug.h"
44 #include "util/rand_xor.h"
45 #include "util/u_atomic.h"
46 #include "util/u_queue.h"
47 #include "util/mesa-sha1.h"
48 #include "util/ralloc.h"
49 #include "main/compiler.h"
50 #include "main/errors.h"
51
52 #include "disk_cache.h"
53
54 /* Number of bits to mask off from a cache key to get an index. */
55 #define CACHE_INDEX_KEY_BITS 16
56
57 /* Mask for computing an index from a key. */
58 #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
59
60 /* The number of keys that can be stored in the index. */
61 #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
62
63 /* The cache version should be bumped whenever a change is made to the
64 * structure of cache entries or the index. This will give any 3rd party
65 * applications reading the cache entries a chance to adjust to the changes.
66 *
67 * - The cache version is checked internally when reading a cache entry. If we
68 * ever have a mismatch we are in big trouble as this means we had a cache
69 * collision. In case of such an event please check the skys for giant
70 * asteroids and that the entire Mesa team hasn't been eaten by wolves.
71 *
72 * - There is no strict requirement that cache versions be backwards
73 * compatible but effort should be taken to limit disruption where possible.
74 */
75 #define CACHE_VERSION 1
76
77 struct disk_cache {
78 /* The path to the cache directory. */
79 char *path;
80 bool path_init_failed;
81
82 /* Thread queue for compressing and writing cache entries to disk */
83 struct util_queue cache_queue;
84
85 /* Seed for rand, which is used to pick a random directory */
86 uint64_t seed_xorshift128plus[2];
87
88 /* A pointer to the mmapped index file within the cache directory. */
89 uint8_t *index_mmap;
90 size_t index_mmap_size;
91
92 /* Pointer to total size of all objects in cache (within index_mmap) */
93 uint64_t *size;
94
95 /* Pointer to stored keys, (within index_mmap). */
96 uint8_t *stored_keys;
97
98 /* Maximum size of all cached objects (in bytes). */
99 uint64_t max_size;
100
101 /* Driver cache keys. */
102 uint8_t *driver_keys_blob;
103 size_t driver_keys_blob_size;
104
105 disk_cache_put_cb blob_put_cb;
106 disk_cache_get_cb blob_get_cb;
107 };
108
109 struct disk_cache_put_job {
110 struct util_queue_fence fence;
111
112 struct disk_cache *cache;
113
114 cache_key key;
115
116 /* Copy of cache data to be compressed and written. */
117 void *data;
118
119 /* Size of data to be compressed and written. */
120 size_t size;
121
122 struct cache_item_metadata cache_item_metadata;
123 };
124
125 /* Create a directory named 'path' if it does not already exist.
126 *
127 * Returns: 0 if path already exists as a directory or if created.
128 * -1 in all other cases.
129 */
130 static int
131 mkdir_if_needed(const char *path)
132 {
133 struct stat sb;
134
135 /* If the path exists already, then our work is done if it's a
136 * directory, but it's an error if it is not.
137 */
138 if (stat(path, &sb) == 0) {
139 if (S_ISDIR(sb.st_mode)) {
140 return 0;
141 } else {
142 fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
143 "---disabling.\n", path);
144 return -1;
145 }
146 }
147
148 int ret = mkdir(path, 0755);
149 if (ret == 0 || (ret == -1 && errno == EEXIST))
150 return 0;
151
152 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
153 path, strerror(errno));
154
155 return -1;
156 }
157
158 /* Concatenate an existing path and a new name to form a new path. If the new
159 * path does not exist as a directory, create it then return the resulting
160 * name of the new path (ralloc'ed off of 'ctx').
