util/ra: move NO_REG to header
[mesa.git] / src / util / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74
75 #include "ralloc.h"
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "util/bitset.h"
79 #include "register_allocate.h"
80
81 struct ra_reg {
82 BITSET_WORD *conflicts;
83 unsigned int *conflict_list;
84 unsigned int conflict_list_size;
85 unsigned int num_conflicts;
86 };
87
88 struct ra_regs {
89 struct ra_reg *regs;
90 unsigned int count;
91
92 struct ra_class **classes;
93 unsigned int class_count;
94
95 bool round_robin;
96 };
97
98 struct ra_class {
99 /**
100 * Bitset indicating which registers belong to this class.
101 *
102 * (If bit N is set, then register N belongs to this class.)
103 */
104 BITSET_WORD *regs;
105
106 /**
107 * p(B) in Runeson/Nyström paper.
108 *
109 * This is "how many regs are in the set."
110 */
111 unsigned int p;
112
113 /**
114 * q(B,C) (indexed by C, B is this register class) in
115 * Runeson/Nyström paper. This is "how many registers of B could
116 * the worst choice register from C conflict with".
117 */
118 unsigned int *q;
119 };
120
121 struct ra_node {
122 /** @{
123 *
124 * List of which nodes this node interferes with. This should be
125 * symmetric with the other node.
126 */
127 BITSET_WORD *adjacency;
128 unsigned int *adjacency_list;
129 unsigned int adjacency_list_size;
130 unsigned int adjacency_count;
131 /** @} */
132
133 unsigned int class;
134
135 /* Client-assigned register, if assigned, or NO_REG. */
136 unsigned int forced_reg;
137
138 /* Register, if assigned, or NO_REG. */
139 unsigned int reg;
140
141 /**
142 * The q total, as defined in the Runeson/Nyström paper, for all the
143 * interfering nodes not in the stack.
144 */
145 unsigned int q_total;
146
147 /* For an implementation that needs register spilling, this is the
148 * approximate cost of spilling this node.
149 */
150 float spill_cost;
151
152 /* Temporary data for the algorithm to scratch around in */
153 struct {
154 /**
155 * Temporary version of q_total which we decrement as things are placed
156 * into the stack.
157 */
158 unsigned int q_total;
159 } tmp;
160 };
161
162 struct ra_graph {
163 struct ra_regs *regs;
164 /**
165 * the variables that need register allocation.
166 */
167 struct ra_node *nodes;
168 unsigned int count; /**< count of nodes. */
169
170 unsigned int alloc; /**< count of nodes allocated. */
171
172 ra_select_reg_callback select_reg_callback;
173 void *select_reg_callback_data;
174
175 /* Temporary data for the algorithm to scratch around in */
176 struct {
177 unsigned int *stack;
178 unsigned int stack_count;
179
180 /** Bit-set indicating, for each register, if it's in the stack */
181 BITSET_WORD *in_stack;
182
183 /** Bit-set indicating, for each register, if it pre-assigned */
184 BITSET_WORD *reg_assigned;
185
186 /** Bit-set indicating, for each register, the value of the pq test */
187 BITSET_WORD *pq_test;
188
189 /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
190 unsigned int *min_q_total;
191
192 /*
193 * * For each BITSET_WORD, the node with the minimum q_total if
194 * min_q_total[i] != ~0.
195 */
196 unsigned int *min_q_node;
197
198 /**
199 * Tracks the start of the set of optimistically-colored registers in the
200 * stack.
201 */
202 unsigned int stack_optimistic_start;
203 } tmp;
204 };
205
206 /**
207 * Creates a set of registers for the allocator.
208 *
209 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
210 * using ralloc_free().
