gallium/gallivm: enable linking lp_bld_printf function with C++ code
[mesa.git] / src / util / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74
75 #include "ralloc.h"
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "util/bitset.h"
79 #include "register_allocate.h"
80
81 #define NO_REG ~0U
82
83 struct ra_reg {
84 BITSET_WORD *conflicts;
85 unsigned int *conflict_list;
86 unsigned int conflict_list_size;
87 unsigned int num_conflicts;
88 };
89
90 struct ra_regs {
91 struct ra_reg *regs;
92 unsigned int count;
93
94 struct ra_class **classes;
95 unsigned int class_count;
96
97 bool round_robin;
98 };
99
100 struct ra_class {
101 /**
102 * Bitset indicating which registers belong to this class.
103 *
104 * (If bit N is set, then register N belongs to this class.)
105 */
106 BITSET_WORD *regs;
107
108 /**
109 * p(B) in Runeson/Nyström paper.
110 *
111 * This is "how many regs are in the set."
112 */
113 unsigned int p;
114
115 /**
116 * q(B,C) (indexed by C, B is this register class) in
117 * Runeson/Nyström paper. This is "how many registers of B could
118 * the worst choice register from C conflict with".
119 */
120 unsigned int *q;
121 };
122
123 struct ra_node {
124 /** @{
125 *
126 * List of which nodes this node interferes with. This should be
127 * symmetric with the other node.
128 */
129 BITSET_WORD *adjacency;
130 unsigned int *adjacency_list;
131 unsigned int adjacency_list_size;
132 unsigned int adjacency_count;
133 /** @} */
134
135 unsigned int class;
136
137 /* Client-assigned register, if assigned, or NO_REG. */
138 unsigned int forced_reg;
139
140 /* Register, if assigned, or NO_REG. */
141 unsigned int reg;
142
143 /**
144 * The q total, as defined in the Runeson/Nyström paper, for all the
145 * interfering nodes not in the stack.
146 */
147 unsigned int q_total;
148
149 /* For an implementation that needs register spilling, this is the
150 * approximate cost of spilling this node.
151 */
152 float spill_cost;
153
154 /* Temporary data for the algorithm to scratch around in */
155 struct {
156 /**
157 * Temporary version of q_total which we decrement as things are placed
158 * into the stack.
159 */
160 unsigned int q_total;
161 } tmp;
162 };
163
164 struct ra_graph {
165 struct ra_regs *regs;
166 /**
167 * the variables that need register allocation.
168 */
169 struct ra_node *nodes;
170 unsigned int count; /**< count of nodes. */
171
172 unsigned int alloc; /**< count of nodes allocated. */
173
174 unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
175 void *data);
176 void *select_reg_callback_data;
177
178 /* Temporary data for the algorithm to scratch around in */
179 struct {
180 unsigned int *stack;
181 unsigned int stack_count;
182
183 /** Bit-set indicating, for each register, if it's in the stack */
184 BITSET_WORD *in_stack;
185
186 /** Bit-set indicating, for each register, if it pre-assigned */
187 BITSET_WORD *reg_assigned;
188
189 /** Bit-set indicating, for each register, the value of the pq test */
190 BITSET_WORD *pq_test;
191
192 /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
193 unsigned int *min_q_total;
194
195 /*
196 * * For each BITSET_WORD, the node with the minimum q_total if
197 * min_q_total[i] != ~0.
198 */
199 unsigned int *min_q_node;
200
201 /**
202 * Tracks the start of the set of optimistically-colored registers in the
203 * stack.
204 */
205 unsigned int stack_optimistic_start;
206 } tmp;
207 };
208
209 /**
210 * Creates a set of registers for the allocator.
211 *
212 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
213 * using ralloc_free().
