util: Move os_misc to util
[mesa.git] / src / util / u_math.h
1 /**************************************************************************
2 *
3 * Copyright 2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * Math utilities and approximations for common math functions.
31 * Reduced precision is usually acceptable in shaders...
32 *
33 * "fast" is used in the names of functions which are low-precision,
34 * or at least lower-precision than the normal C lib functions.
35 */
36
37
38 #ifndef U_MATH_H
39 #define U_MATH_H
40
41
42 #include "pipe/p_compiler.h"
43
44 #include "c99_math.h"
45 #include <assert.h>
46 #include <float.h>
47 #include <stdarg.h>
48
49 #include "bitscan.h"
50
51 #ifdef __cplusplus
52 extern "C" {
53 #endif
54
55
56 #ifndef M_SQRT2
57 #define M_SQRT2 1.41421356237309504880
58 #endif
59
60 #define POW2_TABLE_SIZE_LOG2 9
61 #define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
62 #define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
63 #define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
64 extern float pow2_table[POW2_TABLE_SIZE];
65
66
67 /**
68 * Initialize math module. This should be called before using any
69 * other functions in this module.
70 */
71 extern void
72 util_init_math(void);
73
74
75 union fi {
76 float f;
77 int32_t i;
78 uint32_t ui;
79 };
80
81
82 union di {
83 double d;
84 int64_t i;
85 uint64_t ui;
86 };
87
88
89 /**
90 * Extract the IEEE float32 exponent.
91 */
92 static inline signed
93 util_get_float32_exponent(float x)
94 {
95 union fi f;
96
97 f.f = x;
98
99 return ((f.ui >> 23) & 0xff) - 127;
100 }
101
102
103 /**
104 * Fast version of 2^x
105 * Identity: exp2(a + b) = exp2(a) * exp2(b)
106 * Let ipart = int(x)
107 * Let fpart = x - ipart;
108 * So, exp2(x) = exp2(ipart) * exp2(fpart)
109 * Compute exp2(ipart) with i << ipart
110 * Compute exp2(fpart) with lookup table.
111 */
112 static inline float
113 util_fast_exp2(float x)
114 {
115 int32_t ipart;
116 float fpart, mpart;
117 union fi epart;
118
119 if(x > 129.00000f)
120 return 3.402823466e+38f;
121
122 if (x < -126.99999f)
123 return 0.0f;
124
125 ipart = (int32_t) x;
126 fpart = x - (float) ipart;
127
128 /* same as
129 * epart.f = (float) (1 << ipart)
130 * but faster and without integer overflow for ipart > 31
131 */
132 epart.i = (ipart + 127 ) << 23;
133
134 mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
135
136 return epart.f * mpart;
137 }
138
139
140 /**
141 * Fast approximation to exp(x).
142 */
143 static inline float
144 util_fast_exp(float x)
145 {
146 const float k = 1.44269f; /* = log2(e) */
147 return util_fast_exp2(k * x);
148 }
149
150
151 #define LOG2_TABLE_SIZE_LOG2 16
152 #define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
153 #define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
154 extern float log2_table[LOG2_TABLE_SIZE];
155
156
157 /**
158 * Fast approximation to log2(x).
159 */
160 static inline float
161 util_fast_log2(float x)
162 {
163 union fi num;
164 float epart, mpart;
165 num.f = x;
166 epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
167 /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
168 mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
169 return epart + mpart;
170 }
171
172
173 /**
174 * Fast approximation to x^y.
175 */
176 static inline float
177 util_fast_pow(float x, float y)
178 {
179 return util_fast_exp2(util_fast_log2(x) * y);
180 }
181
182
183 /**
184 * Floor(x), returned as int.
185 */
186 static inline int
187 util_ifloor(float f)
188 {
189 int ai, bi;
190 double af, bf;
191 union fi u;
192 af = (3 << 22) + 0.5 + (double) f;
193 bf = (3 << 22) + 0.5 - (double) f;
194 u.f = (float) af; ai = u.i;
195 u.f = (float) bf; bi = u.i;
196 return (ai - bi) >> 1;
197 }
198
199
200 /**
201 * Round float to nearest int.