211 */
212 struct ra_regs *
213 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
214 {
215 unsigned int i;
216 struct ra_regs *regs;
217
218 regs = rzalloc(mem_ctx, struct ra_regs);
219 regs->count = count;
220 regs->regs = rzalloc_array(regs, struct ra_reg, count);
221
222 for (i = 0; i < count; i++) {
223 regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
224 BITSET_WORDS(count));
225 BITSET_SET(regs->regs[i].conflicts, i);
226
227 if (need_conflict_lists) {
228 regs->regs[i].conflict_list = ralloc_array(regs->regs,
229 unsigned int, 4);
230 regs->regs[i].conflict_list_size = 4;
231 regs->regs[i].conflict_list[0] = i;
232 } else {
233 regs->regs[i].conflict_list = NULL;
234 regs->regs[i].conflict_list_size = 0;
235 }
236 regs->regs[i].num_conflicts = 1;
237 }
238
239 return regs;
240 }
241
242 /**
243 * The register allocator by default prefers to allocate low register numbers,
244 * since it was written for hardware (gen4/5 Intel) that is limited in its
245 * multithreadedness by the number of registers used in a given shader.
246 *
247 * However, for hardware without that restriction, densely packed register
248 * allocation can put serious constraints on instruction scheduling. This
249 * function tells the allocator to rotate around the registers if possible as
250 * it allocates the nodes.
251 */
252 void
253 ra_set_allocate_round_robin(struct ra_regs *regs)
254 {
255 regs->round_robin = true;
256 }
257
258 static void
259 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
260 {
261 struct ra_reg *reg1 = &regs->regs[r1];
262
263 if (reg1->conflict_list) {
264 if (reg1->conflict_list_size == reg1->num_conflicts) {
265 reg1->conflict_list_size *= 2;
266 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
267 unsigned int, reg1->conflict_list_size);
268 }
269 reg1->conflict_list[reg1->num_conflicts++] = r2;
270 }
271 BITSET_SET(reg1->conflicts, r2);
272 }
273
274 void
275 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
276 {
277 if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
278 ra_add_conflict_list(regs, r1, r2);
279 ra_add_conflict_list(regs, r2, r1);
280 }
281 }
282
283 /**
284 * Adds a conflict between base_reg and reg, and also between reg and
285 * anything that base_reg conflicts with.
286 *
287 * This can simplify code for setting up multiple register classes
288 * which are aggregates of some base hardware registers, compared to
289 * explicitly using ra_add_reg_conflict.
290 */
291 void
292 ra_add_transitive_reg_conflict(struct ra_regs *regs,
293 unsigned int base_reg, unsigned int reg)
294 {
295 unsigned int i;
296
297 ra_add_reg_conflict(regs, reg, base_reg);
298
299 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
300 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
301 }
302 }
303
304 /**
305 * Set up conflicts between base_reg and it's two half registers reg0 and
306 * reg1, but take care to not add conflicts between reg0 and reg1.
307 *
308 * This is useful for architectures where full size registers are aliased by
309 * two half size registers (eg 32 bit float and 16 bit float registers).
310 */
311 void
312 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
313 unsigned int base_reg, unsigned int reg0, unsigned int reg1)
314 {
315 unsigned int i;
316
317 ra_add_reg_conflict(regs, reg0, base_reg);
318 ra_add_reg_conflict(regs, reg1, base_reg);
319
320 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
321 unsigned int conflict = regs->regs[base_reg].conflict_list[i];
322 if (conflict != reg1)
323 ra_add_reg_conflict(regs, reg0, regs->regs[base_reg].conflict_list[i]);
324 if (conflict != reg0)
325 ra_add_reg_conflict(regs, reg1, regs->regs[base_reg].conflict_list[i]);
326 }
327 }
328
329 /**
330 * Makes every conflict on the given register transitive. In other words,
331 * every register that conflicts with r will now conflict with every other
332 * register conflicting with r.
333 *
334 * This can simplify code for setting up multiple register classes
335 * which are aggregates of some base hardware registers, compared to
336 * explicitly using ra_add_reg_conflict.