214 */
215 struct ra_regs *
216 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
217 {
218 unsigned int i;
219 struct ra_regs *regs;
220
221 regs = rzalloc(mem_ctx, struct ra_regs);
222 regs->count = count;
223 regs->regs = rzalloc_array(regs, struct ra_reg, count);
224
225 for (i = 0; i < count; i++) {
226 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
227 BITSET_WORDS(count));
228 BITSET_SET(regs->regs[i].conflicts, i);
229
230 if (need_conflict_lists) {
231 regs->regs[i].conflict_list = ralloc_array(regs->regs,
232 unsigned int, 4);
233 regs->regs[i].conflict_list_size = 4;
234 regs->regs[i].conflict_list[0] = i;
235 } else {
236 regs->regs[i].conflict_list = NULL;
237 regs->regs[i].conflict_list_size = 0;
238 }
239 regs->regs[i].num_conflicts = 1;
240 }
241
242 return regs;
243 }
244
245 /**
246 * The register allocator by default prefers to allocate low register numbers,
247 * since it was written for hardware (gen4/5 Intel) that is limited in its
248 * multithreadedness by the number of registers used in a given shader.
249 *
250 * However, for hardware without that restriction, densely packed register
251 * allocation can put serious constraints on instruction scheduling. This
252 * function tells the allocator to rotate around the registers if possible as
253 * it allocates the nodes.
254 */
255 void
256 ra_set_allocate_round_robin(struct ra_regs *regs)
257 {
258 regs->round_robin = true;
259 }
260
261 static void
262 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
263 {
264 struct ra_reg *reg1 = &regs->regs[r1];
265
266 if (reg1->conflict_list) {
267 if (reg1->conflict_list_size == reg1->num_conflicts) {
268 reg1->conflict_list_size *= 2;
269 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
270 unsigned int, reg1->conflict_list_size);
271 }
272 reg1->conflict_list[reg1->num_conflicts++] = r2;
273 }
274 BITSET_SET(reg1->conflicts, r2);
275 }
276
277 void
278 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
279 {
280 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
281 ra_add_conflict_list(regs, r1, r2);
282 ra_add_conflict_list(regs, r2, r1);
283 }
284 }
285
286 /**
287 * Adds a conflict between base_reg and reg, and also between reg and
288 * anything that base_reg conflicts with.
289 *
290 * This can simplify code for setting up multiple register classes
291 * which are aggregates of some base hardware registers, compared to
292 * explicitly using ra_add_reg_conflict.
293 */
294 void
295 ra_add_transitive_reg_conflict(struct ra_regs *regs,
296 unsigned int base_reg, unsigned int reg)
297 {
298 unsigned int i;
299
300 ra_add_reg_conflict(regs, reg, base_reg);
301
302 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
303 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
304 }
305 }
306
307 /**
308 * Set up conflicts between base_reg and it's two half registers reg0 and
309 * reg1, but take care to not add conflicts between reg0 and reg1.
310 *
311 * This is useful for architectures where full size registers are aliased by
312 * two half size registers (eg 32 bit float and 16 bit float registers).
313 */
314 void
315 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
316 unsigned int base_reg, unsigned int reg0, unsigned int reg1)
317 {
318 unsigned int i;
319
320 ra_add_reg_conflict(regs, reg0, base_reg);
321 ra_add_reg_conflict(regs, reg1, base_reg);
322
323 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
324 unsigned int conflict = regs->regs[base_reg].conflict_list[i];
325 if (conflict != reg1)
326 ra_add_reg_conflict(regs, reg0, regs->regs[base_reg].conflict_list[i]);
327 if (conflict != reg0)
328 ra_add_reg_conflict(regs, reg1, regs->regs[base_reg].conflict_list[i]);
329 }
330 }
331
332 /**
333 * Makes every conflict on the given register transitive. In other words,
334 * every register that conflicts with r will now conflict with every other
335 * register conflicting with r.
336 *
337 * This can simplify code for setting up multiple register classes
338 * which are aggregates of some base hardware registers, compared to
339 * explicitly using ra_add_reg_conflict.