202 */
203 static inline int
204 util_iround(float f)
205 {
206 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
207 int r;
208 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
209 return r;
210 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
211 int r;
212 _asm {
213 fld f
214 fistp r
215 }
216 return r;
217 #else
218 if (f >= 0.0f)
219 return (int) (f + 0.5f);
220 else
221 return (int) (f - 0.5f);
222 #endif
223 }
224
225
226 /**
227 * Approximate floating point comparison
228 */
229 static inline boolean
230 util_is_approx(float a, float b, float tol)
231 {
232 return fabsf(b - a) <= tol;
233 }
234
235
236 /**
237 * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
238 * util_is_X_nan = test if x is NaN
239 * util_X_inf_sign = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
240 *
241 * NaN can be checked with x != x, however this fails with the fast math flag
242 **/
243
244
245 /**
246 * Single-float
247 */
248 static inline boolean
249 util_is_inf_or_nan(float x)
250 {
251 union fi tmp;
252 tmp.f = x;
253 return (tmp.ui & 0x7f800000) == 0x7f800000;
254 }
255
256
257 static inline boolean
258 util_is_nan(float x)
259 {
260 union fi tmp;
261 tmp.f = x;
262 return (tmp.ui & 0x7fffffff) > 0x7f800000;
263 }
264
265
266 static inline int
267 util_inf_sign(float x)
268 {
269 union fi tmp;
270 tmp.f = x;
271 if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
272 return 0;
273 }
274
275 return (x < 0) ? -1 : 1;
276 }
277
278
279 /**
280 * Double-float
281 */
282 static inline boolean
283 util_is_double_inf_or_nan(double x)
284 {
285 union di tmp;
286 tmp.d = x;
287 return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
288 }
289
290
291 static inline boolean
292 util_is_double_nan(double x)
293 {
294 union di tmp;
295 tmp.d = x;
296 return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
297 }
298
299
300 static inline int
301 util_double_inf_sign(double x)
302 {
303 union di tmp;
304 tmp.d = x;
305 if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
306 return 0;
307 }
308
309 return (x < 0) ? -1 : 1;
310 }
311
312
313 /**
314 * Half-float
315 */
316 static inline boolean
317 util_is_half_inf_or_nan(int16_t x)
318 {
319 return (x & 0x7c00) == 0x7c00;
320 }
321
322
323 static inline boolean
324 util_is_half_nan(int16_t x)
325 {
326 return (x & 0x7fff) > 0x7c00;
327 }
328
329
330 static inline int
331 util_half_inf_sign(int16_t x)
332 {
333 if ((x & 0x7fff) != 0x7c00) {
334 return 0;
335 }
336
337 return (x < 0) ? -1 : 1;
338 }
339
340
341 /**
342 * Return float bits.
343 */
344 static inline unsigned
345 fui( float f )
346 {
347 union fi fi;
348 fi.f = f;
349 return fi.ui;
350 }
351
352 static inline float
353 uif(uint32_t ui)
354 {
355 union fi fi;
356 fi.ui = ui;
357 return fi.f;
358 }
359
360
361 /**
362 * Convert ubyte to float in [0, 1].
363 */
364 static inline float
365 ubyte_to_float(ubyte ub)
366 {
367 return (float) ub * (1.0f / 255.0f);
368 }
369
370
371 /**
372 * Convert float in [0,1] to ubyte in [0,255] with clamping.
373 */
374 static inline ubyte
375 float_to_ubyte(float f)
376 {
377 /* return 0 for NaN too */
378 if (!(f > 0.0f)) {
379 return (ubyte) 0;
380 }
381 else if (f >= 1.0f) {
382 return (ubyte) 255;
383 }
384 else {
385 union fi tmp;
386 tmp.f = f;
387 tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
388 return (ubyte) tmp.i;
389 }
390 }
391
392 static inline float
393 byte_to_float_tex(int8_t b)
394 {
395 return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
396 }
397
398 static inline int8_t
399 float_to_byte_tex(float f)
400 {
401 return (int8_t) (127.0F * f);
402 }
403
404 /**
405 * Calc log base 2
406 */
407 static inline unsigned
408 util_logbase2(unsigned n)
409 {
410 #if defined(HAVE___BUILTIN_CLZ)
411 return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
412 #else
413 unsigned pos = 0;
414 if (n >= 1<<16) { n >>= 16; pos += 16; }
415 if (n >= 1<< 8) { n >>= 8; pos += 8; }
416 if (n >= 1<< 4) { n >>= 4; pos += 4; }
417 if (n >= 1<< 2) { n >>= 2; pos += 2; }
418 if (n >= 1<< 1) { pos += 1; }
419 return pos;
420 #endif
421 }
422
423 static inline uint64_t
424 util_logbase2_64(uint64_t n)
425 {
426 #if defined(HAVE___BUILTIN_CLZLL)
427 return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1));
428 #else
429 uint64_t pos = 0ull;
430 if (n >= 1ull<<32) { n >>= 32; pos += 32; }
431 if (n >= 1ull<<16) { n >>= 16; pos += 16; }
432 if (n >= 1ull<< 8) { n >>= 8; pos += 8; }
433 if (n >= 1ull<< 4) { n >>= 4; pos += 4; }
434 if (n >= 1ull<< 2) { n >>= 2; pos += 2; }
435 if (n >= 1ull<< 1) { pos += 1; }
436 return pos;
437 #endif
438 }
439
440 /**
441 * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently,
442 * returns the smallest x such that n <= 2**x.