337 */
338 void
339 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
340 {
341 struct ra_reg *reg = &regs->regs[r];
342 int c;
343
344 BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
345 struct ra_reg *other = &regs->regs[c];
346 unsigned i;
347 for (i = 0; i < BITSET_WORDS(regs->count); i++)
348 other->conflicts[i] |= reg->conflicts[i];
349 }
350 }
351
352 unsigned int
353 ra_alloc_reg_class(struct ra_regs *regs)
354 {
355 struct ra_class *class;
356
357 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
358 regs->class_count + 1);
359
360 class = rzalloc(regs, struct ra_class);
361 regs->classes[regs->class_count] = class;
362
363 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
364
365 return regs->class_count++;
366 }
367
368 void
369 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
370 {
371 struct ra_class *class = regs->classes[c];
372
373 BITSET_SET(class->regs, r);
374 class->p++;
375 }
376
377 /**
378 * Returns true if the register belongs to the given class.
379 */
380 static bool
381 reg_belongs_to_class(unsigned int r, struct ra_class *c)
382 {
383 return BITSET_TEST(c->regs, r);
384 }
385
386 /**
387 * Must be called after all conflicts and register classes have been
388 * set up and before the register set is used for allocation.
389 * To avoid costly q value computation, use the q_values paramater
390 * to pass precomputed q values to this function.
391 */
392 void
393 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
394 {
395 unsigned int b, c;
396
397 for (b = 0; b < regs->class_count; b++) {
398 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
399 }
400
401 if (q_values) {
402 for (b = 0; b < regs->class_count; b++) {
403 for (c = 0; c < regs->class_count; c++) {
404 regs->classes[b]->q[c] = q_values[b][c];
405 }
406 }
407 } else {
408 /* Compute, for each class B and C, how many regs of B an
409 * allocation to C could conflict with.
410 */
411 for (b = 0; b < regs->class_count; b++) {
412 for (c = 0; c < regs->class_count; c++) {
413 unsigned int rc;
414 int max_conflicts = 0;
415
416 for (rc = 0; rc < regs->count; rc++) {
417 int conflicts = 0;
418 unsigned int i;
419
420 if (!reg_belongs_to_class(rc, regs->classes[c]))
421 continue;
422
423 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
424 unsigned int rb = regs->regs[rc].conflict_list[i];
425 if (reg_belongs_to_class(rb, regs->classes[b]))
426 conflicts++;
427 }
428 max_conflicts = MAX2(max_conflicts, conflicts);
429 }
430 regs->classes[b]->q[c] = max_conflicts;
431 }
432 }
433 }
434
435 for (b = 0; b < regs->count; b++) {
436 ralloc_free(regs->regs[b].conflict_list);
437 regs->regs[b].conflict_list = NULL;
438 }
439 }
440
441 static void
442 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
443 {
444 BITSET_SET(g->nodes[n1].adjacency, n2);
445
446 assert(n1 != n2);
447
448 int n1_class = g->nodes[n1].class;
449 int n2_class = g->nodes[n2].class;
450 g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
451
452 if (g->nodes[n1].adjacency_count >=
453 g->nodes[n1].adjacency_list_size) {
454 g->nodes[n1].adjacency_list_size *= 2;
455 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
456 unsigned int,
457 g->nodes[n1].adjacency_list_size);
458 }
459
460 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
461 g->nodes[n1].adjacency_count++;
462 }
463
464 static void
465 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
466 {
467 BITSET_CLEAR(g->nodes[n1].adjacency, n2);
468
469 assert(n1 != n2);
470
471 int n1_class = g->nodes[n1].class;
472 int n2_class = g->nodes[n2].class;
473 g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
474
475 unsigned int i;
476 for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
477 if (g->nodes[n1].adjacency_list[i] == n2) {
478 memmove(&g->nodes[n1].adjacency_list[i],
479 &g->nodes[n1].adjacency_list[i + 1],
480 (g->nodes[n1].adjacency_count - i - 1) *
481 sizeof(g->nodes[n1].adjacency_list[0]));
482 break;
483 }
484 }
485 assert(i < g->nodes[n1].adjacency_count);
486 g->nodes[n1].adjacency_count--;
487 }
488
489 static void
490 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
491 {
492 if (alloc <= g->alloc)
493 return;
494
495 /* If we always have a whole number of BITSET_WORDs, it makes it much
496 * easier to memset the top of the growing bitsets.