161 *
162 * Returns NULL on any error, such as:
163 *
164 * <path> does not exist or is not a directory
165 * <path>/<name> exists but is not a directory
166 * <path>/<name> cannot be created as a directory
167 */
168 static char *
169 concatenate_and_mkdir(void *ctx, const char *path, const char *name)
170 {
171 char *new_path;
172 struct stat sb;
173
174 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
175 return NULL;
176
177 new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
178
179 if (mkdir_if_needed(new_path) == 0)
180 return new_path;
181 else
182 return NULL;
183 }
184
185 #define DRV_KEY_CPY(_dst, _src, _src_size) \
186 do { \
187 memcpy(_dst, _src, _src_size); \
188 _dst += _src_size; \
189 } while (0);
190
191 struct disk_cache *
192 disk_cache_create(const char *gpu_name, const char *driver_id,
193 uint64_t driver_flags)
194 {
195 void *local;
196 struct disk_cache *cache = NULL;
197 char *path, *max_size_str;
198 uint64_t max_size;
199 int fd = -1;
200 struct stat sb;
201 size_t size;
202
203 uint8_t cache_version = CACHE_VERSION;
204 size_t cv_size = sizeof(cache_version);
205
206 /* If running as a users other than the real user disable cache */
207 if (geteuid() != getuid())
208 return NULL;
209
210 /* A ralloc context for transient data during this invocation. */
211 local = ralloc_context(NULL);
212 if (local == NULL)
213 goto fail;
214
215 /* At user request, disable shader cache entirely. */
216 if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
217 goto fail;
218
219 cache = rzalloc(NULL, struct disk_cache);
220 if (cache == NULL)
221 goto fail;
222
223 /* Assume failure. */
224 cache->path_init_failed = true;
225
226 /* Determine path for cache based on the first defined name as follows:
227 *
228 * $MESA_GLSL_CACHE_DIR
229 * $XDG_CACHE_HOME/mesa_shader_cache
230 * <pwd.pw_dir>/.cache/mesa_shader_cache
231 */
232 path = getenv("MESA_GLSL_CACHE_DIR");
233 if (path) {
234 if (mkdir_if_needed(path) == -1)
235 goto path_fail;
236
237 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
238 if (path == NULL)
239 goto path_fail;
240 }
241
242 if (path == NULL) {
243 char *xdg_cache_home = getenv("XDG_CACHE_HOME");
244
245 if (xdg_cache_home) {
246 if (mkdir_if_needed(xdg_cache_home) == -1)
247 goto path_fail;
248
249 path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME);
250 if (path == NULL)
251 goto path_fail;
252 }
253 }
254
255 if (path == NULL) {
256 char *buf;
257 size_t buf_size;
258 struct passwd pwd, *result;
259
260 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
261 if (buf_size == -1)
262 buf_size = 512;
263
264 /* Loop until buf_size is large enough to query the directory */
265 while (1) {
266 buf = ralloc_size(local, buf_size);
267
268 getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
269 if (result)
270 break;
271
272 if (errno == ERANGE) {
273 ralloc_free(buf);
274 buf = NULL;
275 buf_size *= 2;
276 } else {
277 goto path_fail;
278 }
279 }
280
281 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
282 if (path == NULL)
283 goto path_fail;
284
285 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
286 if (path == NULL)
287 goto path_fail;
288 }
289
290 cache->path = ralloc_strdup(cache, path);
291 if (cache->path == NULL)
292 goto path_fail;
293
294 path = ralloc_asprintf(local, "%s/index", cache->path);
295 if (path == NULL)
296 goto path_fail;
297
298 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
299 if (fd == -1)
300 goto path_fail;
301
302 if (fstat(fd, &sb) == -1)
303 goto path_fail;
304
305 /* Force the index file to be the expected size. */
306 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
307 if (sb.st_size != size) {
308 if (ftruncate(fd, size) == -1)
309 goto path_fail;
310 }
311
312 /* We map this shared so that other processes see updates that we
313 * make.
314 *
315 * Note: We do use atomic addition to ensure that multiple
316 * processes don't scramble the cache size recorded in the
317 * index. But we don't use any locking to prevent multiple
318 * processes from updating the same entry simultaneously. The idea
319 * is that if either result lands entirely in the index, then
320 * that's equivalent to a well-ordered write followed by an
321 * eviction and a write. On the other hand, if the simultaneous
322 * writes result in a corrupt entry, that's not really any
323 * different than both entries being evicted, (since within the
324 * guarantees of the cryptographic hash, a corrupt entry is
325 * unlikely to ever match a real cache key).