443 */
444 static inline unsigned
445 util_logbase2_ceil(unsigned n)
446 {
447 if (n <= 1)
448 return 0;
449
450 return 1 + util_logbase2(n - 1);
451 }
452
453 static inline uint64_t
454 util_logbase2_ceil64(uint64_t n)
455 {
456 if (n <= 1)
457 return 0;
458
459 return 1ull + util_logbase2_64(n - 1);
460 }
461
462 /**
463 * Returns the smallest power of two >= x
464 */
465 static inline unsigned
466 util_next_power_of_two(unsigned x)
467 {
468 #if defined(HAVE___BUILTIN_CLZ)
469 if (x <= 1)
470 return 1;
471
472 return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
473 #else
474 unsigned val = x;
475
476 if (x <= 1)
477 return 1;
478
479 if (util_is_power_of_two_or_zero(x))
480 return x;
481
482 val--;
483 val = (val >> 1) | val;
484 val = (val >> 2) | val;
485 val = (val >> 4) | val;
486 val = (val >> 8) | val;
487 val = (val >> 16) | val;
488 val++;
489 return val;
490 #endif
491 }
492
493 static inline uint64_t
494 util_next_power_of_two64(uint64_t x)
495 {
496 #if defined(HAVE___BUILTIN_CLZLL)
497 if (x <= 1)
498 return 1;
499
500 return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1)));
501 #else
502 uint64_t val = x;
503
504 if (x <= 1)
505 return 1;
506
507 if (util_is_power_of_two_or_zero64(x))
508 return x;
509
510 val--;
511 val = (val >> 1) | val;
512 val = (val >> 2) | val;
513 val = (val >> 4) | val;
514 val = (val >> 8) | val;
515 val = (val >> 16) | val;
516 val = (val >> 32) | val;
517 val++;
518 return val;
519 #endif
520 }
521
522
523 /**
524 * Return number of bits set in n.
525 */
526 static inline unsigned
527 util_bitcount(unsigned n)
528 {
529 #if defined(HAVE___BUILTIN_POPCOUNT)
530 return __builtin_popcount(n);
531 #else
532 /* K&R classic bitcount.
533 *
534 * For each iteration, clear the LSB from the bitfield.
535 * Requires only one iteration per set bit, instead of
536 * one iteration per bit less than highest set bit.
537 */
538 unsigned bits;
539 for (bits = 0; n; bits++) {
540 n &= n - 1;
541 }
542 return bits;
543 #endif
544 }
545
546
547 static inline unsigned
548 util_bitcount64(uint64_t n)
549 {
550 #ifdef HAVE___BUILTIN_POPCOUNTLL
551 return __builtin_popcountll(n);
552 #else
553 return util_bitcount(n) + util_bitcount(n >> 32);
554 #endif
555 }
556
557
558 /**
559 * Reverse bits in n
560 * Algorithm taken from:
561 * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
562 */
563 static inline unsigned
564 util_bitreverse(unsigned n)
565 {
566 n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
567 n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
568 n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
569 n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
570 n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
571 return n;
572 }
573
574 /**
575 * Convert from little endian to CPU byte order.
576 */
577
578 #ifdef PIPE_ARCH_BIG_ENDIAN
579 #define util_le64_to_cpu(x) util_bswap64(x)
580 #define util_le32_to_cpu(x) util_bswap32(x)
581 #define util_le16_to_cpu(x) util_bswap16(x)
582 #else
583 #define util_le64_to_cpu(x) (x)
584 #define util_le32_to_cpu(x) (x)
585 #define util_le16_to_cpu(x) (x)
586 #endif
587
588 #define util_cpu_to_le64(x) util_le64_to_cpu(x)
589 #define util_cpu_to_le32(x) util_le32_to_cpu(x)
590 #define util_cpu_to_le16(x) util_le16_to_cpu(x)
591
592 /**
593 * Reverse byte order of a 32 bit word.