340 */
341 void
342 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
343 {
344 struct ra_reg *reg = &regs->regs[r];
345 BITSET_WORD tmp;
346 int c;
347
348 BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
349 struct ra_reg *other = &regs->regs[c];
350 unsigned i;
351 for (i = 0; i < BITSET_WORDS(regs->count); i++)
352 other->conflicts[i] |= reg->conflicts[i];
353 }
354 }
355
356 unsigned int
357 ra_alloc_reg_class(struct ra_regs *regs)
358 {
359 struct ra_class *class;
360
361 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
362 regs->class_count + 1);
363
364 class = rzalloc(regs, struct ra_class);
365 regs->classes[regs->class_count] = class;
366
367 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
368
369 return regs->class_count++;
370 }
371
372 void
373 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
374 {
375 struct ra_class *class = regs->classes[c];
376
377 BITSET_SET(class->regs, r);
378 class->p++;
379 }
380
381 /**
382 * Returns true if the register belongs to the given class.
383 */
384 static bool
385 reg_belongs_to_class(unsigned int r, struct ra_class *c)
386 {
387 return BITSET_TEST(c->regs, r);
388 }
389
390 /**
391 * Must be called after all conflicts and register classes have been
392 * set up and before the register set is used for allocation.
393 * To avoid costly q value computation, use the q_values paramater
394 * to pass precomputed q values to this function.
395 */
396 void
397 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
398 {
399 unsigned int b, c;
400
401 for (b = 0; b < regs->class_count; b++) {
402 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
403 }
404
405 if (q_values) {
406 for (b = 0; b < regs->class_count; b++) {
407 for (c = 0; c < regs->class_count; c++) {
408 regs->classes[b]->q[c] = q_values[b][c];
409 }
410 }
411 } else {
412 /* Compute, for each class B and C, how many regs of B an
413 * allocation to C could conflict with.
414 */
415 for (b = 0; b < regs->class_count; b++) {
416 for (c = 0; c < regs->class_count; c++) {
417 unsigned int rc;
418 int max_conflicts = 0;
419
420 for (rc = 0; rc < regs->count; rc++) {
421 int conflicts = 0;
422 unsigned int i;
423
424 if (!reg_belongs_to_class(rc, regs->classes[c]))
425 continue;
426
427 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
428 unsigned int rb = regs->regs[rc].conflict_list[i];
429 if (reg_belongs_to_class(rb, regs->classes[b]))
430 conflicts++;
431 }
432 max_conflicts = MAX2(max_conflicts, conflicts);
433 }
434 regs->classes[b]->q[c] = max_conflicts;
435 }
436 }
437 }
438
439 for (b = 0; b < regs->count; b++) {
440 ralloc_free(regs->regs[b].conflict_list);
441 regs->regs[b].conflict_list = NULL;
442 }
443 }
444
445 static void
446 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
447 {
448 BITSET_SET(g->nodes[n1].adjacency, n2);
449
450 assert(n1 != n2);
451
452 int n1_class = g->nodes[n1].class;
453 int n2_class = g->nodes[n2].class;
454 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
455
456 if (g->nodes[n1].adjacency_count >=
457 g->nodes[n1].adjacency_list_size) {
458 g->nodes[n1].adjacency_list_size *= 2;
459 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
460 unsigned int,
461 g->nodes[n1].adjacency_list_size);
462 }
463
464 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
465 g->nodes[n1].adjacency_count++;
466 }
467
468 static void
469 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
470 {
471 BITSET_CLEAR(g->nodes[n1].adjacency, n2);
472
473 assert(n1 != n2);
474
475 int n1_class = g->nodes[n1].class;
476 int n2_class = g->nodes[n2].class;
477 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
478
479 unsigned int i;
480 for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
481 if (g->nodes[n1].adjacency_list[i] == n2) {
482 memmove(&g->nodes[n1].adjacency_list[i],
483 &g->nodes[n1].adjacency_list[i + 1],
484 (g->nodes[n1].adjacency_count - i - 1) *
485 sizeof(g->nodes[n1].adjacency_list[0]));
486 break;
487 }
488 }
489 assert(i < g->nodes[n1].adjacency_count);
490 g->nodes[n1].adjacency_count--;
491 }
492
493 static void
494 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
495 {
496 if (alloc <= g->alloc)
497 return;
498
499 /* If we always have a whole number of BITSET_WORDs, it makes it much
500 * easier to memset the top of the growing bitsets.