326 */
327 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
328 MAP_SHARED, fd, 0);
329 if (cache->index_mmap == MAP_FAILED)
330 goto path_fail;
331 cache->index_mmap_size = size;
332
333 close(fd);
334
335 cache->size = (uint64_t *) cache->index_mmap;
336 cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
337
338 max_size = 0;
339
340 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
341 if (max_size_str) {
342 char *end;
343 max_size = strtoul(max_size_str, &end, 10);
344 if (end == max_size_str) {
345 max_size = 0;
346 } else {
347 switch (*end) {
348 case 'K':
349 case 'k':
350 max_size *= 1024;
351 break;
352 case 'M':
353 case 'm':
354 max_size *= 1024*1024;
355 break;
356 case '\0':
357 case 'G':
358 case 'g':
359 default:
360 max_size *= 1024*1024*1024;
361 break;
362 }
363 }
364 }
365
366 /* Default to 1GB for maximum cache size. */
367 if (max_size == 0) {
368 max_size = 1024*1024*1024;
369 }
370
371 cache->max_size = max_size;
372
373 /* 1 thread was chosen because we don't really care about getting things
374 * to disk quickly just that it's not blocking other tasks.
375 *
376 * The queue will resize automatically when it's full, so adding new jobs
377 * doesn't stall.
378 */
379 util_queue_init(&cache->cache_queue, "disk$", 32, 1,
380 UTIL_QUEUE_INIT_RESIZE_IF_FULL |
381 UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
382 UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY);
383
384 cache->path_init_failed = false;
385
386 path_fail:
387
388 cache->driver_keys_blob_size = cv_size;
389
390 /* Create driver id keys */
391 size_t id_size = strlen(driver_id) + 1;
392 size_t gpu_name_size = strlen(gpu_name) + 1;
393 cache->driver_keys_blob_size += id_size;
394 cache->driver_keys_blob_size += gpu_name_size;
395
396 /* We sometimes store entire structs that contains a pointers in the cache,
397 * use pointer size as a key to avoid hard to debug issues.
398 */
399 uint8_t ptr_size = sizeof(void *);
400 size_t ptr_size_size = sizeof(ptr_size);
401 cache->driver_keys_blob_size += ptr_size_size;
402
403 size_t driver_flags_size = sizeof(driver_flags);
404 cache->driver_keys_blob_size += driver_flags_size;
405
406 cache->driver_keys_blob =
407 ralloc_size(cache, cache->driver_keys_blob_size);
408 if (!cache->driver_keys_blob)
409 goto fail;
410
411 uint8_t *drv_key_blob = cache->driver_keys_blob;
412 DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
413 DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
414 DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
415 DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
416 DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
417
418 /* Seed our rand function */
419 s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
420
421 ralloc_free(local);
422
423 return cache;
424
425 fail:
426 if (fd != -1)
427 close(fd);
428 if (cache)
429 ralloc_free(cache);
430 ralloc_free(local);
431
432 return NULL;
433 }
434
435 void
436 disk_cache_destroy(struct disk_cache *cache)
437 {
438 if (cache && !cache->path_init_failed) {
439 util_queue_destroy(&cache->cache_queue);
440 munmap(cache->index_mmap, cache->index_mmap_size);
441 }
442
443 ralloc_free(cache);
444 }
445
446 /* Return a filename within the cache's directory corresponding to 'key'. The
447 * returned filename is ralloced with 'cache' as the parent context.
448 *
449 * Returns NULL if out of memory.
450 */
451 static char *
452 get_cache_file(struct disk_cache *cache, const cache_key key)
453 {
454 char buf[41];
455 char *filename;
456
457 if (cache->path_init_failed)
458 return NULL;
459
460 _mesa_sha1_format(buf, key);
461 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
462 buf[1], buf + 2) == -1)
463 return NULL;
464
465 return filename;
466 }
467
468 /* Create the directory that will be needed for the cache file for \key.
469 *
470 * Obviously, the implementation here must closely match
471 * _get_cache_file above.
472 */
473 static void
474 make_cache_file_directory(struct disk_cache *cache, const cache_key key)
475 {
476 char *dir;
477 char buf[41];
478
479 _mesa_sha1_format(buf, key);
480 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
481 return;
482
483 mkdir_if_needed(dir);
484 free(dir);
485 }
486
487 /* Given a directory path and predicate function, find the entry with
488 * the oldest access time in that directory for which the predicate
489 * returns true.
490 *
491 * Returns: A malloc'ed string for the path to the chosen file, (or
492 * NULL on any error). The caller should free the string when
493 * finished.