497 */
498 assert(g->alloc % BITSET_WORDBITS == 0);
499 alloc = ALIGN(alloc, BITSET_WORDBITS);
500
501 g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
502
503 unsigned g_bitset_count = BITSET_WORDS(g->alloc);
504 unsigned bitset_count = BITSET_WORDS(alloc);
505 /* For nodes already in the graph, we just have to grow the adjacency set */
506 for (unsigned i = 0; i < g->alloc; i++) {
507 assert(g->nodes[i].adjacency != NULL);
508 g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
509 g_bitset_count, bitset_count);
510 }
511
512 /* For new nodes, we have to fully initialize them */
513 for (unsigned i = g->alloc; i < alloc; i++) {
514 memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
515 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
516 g->nodes[i].adjacency_list_size = 4;
517 g->nodes[i].adjacency_list =
518 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
519 g->nodes[i].adjacency_count = 0;
520 g->nodes[i].q_total = 0;
521
522 g->nodes[i].forced_reg = NO_REG;
523 g->nodes[i].reg = NO_REG;
524 }
525
526 /* These are scratch values and don't need to be zeroed. We'll clear them
527 * as part of ra_select() setup.
528 */
529 g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
530 g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
531
532 g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
533 bitset_count);
534 g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
535 g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
536 bitset_count);
537 g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
538 bitset_count);
539
540 g->alloc = alloc;
541 }
542
543 struct ra_graph *
544 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
545 {
546 struct ra_graph *g;
547
548 g = rzalloc(NULL, struct ra_graph);
549 g->regs = regs;
550 g->count = count;
551 ra_realloc_interference_graph(g, count);
552
553 return g;
554 }
555
556 void
557 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
558 {
559 g->count = count;
560 if (count > g->alloc)
561 ra_realloc_interference_graph(g, g->alloc * 2);
562 }
563
564 void ra_set_select_reg_callback(struct ra_graph *g,
565 ra_select_reg_callback callback,
566 void *data)
567 {
568 g->select_reg_callback = callback;
569 g->select_reg_callback_data = data;
570 }
571
572 void
573 ra_set_node_class(struct ra_graph *g,
574 unsigned int n, unsigned int class)
575 {
576 g->nodes[n].class = class;
577 }
578
579 unsigned int
580 ra_get_node_class(struct ra_graph *g,
581 unsigned int n)
582 {
583 return g->nodes[n].class;
584 }
585
586 unsigned int
587 ra_add_node(struct ra_graph *g, unsigned int class)
588 {
589 unsigned int n = g->count;
590 ra_resize_interference_graph(g, g->count + 1);
591
592 ra_set_node_class(g, n, class);
593
594 return n;
595 }
596
597 void
598 ra_add_node_interference(struct ra_graph *g,
599 unsigned int n1, unsigned int n2)
600 {
601 assert(n1 < g->count && n2 < g->count);
602 if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
603 ra_add_node_adjacency(g, n1, n2);
604 ra_add_node_adjacency(g, n2, n1);
605 }
606 }
607
608 void
609 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
610 {
611 for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
612 ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
613
614 memset(g->nodes[n].adjacency, 0,
615 BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
616 g->nodes[n].adjacency_count = 0;
617 }
618
619 static void
620 update_pq_info(struct ra_graph *g, unsigned int n)
621 {
622 int i = n / BITSET_WORDBITS;
623 int n_class = g->nodes[n].class;
624 if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
625 BITSET_SET(g->tmp.pq_test, n);
626 } else if (g->tmp.min_q_total[i] != UINT_MAX) {
627 /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
628 * that we don't update while we have stale data and accidentally mark
629 * it as non-stale. Also, in order to remain consistent with the old
630 * naive implementation of the algorithm, we do a lexicographical sort
631 * to ensure that we always choose the node with the highest node index.