501 */
502 assert(g->alloc % BITSET_WORDBITS == 0);
503 alloc = ALIGN(alloc, BITSET_WORDBITS);
504
505 g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
506
507 unsigned g_bitset_count = BITSET_WORDS(g->alloc);
508 unsigned bitset_count = BITSET_WORDS(alloc);
509 /* For nodes already in the graph, we just have to grow the adjacency set */
510 for (unsigned i = 0; i < g->alloc; i++) {
511 assert(g->nodes[i].adjacency != NULL);
512 g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
513 g_bitset_count, bitset_count);
514 }
515
516 /* For new nodes, we have to fully initialize them */
517 for (unsigned i = g->alloc; i < alloc; i++) {
518 memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
519 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
520 g->nodes[i].adjacency_list_size = 4;
521 g->nodes[i].adjacency_list =
522 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
523 g->nodes[i].adjacency_count = 0;
524 g->nodes[i].q_total = 0;
525
526 g->nodes[i].forced_reg = NO_REG;
527 g->nodes[i].reg = NO_REG;
528 }
529
530 /* These are scratch values and don't need to be zeroed. We'll clear them
531 * as part of ra_select() setup.
532 */
533 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
534 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
535
536 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
537 bitset_count);
538 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
539 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
540 bitset_count);
541 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
542 bitset_count);
543
544 g->alloc = alloc;
545 }
546
547 struct ra_graph *
548 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
549 {
550 struct ra_graph *g;
551
552 g = rzalloc(NULL, struct ra_graph);
553 g->regs = regs;
554 g->count = count;
555 ra_realloc_interference_graph(g, count);
556
557 return g;
558 }
559
560 void
561 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
562 {
563 g->count = count;
564 if (count > g->alloc)
565 ra_realloc_interference_graph(g, g->alloc * 2);
566 }
567
568 void ra_set_select_reg_callback(struct ra_graph *g,
569 unsigned int (*callback)(struct ra_graph *g,
570 BITSET_WORD *regs,
571 void *data),
572 void *data)
573 {
574 g->select_reg_callback = callback;
575 g->select_reg_callback_data = data;
576 }
577
578 void
579 ra_set_node_class(struct ra_graph *g,
580 unsigned int n, unsigned int class)
581 {
582 g->nodes[n].class = class;
583 }
584
585 unsigned int
586 ra_get_node_class(struct ra_graph *g,
587 unsigned int n)
588 {
589 return g->nodes[n].class;
590 }
591
592 unsigned int
593 ra_add_node(struct ra_graph *g, unsigned int class)
594 {
595 unsigned int n = g->count;
596 ra_resize_interference_graph(g, g->count + 1);
597
598 ra_set_node_class(g, n, class);
599
600 return n;
601 }
602
603 void
604 ra_add_node_interference(struct ra_graph *g,
605 unsigned int n1, unsigned int n2)
606 {
607 assert(n1 < g->count && n2 < g->count);
608 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
609 ra_add_node_adjacency(g, n1, n2);
610 ra_add_node_adjacency(g, n2, n1);
611 }
612 }
613
614 void
615 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
616 {
617 for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
618 ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
619
620 memset(g->nodes[n].adjacency, 0,
621 BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
622 g->nodes[n].adjacency_count = 0;
623 }
624
625 static void
626 update_pq_info(struct ra_graph *g, unsigned int n)
627 {
628 int i = n / BITSET_WORDBITS;
629 int n_class = g->nodes[n].class;
630 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
631 BITSET_SET(g->tmp.pq_test, n);
632 } else if (g->tmp.min_q_total[i] != UINT_MAX) {
633 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
634 * that we don't update while we have stale data and accidentally mark
635 * it as non-stale. Also, in order to remain consistent with the old
636 * naive implementation of the algorithm, we do a lexicographical sort
637 * to ensure that we always choose the node with the highest node index.