494 */
495 static char *
496 choose_lru_file_matching(const char *dir_path,
497 bool (*predicate)(const char *dir_path,
498 const struct stat *,
499 const char *, const size_t))
500 {
501 DIR *dir;
502 struct dirent *entry;
503 char *filename;
504 char *lru_name = NULL;
505 time_t lru_atime = 0;
506
507 dir = opendir(dir_path);
508 if (dir == NULL)
509 return NULL;
510
511 while (1) {
512 entry = readdir(dir);
513 if (entry == NULL)
514 break;
515
516 struct stat sb;
517 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
518 if (!lru_atime || (sb.st_atime < lru_atime)) {
519 size_t len = strlen(entry->d_name);
520
521 if (!predicate(dir_path, &sb, entry->d_name, len))
522 continue;
523
524 char *tmp = realloc(lru_name, len + 1);
525 if (tmp) {
526 lru_name = tmp;
527 memcpy(lru_name, entry->d_name, len + 1);
528 lru_atime = sb.st_atime;
529 }
530 }
531 }
532 }
533
534 if (lru_name == NULL) {
535 closedir(dir);
536 return NULL;
537 }
538
539 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
540 filename = NULL;
541
542 free(lru_name);
543 closedir(dir);
544
545 return filename;
546 }
547
548 /* Is entry a regular file, and not having a name with a trailing
549 * ".tmp"
550 */
551 static bool
552 is_regular_non_tmp_file(const char *path, const struct stat *sb,
553 const char *d_name, const size_t len)
554 {
555 if (!S_ISREG(sb->st_mode))
556 return false;
557
558 if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
559 return false;
560
561 return true;
562 }
563
564 /* Returns the size of the deleted file, (or 0 on any error). */
565 static size_t
566 unlink_lru_file_from_directory(const char *path)
567 {
568 struct stat sb;
569 char *filename;
570
571 filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
572 if (filename == NULL)
573 return 0;
574
575 if (stat(filename, &sb) == -1) {
576 free (filename);
577 return 0;
578 }
579
580 unlink(filename);
581 free (filename);
582
583 return sb.st_blocks * 512;
584 }
585
586 /* Is entry a directory with a two-character name, (and not the
587 * special name of ".."). We also return false if the dir is empty.
588 */
589 static bool
590 is_two_character_sub_directory(const char *path, const struct stat *sb,
591 const char *d_name, const size_t len)
592 {
593 if (!S_ISDIR(sb->st_mode))
594 return false;
595
596 if (len != 2)
597 return false;
598
599 if (strcmp(d_name, "..") == 0)
600 return false;
601
602 char *subdir;
603 if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
604 return false;
605 DIR *dir = opendir(subdir);
606 free(subdir);
607
608 if (dir == NULL)
609 return false;
610
611 unsigned subdir_entries = 0;
612 struct dirent *d;
613 while ((d = readdir(dir)) != NULL) {
614 if(++subdir_entries > 2)
615 break;
616 }
617 closedir(dir);
618
619 /* If dir only contains '.' and '..' it must be empty */
620 if (subdir_entries <= 2)
621 return false;
622
623 return true;
624 }
625
626 static void
627 evict_lru_item(struct disk_cache *cache)
628 {
629 char *dir_path;
630
631 /* With a reasonably-sized, full cache, (and with keys generated
632 * from a cryptographic hash), we can choose two random hex digits
633 * and reasonably expect the directory to exist with a file in it.
634 * Provides pseudo-LRU eviction to reduce checking all cache files.
635 */
636 uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
637 if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
638 return;
639
640 size_t size = unlink_lru_file_from_directory(dir_path);
641
642 free(dir_path);
643
644 if (size) {
645 p_atomic_add(cache->size, - (uint64_t)size);
646 return;
647 }
648
649 /* In the case where the random choice of directory didn't find
650 * something, we choose the least recently accessed from the
651 * existing directories.
652 *
653 * Really, the only reason this code exists is to allow the unit
654 * tests to work, (which use an artificially-small cache to be able
655 * to force a single cached item to be evicted).