632 */
633 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
634 (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
635 n > g->tmp.min_q_node[i])) {
636 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
637 g->tmp.min_q_node[i] = n;
638 }
639 }
640 }
641
642 static void
643 add_node_to_stack(struct ra_graph *g, unsigned int n)
644 {
645 unsigned int i;
646 int n_class = g->nodes[n].class;
647
648 assert(!BITSET_TEST(g->tmp.in_stack, n));
649
650 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
651 unsigned int n2 = g->nodes[n].adjacency_list[i];
652 unsigned int n2_class = g->nodes[n2].class;
653
654 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
655 !BITSET_TEST(g->tmp.reg_assigned, n2)) {
656 assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
657 g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
658 update_pq_info(g, n2);
659 }
660 }
661
662 g->tmp.stack[g->tmp.stack_count] = n;
663 g->tmp.stack_count++;
664 BITSET_SET(g->tmp.in_stack, n);
665
666 /* Flag the min_q_total for n's block as dirty so it gets recalculated */
667 g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
668 }
669
670 /**
671 * Simplifies the interference graph by pushing all
672 * trivially-colorable nodes into a stack of nodes to be colored,
673 * removing them from the graph, and rinsing and repeating.
674 *
675 * If we encounter a case where we can't push any nodes on the stack, then
676 * we optimistically choose a node and push it on the stack. We heuristically
677 * push the node with the lowest total q value, since it has the fewest
678 * neighbors and therefore is most likely to be allocated.
679 */
680 static void
681 ra_simplify(struct ra_graph *g)
682 {
683 bool progress = true;
684 unsigned int stack_optimistic_start = UINT_MAX;
685
686 /* Figure out the high bit and bit mask for the first iteration of a loop
687 * over BITSET_WORDs.
688 */
689 const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
690
691 /* Do a quick pre-pass to set things up */
692 g->tmp.stack_count = 0;
693 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
694 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
695 g->tmp.in_stack[i] = 0;
696 g->tmp.reg_assigned[i] = 0;
697 g->tmp.pq_test[i] = 0;
698 g->tmp.min_q_total[i] = UINT_MAX;
699 g->tmp.min_q_node[i] = UINT_MAX;
700 for (int j = high_bit; j >= 0; j--) {
701 unsigned int n = i * BITSET_WORDBITS + j;
702 g->nodes[n].reg = g->nodes[n].forced_reg;
703 g->nodes[n].tmp.q_total = g->nodes[n].q_total;
704 if (g->nodes[n].reg != NO_REG)
705 g->tmp.reg_assigned[i] |= BITSET_BIT(j);
706 update_pq_info(g, n);
707 }
708 }
709
710 while (progress) {
711 unsigned int min_q_total = UINT_MAX;
712 unsigned int min_q_node = UINT_MAX;
713
714 progress = false;
715
716 for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
717 i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
718 BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
719
720 BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
721 if (skip == mask)
722 continue;
723
724 BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
725 if (pq) {
726 /* In this case, we have stuff we can immediately take off the
727 * stack. This also means that we're guaranteed to make progress
728 * and we don't need to bother updating lowest_q_total because we
729 * know we're going to loop again before attempting to do anything
730 * optimistic.
731 */
732 for (int j = high_bit; j >= 0; j--) {
733 if (pq & BITSET_BIT(j)) {
734 unsigned int n = i * BITSET_WORDBITS + j;
735 assert(n < g->count);
736 add_node_to_stack(g, n);
737 /* add_node_to_stack() may update pq_test for this word so
738 * we need to update our local copy.