638 */
639 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
640 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
641 n > g->tmp.min_q_node[i])) {
642 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
643 g->tmp.min_q_node[i] = n;
644 }
645 }
646 }
647
648 static void
649 add_node_to_stack(struct ra_graph *g, unsigned int n)
650 {
651 unsigned int i;
652 int n_class = g->nodes[n].class;
653
654 assert(!BITSET_TEST(g->tmp.in_stack, n));
655
656 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
657 unsigned int n2 = g->nodes[n].adjacency_list[i];
658 unsigned int n2_class = g->nodes[n2].class;
659
660 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
661 !BITSET_TEST(g->tmp.reg_assigned, n2)) {
662 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
663 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
664 update_pq_info(g, n2);
665 }
666 }
667
668 g->tmp.stack[g->tmp.stack_count] = n;
669 g->tmp.stack_count++;
670 BITSET_SET(g->tmp.in_stack, n);
671
672 /* Flag the min_q_total for n's block as dirty so it gets recalculated */
673 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
674 }
675
676 /**
677 * Simplifies the interference graph by pushing all
678 * trivially-colorable nodes into a stack of nodes to be colored,
679 * removing them from the graph, and rinsing and repeating.
680 *
681 * If we encounter a case where we can't push any nodes on the stack, then
682 * we optimistically choose a node and push it on the stack. We heuristically
683 * push the node with the lowest total q value, since it has the fewest
684 * neighbors and therefore is most likely to be allocated.
685 */
686 static void
687 ra_simplify(struct ra_graph *g)
688 {
689 bool progress = true;
690 unsigned int stack_optimistic_start = UINT_MAX;
691
692 /* Figure out the high bit and bit mask for the first iteration of a loop
693 * over BITSET_WORDs.
694 */
695 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
696
697 /* Do a quick pre-pass to set things up */
698 g->tmp.stack_count = 0;
699 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
700 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
701 g->tmp.in_stack[i] = 0;
702 g->tmp.reg_assigned[i] = 0;
703 g->tmp.pq_test[i] = 0;
704 g->tmp.min_q_total[i] = UINT_MAX;
705 g->tmp.min_q_node[i] = UINT_MAX;
706 for (int j = high_bit; j >= 0; j--) {
707 unsigned int n = i * BITSET_WORDBITS + j;
708 g->nodes[n].reg = g->nodes[n].forced_reg;
709 g->nodes[n].tmp.q_total = g->nodes[n].q_total;
710 if (g->nodes[n].reg != NO_REG)
711 g->tmp.reg_assigned[i] |= BITSET_BIT(j);
712 update_pq_info(g, n);
713 }
714 }
715
716 while (progress) {
717 unsigned int min_q_total = UINT_MAX;
718 unsigned int min_q_node = UINT_MAX;
719
720 progress = false;
721
722 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
723 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
724 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
725
726 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
727 if (skip == mask)
728 continue;
729
730 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
731 if (pq) {
732 /* In this case, we have stuff we can immediately take off the
733 * stack. This also means that we're guaranteed to make progress
734 * and we don't need to bother updating lowest_q_total because we
735 * know we're going to loop again before attempting to do anything
736 * optimistic.
737 */
738 for (int j = high_bit; j >= 0; j--) {
739 if (pq & BITSET_BIT(j)) {
740 unsigned int n = i * BITSET_WORDBITS + j;
741 assert(n < g->count);
742 add_node_to_stack(g, n);
743 /* add_node_to_stack() may update pq_test for this word so
744 * we need to update our local copy.