656 */
657 dir_path = choose_lru_file_matching(cache->path,
658 is_two_character_sub_directory);
659 if (dir_path == NULL)
660 return;
661
662 size = unlink_lru_file_from_directory(dir_path);
663
664 free(dir_path);
665
666 if (size)
667 p_atomic_add(cache->size, - (uint64_t)size);
668 }
669
670 void
671 disk_cache_remove(struct disk_cache *cache, const cache_key key)
672 {
673 struct stat sb;
674
675 char *filename = get_cache_file(cache, key);
676 if (filename == NULL) {
677 return;
678 }
679
680 if (stat(filename, &sb) == -1) {
681 free(filename);
682 return;
683 }
684
685 unlink(filename);
686 free(filename);
687
688 if (sb.st_blocks)
689 p_atomic_add(cache->size, - (uint64_t)sb.st_blocks * 512);
690 }
691
692 static ssize_t
693 read_all(int fd, void *buf, size_t count)
694 {
695 char *in = buf;
696 ssize_t read_ret;
697 size_t done;
698
699 for (done = 0; done < count; done += read_ret) {
700 read_ret = read(fd, in + done, count - done);
701 if (read_ret == -1 || read_ret == 0)
702 return -1;
703 }
704 return done;
705 }
706
707 static ssize_t
708 write_all(int fd, const void *buf, size_t count)
709 {
710 const char *out = buf;
711 ssize_t written;
712 size_t done;
713
714 for (done = 0; done < count; done += written) {
715 written = write(fd, out + done, count - done);
716 if (written == -1)
717 return -1;
718 }
719 return done;
720 }
721
722 /* From the zlib docs:
723 * "If the memory is available, buffers sizes on the order of 128K or 256K
724 * bytes should be used."
725 */
726 #define BUFSIZE 256 * 1024
727
728 /**
729 * Compresses cache entry in memory and writes it to disk. Returns the size
730 * of the data written to disk.
731 */
732 static size_t
733 deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
734 const char *filename)
735 {
736 unsigned char out[BUFSIZE];
737
738 /* allocate deflate state */
739 z_stream strm;
740 strm.zalloc = Z_NULL;
741 strm.zfree = Z_NULL;
742 strm.opaque = Z_NULL;
743 strm.next_in = (uint8_t *) in_data;
744 strm.avail_in = in_data_size;
745
746 int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
747 if (ret != Z_OK)
748 return 0;
749
750 /* compress until end of in_data */
751 size_t compressed_size = 0;
752 int flush;
753 do {
754 int remaining = in_data_size - BUFSIZE;
755 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
756 in_data_size -= BUFSIZE;
757
758 /* Run deflate() on input until the output buffer is not full (which
759 * means there is no more data to deflate).
760 */
761 do {
762 strm.avail_out = BUFSIZE;
763 strm.next_out = out;
764
765 ret = deflate(&strm, flush); /* no bad return value */
766 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
767
768 size_t have = BUFSIZE - strm.avail_out;
769 compressed_size += have;
770
771 ssize_t written = write_all(dest, out, have);
772 if (written == -1) {
773 (void)deflateEnd(&strm);
774 return 0;
775 }
776 } while (strm.avail_out == 0);
777
778 /* all input should be used */
779 assert(strm.avail_in == 0);
780
781 } while (flush != Z_FINISH);
782
783 /* stream should be complete */
784 assert(ret == Z_STREAM_END);
785
786 /* clean up and return */
787 (void)deflateEnd(&strm);
788 return compressed_size;
789 }
790
791 static struct disk_cache_put_job *
792 create_put_job(struct disk_cache *cache, const cache_key key,
793 const void *data, size_t size,
794 struct cache_item_metadata *cache_item_metadata)
795 {
796 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
797 malloc(sizeof(struct disk_cache_put_job) + size);
798
799 if (dc_job) {
800 dc_job->cache = cache;
801 memcpy(dc_job->key, key, sizeof(cache_key));
802 dc_job->data = dc_job + 1;
803 memcpy(dc_job->data, data, size);
804 dc_job->size = size;
805
806 /* Copy the cache item metadata */
807 if (cache_item_metadata) {
808 dc_job->cache_item_metadata.type = cache_item_metadata->type;
809 if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
810 dc_job->cache_item_metadata.num_keys =
811 cache_item_metadata->num_keys;
812 dc_job->cache_item_metadata.keys = (cache_key *)
813 malloc(cache_item_metadata->num_keys * sizeof(cache_key));
814
815 if (!dc_job->cache_item_metadata.keys)
816 goto fail;
817
818 memcpy(dc_job->cache_item_metadata.keys,
819 cache_item_metadata->keys,
820 sizeof(cache_key) * cache_item_metadata->num_keys);
821 }
822 } else {
823 dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
824 dc_job->cache_item_metadata.keys = NULL;
825 }
826 }
827
828 return dc_job;
829
830 fail:
831 free(dc_job);
832
833 return NULL;
834 }
835
836 static void
837 destroy_put_job(void *job, int thread_index)
838 {
839 if (job) {
840 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
841 free(dc_job->cache_item_metadata.keys);
842
843 free(job);
844 }
845 }
846
847 struct cache_entry_file_data {
848 uint32_t crc32;
849 uint32_t uncompressed_size;
850 };
851
852 static void
853 cache_put(void *job, int thread_index)
854 {
855 assert(job);
856
857 int fd = -1, fd_final = -1, err, ret;
858 unsigned i = 0;
859 char *filename = NULL, *filename_tmp = NULL;
860 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
861
862 filename = get_cache_file(dc_job->cache, dc_job->key);
863 if (filename == NULL)
864 goto done;
865
866 /* If the cache is too large, evict something else first. */
867 while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
868 i < 8) {
869 evict_lru_item(dc_job->cache);
870 i++;
871 }
872
873 /* Write to a temporary file to allow for an atomic rename to the
874 * final destination filename, (to prevent any readers from seeing
875 * a partially written file).