739 */
740 pq = g->tmp.pq_test[i] & ~skip;
741 progress = true;
742 }
743 }
744 } else if (!progress) {
745 if (g->tmp.min_q_total[i] == UINT_MAX) {
746 /* The min_q_total and min_q_node are dirty because we added
747 * one of these nodes to the stack. It needs to be
748 * recalculated.
749 */
750 for (int j = high_bit; j >= 0; j--) {
751 if (skip & BITSET_BIT(j))
752 continue;
753
754 unsigned int n = i * BITSET_WORDBITS + j;
755 assert(n < g->count);
756 if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
757 g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
758 g->tmp.min_q_node[i] = n;
759 }
760 }
761 }
762 if (g->tmp.min_q_total[i] < min_q_total) {
763 min_q_node = g->tmp.min_q_node[i];
764 min_q_total = g->tmp.min_q_total[i];
765 }
766 }
767 }
768
769 if (!progress && min_q_total != UINT_MAX) {
770 if (stack_optimistic_start == UINT_MAX)
771 stack_optimistic_start = g->tmp.stack_count;
772
773 add_node_to_stack(g, min_q_node);
774 progress = true;
775 }
776 }
777
778 g->tmp.stack_optimistic_start = stack_optimistic_start;
779 }
780
781 static bool
782 ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
783 {
784 unsigned int i;
785
786 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
787 unsigned int n2 = g->nodes[n].adjacency_list[i];
788
789 if (!BITSET_TEST(g->tmp.in_stack, n2) &&
790 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
791 return true;
792 }
793 }
794
795 return false;
796 }
797
798 /* Computes a bitfield of what regs are available for a given register
799 * selection.
800 *
801 * This lets drivers implement a more complicated policy than our simple first
802 * or round robin policies (which don't require knowing the whole bitset)
803 */
804 static bool
805 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
806 {
807 struct ra_class *c = g->regs->classes[g->nodes[n].class];
808
809 /* Populate with the set of regs that are in the node's class. */
810 memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
811
812 /* Remove any regs that conflict with nodes that we're adjacent to and have
813 * already colored.
814 */
815 for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
816 unsigned int n2 = g->nodes[n].adjacency_list[i];
817 unsigned int r = g->nodes[n2].reg;
818
819 if (!BITSET_TEST(g->tmp.in_stack, n2)) {
820 for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
821 regs[j] &= ~g->regs->regs[r].conflicts[j];
822 }
823 }
824
825 for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
826 if (regs[i])
827 return true;
828 }
829
830 return false;
831 }
832
833 /**
834 * Pops nodes from the stack back into the graph, coloring them with
835 * registers as they go.
836 *
837 * If all nodes were trivially colorable, then this must succeed. If
838 * not (optimistic coloring), then it may return false;
839 */
840 static bool
841 ra_select(struct ra_graph *g)
842 {
843 int start_search_reg = 0;
844 BITSET_WORD *select_regs = NULL;
845
846 if (g->select_reg_callback)
847 select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
848
849 while (g->tmp.stack_count != 0) {
850 unsigned int ri;
851 unsigned int r = -1;
852 int n = g->tmp.stack[g->tmp.stack_count - 1];
853 struct ra_class *c = g->regs->classes[g->nodes[n].class];
854
855 /* set this to false even if we return here so that
856 * ra_get_best_spill_node() considers this node later.
857 */
858 BITSET_CLEAR(g->tmp.in_stack, n);
859
860 if (g->select_reg_callback) {
861 if (!ra_compute_available_regs(g, n, select_regs)) {
862 free(select_regs);
863 return false;
864 }
865
866 r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
867 } else {
868 /* Find the lowest-numbered reg which is not used by a member
869 * of the graph adjacent to us.