745 */
746 pq = g->tmp.pq_test[i] & ~skip;
747 progress = true;
748 }
749 }
750 } else if (!progress) {
751 if (g->tmp.min_q_total[i] == UINT_MAX) {
752 /* The min_q_total and min_q_node are dirty because we added
753 * one of these nodes to the stack. It needs to be
754 * recalculated.
755 */
756 for (int j = high_bit; j >= 0; j--) {
757 if (skip & BITSET_BIT(j))
758 continue;
759
760 unsigned int n = i * BITSET_WORDBITS + j;
761 assert(n < g->count);
762 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
763 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
764 g->tmp.min_q_node[i] = n;
765 }
766 }
767 }
768 if (g->tmp.min_q_total[i] < min_q_total) {
769 min_q_node = g->tmp.min_q_node[i];
770 min_q_total = g->tmp.min_q_total[i];
771 }
772 }
773 }
774
775 if (!progress && min_q_total != UINT_MAX) {
776 if (stack_optimistic_start == UINT_MAX)
777 stack_optimistic_start = g->tmp.stack_count;
778
779 add_node_to_stack(g, min_q_node);
780 progress = true;
781 }
782 }
783
784 g->tmp.stack_optimistic_start = stack_optimistic_start;
785 }
786
787 static bool
788 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
789 {
790 unsigned int i;
791
792 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
793 unsigned int n2 = g->nodes[n].adjacency_list[i];
794
795 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
796 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
797 return true;
798 }
799 }
800
801 return false;
802 }
803
804 /* Computes a bitfield of what regs are available for a given register
805 * selection.
806 *
807 * This lets drivers implement a more complicated policy than our simple first
808 * or round robin policies (which don't require knowing the whole bitset)
809 */
810 static bool
811 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
812 {
813 struct ra_class *c = g->regs->classes[g->nodes[n].class];
814
815 /* Populate with the set of regs that are in the node's class. */
816 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
817
818 /* Remove any regs that conflict with nodes that we're adjacent to and have
819 * already colored.
820 */
821 for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
822 unsigned int n2 = g->nodes[n].adjacency_list[i];
823 unsigned int r = g->nodes[n2].reg;
824
825 if (!BITSET_TEST(g->tmp.in_stack, n2)) {
826 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
827 regs[j] &= ~g->regs->regs[r].conflicts[j];
828 }
829 }
830
831 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
832 if (regs[i])
833 return true;
834 }
835
836 return false;
837 }
838
839 /**
840 * Pops nodes from the stack back into the graph, coloring them with
841 * registers as they go.
842 *
843 * If all nodes were trivially colorable, then this must succeed. If
844 * not (optimistic coloring), then it may return false;
845 */
846 static bool
847 ra_select(struct ra_graph *g)
848 {
849 int start_search_reg = 0;
850 BITSET_WORD *select_regs = NULL;
851
852 if (g->select_reg_callback)
853 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
854
855 while (g->tmp.stack_count != 0) {
856 unsigned int ri;
857 unsigned int r = -1;
858 int n = g->tmp.stack[g->tmp.stack_count - 1];
859 struct ra_class *c = g->regs->classes[g->nodes[n].class];
860
861 /* set this to false even if we return here so that
862 * ra_get_best_spill_node() considers this node later.
863 */
864 BITSET_CLEAR(g->tmp.in_stack, n);
865
866 if (g->select_reg_callback) {
867 if (!ra_compute_available_regs(g, n, select_regs)) {
868 free(select_regs);
869 return false;
870 }
871
872 r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
873 } else {
874 /* Find the lowest-numbered reg which is not used by a member
875 * of the graph adjacent to us.