876 */
877 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
878 goto done;
879
880 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
881
882 /* Make the two-character subdirectory within the cache as needed. */
883 if (fd == -1) {
884 if (errno != ENOENT)
885 goto done;
886
887 make_cache_file_directory(dc_job->cache, dc_job->key);
888
889 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
890 if (fd == -1)
891 goto done;
892 }
893
894 /* With the temporary file open, we take an exclusive flock on
895 * it. If the flock fails, then another process still has the file
896 * open with the flock held. So just let that file be responsible
897 * for writing the file.
898 */
899 err = flock(fd, LOCK_EX | LOCK_NB);
900 if (err == -1)
901 goto done;
902
903 /* Now that we have the lock on the open temporary file, we can
904 * check to see if the destination file already exists. If so,
905 * another process won the race between when we saw that the file
906 * didn't exist and now. In this case, we don't do anything more,
907 * (to ensure the size accounting of the cache doesn't get off).
908 */
909 fd_final = open(filename, O_RDONLY | O_CLOEXEC);
910 if (fd_final != -1) {
911 unlink(filename_tmp);
912 goto done;
913 }
914
915 /* OK, we're now on the hook to write out a file that we know is
916 * not in the cache, and is also not being written out to the cache
917 * by some other process.
918 */
919
920 /* Write the driver_keys_blob, this can be used find information about the
921 * mesa version that produced the entry or deal with hash collisions,
922 * should that ever become a real problem.
923 */
924 ret = write_all(fd, dc_job->cache->driver_keys_blob,
925 dc_job->cache->driver_keys_blob_size);
926 if (ret == -1) {
927 unlink(filename_tmp);
928 goto done;
929 }
930
931 /* Write the cache item metadata. This data can be used to deal with
932 * hash collisions, as well as providing useful information to 3rd party
933 * tools reading the cache files.
934 */
935 ret = write_all(fd, &dc_job->cache_item_metadata.type,
936 sizeof(uint32_t));
937 if (ret == -1) {
938 unlink(filename_tmp);
939 goto done;
940 }
941
942 if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
943 ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
944 sizeof(uint32_t));
945 if (ret == -1) {
946 unlink(filename_tmp);
947 goto done;
948 }
949
950 ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
951 dc_job->cache_item_metadata.num_keys *
952 sizeof(cache_key));
953 if (ret == -1) {
954 unlink(filename_tmp);
955 goto done;
956 }
957 }
958
959 /* Create CRC of the data. We will read this when restoring the cache and
960 * use it to check for corruption.
961 */
962 struct cache_entry_file_data cf_data;
963 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
964 cf_data.uncompressed_size = dc_job->size;
965
966 size_t cf_data_size = sizeof(cf_data);
967 ret = write_all(fd, &cf_data, cf_data_size);
968 if (ret == -1) {
969 unlink(filename_tmp);
970 goto done;
971 }
972
973 /* Now, finally, write out the contents to the temporary file, then
974 * rename them atomically to the destination filename, and also
975 * perform an atomic increment of the total cache size.