594 */
595 static inline uint32_t
596 util_bswap32(uint32_t n)
597 {
598 #if defined(HAVE___BUILTIN_BSWAP32)
599 return __builtin_bswap32(n);
600 #else
601 return (n >> 24) |
602 ((n >> 8) & 0x0000ff00) |
603 ((n << 8) & 0x00ff0000) |
604 (n << 24);
605 #endif
606 }
607
608 /**
609 * Reverse byte order of a 64bit word.
610 */
611 static inline uint64_t
612 util_bswap64(uint64_t n)
613 {
614 #if defined(HAVE___BUILTIN_BSWAP64)
615 return __builtin_bswap64(n);
616 #else
617 return ((uint64_t)util_bswap32((uint32_t)n) << 32) |
618 util_bswap32((n >> 32));
619 #endif
620 }
621
622
623 /**
624 * Reverse byte order of a 16 bit word.
625 */
626 static inline uint16_t
627 util_bswap16(uint16_t n)
628 {
629 return (n >> 8) |
630 (n << 8);
631 }
632
633 static inline void*
634 util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n)
635 {
636 #ifdef PIPE_ARCH_BIG_ENDIAN
637 size_t i, e;
638 assert(n % 4 == 0);
639
640 for (i = 0, e = n / 4; i < e; i++) {
641 uint32_t * restrict d = (uint32_t* restrict)dest;
642 const uint32_t * restrict s = (const uint32_t* restrict)src;
643 d[i] = util_bswap32(s[i]);
644 }
645 return dest;
646 #else
647 return memcpy(dest, src, n);
648 #endif
649 }
650
651 /**
652 * Clamp X to [MIN, MAX].
653 * This is a macro to allow float, int, uint, etc. types.
654 * We arbitrarily turn NaN into MIN.
655 */
656 #define CLAMP( X, MIN, MAX ) ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) )
657
658 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
659 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
660
661 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
662 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
663
664 #define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
665 #define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
666
667
668 /**
669 * Align a value, only works pot alignemnts.
670 */
671 static inline int
672 align(int value, int alignment)
673 {
674 return (value + alignment - 1) & ~(alignment - 1);
675 }
676
677 static inline uint64_t
678 align64(uint64_t value, unsigned alignment)
679 {
680 return (value + alignment - 1) & ~((uint64_t)alignment - 1);
681 }
682
683 /**
684 * Works like align but on npot alignments.
685 */
686 static inline size_t
687 util_align_npot(size_t value, size_t alignment)
688 {
689 if (value % alignment)
690 return value + (alignment - (value % alignment));
691 return value;
692 }
693
694 static inline unsigned
695 u_minify(unsigned value, unsigned levels)
696 {
697 return MAX2(1, value >> levels);
698 }
699
700 #ifndef COPY_4V
701 #define COPY_4V( DST, SRC ) \
702 do { \
703 (DST)[0] = (SRC)[0]; \
704 (DST)[1] = (SRC)[1]; \
705 (DST)[2] = (SRC)[2]; \
706 (DST)[3] = (SRC)[3]; \
707 } while (0)
708 #endif
709
710
711 #ifndef COPY_4FV
712 #define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC)
713 #endif
714
715
716 #ifndef ASSIGN_4V
717 #define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
718 do { \
719 (DST)[0] = (V0); \
720 (DST)[1] = (V1); \
721 (DST)[2] = (V2); \
722 (DST)[3] = (V3); \
723 } while (0)
724 #endif
725
726
727 static inline uint32_t
728 util_unsigned_fixed(float value, unsigned frac_bits)
729 {
730 return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
731 }
732
733 static inline int32_t
734 util_signed_fixed(float value, unsigned frac_bits)
735 {
736 return (int32_t)(value * (1<<frac_bits));
737 }
738
739 unsigned
740 util_fpstate_get(void);
741 unsigned
742 util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
743 void
744 util_fpstate_set(unsigned fpstate);
745
746
747
748 #ifdef __cplusplus
749 }
750 #endif
751
752 #endif /* U_MATH_H */