876 */
877 for (ri = 0; ri < g->regs->count; ri++) {
878 r = (start_search_reg + ri) % g->regs->count;
879 if (!reg_belongs_to_class(r, c))
880 continue;
881
882 if (!ra_any_neighbors_conflict(g, n, r))
883 break;
884 }
885
886 if (ri >= g->regs->count)
887 return false;
888 }
889
890 g->nodes[n].reg = r;
891 g->tmp.stack_count--;
892
893 /* Rotate the starting point except for any nodes above the lowest
894 * optimistically colorable node. The likelihood that we will succeed
895 * at allocating optimistically colorable nodes is highly dependent on
896 * the way that the previous nodes popped off the stack are laid out.
897 * The round-robin strategy increases the fragmentation of the register
898 * file and decreases the number of nearby nodes assigned to the same
899 * color, what increases the likelihood of spilling with respect to the
900 * dense packing strategy.
901 */
902 if (g->regs->round_robin &&
903 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
904 start_search_reg = r + 1;
905 }
906
907 free(select_regs);
908
909 return true;
910 }
911
912 bool
913 ra_allocate(struct ra_graph *g)
914 {
915 ra_simplify(g);
916 return ra_select(g);
917 }
918
919 unsigned int
920 ra_get_node_reg(struct ra_graph *g, unsigned int n)
921 {
922 if (g->nodes[n].forced_reg != NO_REG)
923 return g->nodes[n].forced_reg;
924 else
925 return g->nodes[n].reg;
926 }
927
928 /**
929 * Forces a node to a specific register. This can be used to avoid
930 * creating a register class containing one node when handling data
931 * that must live in a fixed location and is known to not conflict
932 * with other forced register assignment (as is common with shader
933 * input data). These nodes do not end up in the stack during
934 * ra_simplify(), and thus at ra_select() time it is as if they were
935 * the first popped off the stack and assigned their fixed locations.
936 * Nodes that use this function do not need to be assigned a register
937 * class.
938 *
939 * Must be called before ra_simplify().
940 */
941 void
942 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
943 {
944 g->nodes[n].forced_reg = reg;
945 }
946
947 static float
948 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
949 {
950 unsigned int j;
951 float benefit = 0;
952 int n_class = g->nodes[n].class;
953
954 /* Define the benefit of eliminating an interference between n, n2
955 * through spilling as q(C, B) / p(C). This is similar to the
956 * "count number of edges" approach of traditional graph coloring,
957 * but takes classes into account.
958 */
959 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
960 unsigned int n2 = g->nodes[n].adjacency_list[j];
961 unsigned int n2_class = g->nodes[n2].class;
962 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
963 g->regs->classes[n_class]->p);
964 }
965
966 return benefit;
967 }
968
969 /**
970 * Returns a node number to be spilled according to the cost/benefit using
971 * the pq test, or -1 if there are no spillable nodes.
972 */
973 int
974 ra_get_best_spill_node(struct ra_graph *g)
975 {
976 unsigned int best_node = -1;
977 float best_benefit = 0.0;
978 unsigned int n;
979
980 /* Consider any nodes that we colored successfully or the node we failed to
981 * color for spilling. When we failed to color a node in ra_select(), we
982 * only considered these nodes, so spilling any other ones would not result
983 * in us making progress.
984 */
985 for (n = 0; n < g->count; n++) {
986 float cost = g->nodes[n].spill_cost;
987 float benefit;
988
989 if (cost <= 0.0f)
990 continue;
991
992 if (BITSET_TEST(g->tmp.in_stack, n))
993 continue;
994
995 benefit = ra_get_spill_benefit(g, n);
996
997 if (benefit / cost > best_benefit) {
998 best_benefit = benefit / cost;
999 best_node = n;
1000 }
1001 }
1002
1003 return best_node;
1004 }
1005
1006 /**
1007 * Only nodes with a spill cost set (cost != 0.0) will be considered
1008 * for register spilling.
1009 */
1010 void
1011 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1012 {
1013 g->nodes[n].spill_cost = cost;
1014 }