976 */
977 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
978 fd, filename_tmp);
979 if (file_size == 0) {
980 unlink(filename_tmp);
981 goto done;
982 }
983 ret = rename(filename_tmp, filename);
984 if (ret == -1) {
985 unlink(filename_tmp);
986 goto done;
987 }
988
989 struct stat sb;
990 if (stat(filename, &sb) == -1) {
991 /* Something went wrong remove the file */
992 unlink(filename);
993 goto done;
994 }
995
996 p_atomic_add(dc_job->cache->size, sb.st_blocks * 512);
997
998 done:
999 if (fd_final != -1)
1000 close(fd_final);
1001 /* This close finally releases the flock, (now that the final file
1002 * has been renamed into place and the size has been added).
1003 */
1004 if (fd != -1)
1005 close(fd);
1006 free(filename_tmp);
1007 free(filename);
1008 }
1009
1010 void
1011 disk_cache_put(struct disk_cache *cache, const cache_key key,
1012 const void *data, size_t size,
1013 struct cache_item_metadata *cache_item_metadata)
1014 {
1015 if (cache->blob_put_cb) {
1016 cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size);
1017 return;
1018 }
1019
1020 if (cache->path_init_failed)
1021 return;
1022
1023 struct disk_cache_put_job *dc_job =
1024 create_put_job(cache, key, data, size, cache_item_metadata);
1025
1026 if (dc_job) {
1027 util_queue_fence_init(&dc_job->fence);
1028 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
1029 cache_put, destroy_put_job);
1030 }
1031 }
1032
1033 /**
1034 * Decompresses cache entry, returns true if successful.
1035 */
1036 static bool
1037 inflate_cache_data(uint8_t *in_data, size_t in_data_size,
1038 uint8_t *out_data, size_t out_data_size)
1039 {
1040 z_stream strm;
1041
1042 /* allocate inflate state */
1043 strm.zalloc = Z_NULL;
1044 strm.zfree = Z_NULL;
1045 strm.opaque = Z_NULL;
1046 strm.next_in = in_data;
1047 strm.avail_in = in_data_size;
1048 strm.next_out = out_data;
1049 strm.avail_out = out_data_size;
1050
1051 int ret = inflateInit(&strm);
1052 if (ret != Z_OK)
1053 return false;
1054
1055 ret = inflate(&strm, Z_NO_FLUSH);
1056 assert(ret != Z_STREAM_ERROR); /* state not clobbered */
1057
1058 /* Unless there was an error we should have decompressed everything in one
1059 * go as we know the uncompressed file size.
1060 */
1061 if (ret != Z_STREAM_END) {
1062 (void)inflateEnd(&strm);
1063 return false;
1064 }
1065 assert(strm.avail_out == 0);
1066
1067 /* clean up and return */
1068 (void)inflateEnd(&strm);
1069 return true;
1070 }
1071
1072 void *
1073 disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
1074 {
1075 int fd = -1, ret;
1076 struct stat sb;
1077 char *filename = NULL;
1078 uint8_t *data = NULL;
1079 uint8_t *uncompressed_data = NULL;
1080 uint8_t *file_header = NULL;
1081
1082 if (size)
1083 *size = 0;
1084
1085 if (cache->blob_get_cb) {
1086 /* This is what Android EGL defines as the maxValueSize in egl_cache_t
1087 * class implementation.
1088 */
1089 const signed long max_blob_size = 64 * 1024;
1090 void *blob = malloc(max_blob_size);
1091 if (!blob)
1092 return NULL;
1093
1094 signed long bytes =
1095 cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size);
1096
1097 if (!bytes) {
1098 free(blob);
1099 return NULL;
1100 }
1101
1102 if (size)
1103 *size = bytes;
1104 return blob;
1105 }
1106
1107 filename = get_cache_file(cache, key);
1108 if (filename == NULL)
1109 goto fail;
1110
1111 fd = open(filename, O_RDONLY | O_CLOEXEC);
1112 if (fd == -1)
1113 goto fail;
1114
1115 if (fstat(fd, &sb) == -1)
1116 goto fail;
1117
1118 data = malloc(sb.st_size);
1119 if (data == NULL)
1120 goto fail;
1121
1122 size_t ck_size = cache->driver_keys_blob_size;
1123 file_header = malloc(ck_size);
1124 if (!file_header)
1125 goto fail;
1126
1127 if (sb.st_size < ck_size)
1128 goto fail;
1129
1130 ret = read_all(fd, file_header, ck_size);
1131 if (ret == -1)
1132 goto fail;
1133
1134 /* Check for extremely unlikely hash collisions */
1135 if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) {
1136 assert(!"Mesa cache keys mismatch!");
1137 goto fail;
1138 }
1139
1140 size_t cache_item_md_size = sizeof(uint32_t);
1141 uint32_t md_type;
1142 ret = read_all(fd, &md_type, cache_item_md_size);
1143 if (ret == -1)
1144 goto fail;
1145
1146 if (md_type == CACHE_ITEM_TYPE_GLSL) {
1147 uint32_t num_keys;
1148 cache_item_md_size += sizeof(uint32_t);
1149 ret = read_all(fd, &num_keys, sizeof(uint32_t));
1150 if (ret == -1)
1151 goto fail;
1152
1153 /* The cache item metadata is currently just used for distributing
1154 * precompiled shaders, they are not used by Mesa so just skip them for
1155 * now.