870 */
871 for (ri = 0; ri < g->regs->count; ri++) {
872 r = (start_search_reg + ri) % g->regs->count;
873 if (!reg_belongs_to_class(r, c))
874 continue;
875
876 if (!ra_any_neighbors_conflict(g, n, r))
877 break;
878 }
879
880 if (ri >= g->regs->count)
881 return false;
882 }
883
884 g->nodes[n].reg = r;
885 g->tmp.stack_count--;
886
887 /* Rotate the starting point except for any nodes above the lowest
888 * optimistically colorable node. The likelihood that we will succeed
889 * at allocating optimistically colorable nodes is highly dependent on
890 * the way that the previous nodes popped off the stack are laid out.
891 * The round-robin strategy increases the fragmentation of the register
892 * file and decreases the number of nearby nodes assigned to the same
893 * color, what increases the likelihood of spilling with respect to the
894 * dense packing strategy.
895 */
896 if (g->regs->round_robin &&
897 g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
898 start_search_reg = r + 1;
899 }
900
901 free(select_regs);
902
903 return true;
904 }
905
906 bool
907 ra_allocate(struct ra_graph *g)
908 {
909 ra_simplify(g);
910 return ra_select(g);
911 }
912
913 unsigned int
914 ra_get_node_reg(struct ra_graph *g, unsigned int n)
915 {
916 if (g->nodes[n].forced_reg != NO_REG)
917 return g->nodes[n].forced_reg;
918 else
919 return g->nodes[n].reg;
920 }
921
922 /**
923 * Forces a node to a specific register. This can be used to avoid
924 * creating a register class containing one node when handling data
925 * that must live in a fixed location and is known to not conflict
926 * with other forced register assignment (as is common with shader
927 * input data). These nodes do not end up in the stack during
928 * ra_simplify(), and thus at ra_select() time it is as if they were
929 * the first popped off the stack and assigned their fixed locations.
930 * Nodes that use this function do not need to be assigned a register
931 * class.
932 *
933 * Must be called before ra_simplify().
934 */
935 void
936 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
937 {
938 g->nodes[n].forced_reg = reg;
939 }
940
941 static float
942 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
943 {
944 unsigned int j;
945 float benefit = 0;
946 int n_class = g->nodes[n].class;
947
948 /* Define the benefit of eliminating an interference between n, n2
949 * through spilling as q(C, B) / p(C). This is similar to the
950 * "count number of edges" approach of traditional graph coloring,
951 * but takes classes into account.
952 */
953 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
954 unsigned int n2 = g->nodes[n].adjacency_list[j];
955 unsigned int n2_class = g->nodes[n2].class;
956 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
957 g->regs->classes[n_class]->p);
958 }
959
960 return benefit;
961 }
962
963 /**
964 * Returns a node number to be spilled according to the cost/benefit using
965 * the pq test, or -1 if there are no spillable nodes.
966 */
967 int
968 ra_get_best_spill_node(struct ra_graph *g)
969 {
970 unsigned int best_node = -1;
971 float best_benefit = 0.0;
972 unsigned int n;
973
974 /* Consider any nodes that we colored successfully or the node we failed to
975 * color for spilling. When we failed to color a node in ra_select(), we
976 * only considered these nodes, so spilling any other ones would not result
977 * in us making progress.
978 */
979 for (n = 0; n < g->count; n++) {
980 float cost = g->nodes[n].spill_cost;
981 float benefit;
982
983 if (cost <= 0.0f)
984 continue;
985
986 if (BITSET_TEST(g->tmp.in_stack, n))
987 continue;
988
989 benefit = ra_get_spill_benefit(g, n);
990
991 if (benefit / cost > best_benefit) {
992 best_benefit = benefit / cost;
993 best_node = n;
994 }
995 }
996
997 return best_node;
998 }
999
1000 /**
1001 * Only nodes with a spill cost set (cost != 0.0) will be considered
1002 * for register spilling.
1003 */
1004 void
1005 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1006 {
1007 g->nodes[n].spill_cost = cost;
1008 }