1156 * TODO: pass the metadata back to the caller and do some basic
1157 * validation.
1158 */
1159 cache_item_md_size += num_keys * sizeof(cache_key);
1160 ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR);
1161 if (ret == -1)
1162 goto fail;
1163 }
1164
1165 /* Load the CRC that was created when the file was written. */
1166 struct cache_entry_file_data cf_data;
1167 size_t cf_data_size = sizeof(cf_data);
1168 ret = read_all(fd, &cf_data, cf_data_size);
1169 if (ret == -1)
1170 goto fail;
1171
1172 /* Load the actual cache data. */
1173 size_t cache_data_size =
1174 sb.st_size - cf_data_size - ck_size - cache_item_md_size;
1175 ret = read_all(fd, data, cache_data_size);
1176 if (ret == -1)
1177 goto fail;
1178
1179 /* Uncompress the cache data */
1180 uncompressed_data = malloc(cf_data.uncompressed_size);
1181 if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1182 cf_data.uncompressed_size))
1183 goto fail;
1184
1185 /* Check the data for corruption */
1186 if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1187 cf_data.uncompressed_size))
1188 goto fail;
1189
1190 free(data);
1191 free(filename);
1192 free(file_header);
1193 close(fd);
1194
1195 if (size)
1196 *size = cf_data.uncompressed_size;
1197
1198 return uncompressed_data;
1199
1200 fail:
1201 if (data)
1202 free(data);
1203 if (uncompressed_data)
1204 free(uncompressed_data);
1205 if (filename)
1206 free(filename);
1207 if (file_header)
1208 free(file_header);
1209 if (fd != -1)
1210 close(fd);
1211
1212 return NULL;
1213 }
1214
1215 void
1216 disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1217 {
1218 const uint32_t *key_chunk = (const uint32_t *) key;
1219 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1220 unsigned char *entry;
1221
1222 if (cache->blob_put_cb) {
1223 cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
1224 return;
1225 }
1226
1227 if (cache->path_init_failed)
1228 return;
1229
1230 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1231
1232 memcpy(entry, key, CACHE_KEY_SIZE);
1233 }
1234
1235 /* This function lets us test whether a given key was previously
1236 * stored in the cache with disk_cache_put_key(). The implement is
1237 * efficient by not using syscalls or hitting the disk. It's not
1238 * race-free, but the races are benign. If we race with someone else
1239 * calling disk_cache_put_key, then that's just an extra cache miss and an
1240 * extra recompile.
1241 */
1242 bool
1243 disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1244 {
1245 const uint32_t *key_chunk = (const uint32_t *) key;
1246 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1247 unsigned char *entry;
1248
1249 if (cache->blob_get_cb) {
1250 uint32_t blob;
1251 return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
1252 }
1253
1254 if (cache->path_init_failed)
1255 return false;
1256
1257 entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1258
1259 return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1260 }
1261
1262 void
1263 disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
1264 cache_key key)
1265 {
1266 struct mesa_sha1 ctx;
1267
1268 _mesa_sha1_init(&ctx);
1269 _mesa_sha1_update(&ctx, cache->driver_keys_blob,
1270 cache->driver_keys_blob_size);
1271 _mesa_sha1_update(&ctx, data, size);
1272 _mesa_sha1_final(&ctx, key);
1273 }
1274
1275 void
1276 disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
1277 disk_cache_get_cb get)
1278 {
1279 cache->blob_put_cb = put;
1280 cache->blob_get_cb = get;
1281 }
1282
1283 #endif /* ENABLE_SHADER_CACHE */