multithreading tests from 152 lab 5
[riscv-tests.git] / mt / ag_matmul / matmul_mi.c
diff --git a/mt/ag_matmul/matmul_mi.c b/mt/ag_matmul/matmul_mi.c
new file mode 100755 (executable)
index 0000000..9782d78
--- /dev/null
@@ -0,0 +1,230 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA     : Christopher Celio
+// Student:
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h.
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+
+
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+code; \
+_c += rdcycle(), _i += rdinstret(); \
+if (coreid == 0) \
+printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+} while(0)
+
+
+//--------------------------------------------------------------------------
+// Helper functions
+
+void printArray( char name[], int n, data_t arr[] )
+{
+    int i;
+    if (coreid != 0)
+        return;
+    
+    printf( " %10s :", name );
+    for ( i = 0; i < n; i++ )
+        printf( " %3ld ", (long) arr[i] );
+    printf( "\n" );
+}
+
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+    if (coreid != 0)
+        return;
+    
+    size_t i;
+    for (i = 0; i < n; i++)
+    {
+        if (test[i] != correct[i])
+        {
+            printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
+                   i, (long)test[i], i, (long)correct[i]);
+            exit(-1);
+        }
+    }
+    
+    return;
+}
+
+//--------------------------------------------------------------------------
+// matmul function
+
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+    int i, j, k;
+    
+    if (coreid > 0)
+        return;
+    
+    for ( i = 0; i < lda; i++ )
+        for ( j = 0; j < lda; j++ )
+        {
+            for ( k = 0; k < lda; k++ )
+            {
+                C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+            }
+        }
+    
+}
+
+
+
+void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{    
+    int i, j, k;
+    
+    for ( i = 0; i < lda; i+=2 )
+    {
+        for (k = 0; k < lda; k+=4)
+        {
+            int d0 = B[k*lda + i];
+            int c0 = B[k*lda + i + 1];
+            int d1 = B[(k+1)*lda + i];
+            int c1 = B[(k+1)*lda + i + 1];
+            int d2 = B[(k+2)*lda + i];
+            int c2 = B[(k+2)*lda + i + 1];
+            int d3 = B[(k+3)*lda + i];
+            int c3 = B[(k+3)*lda + i + 1];
+            
+            for ( j = coreid*(lda/ncores); j < (coreid+1)*(lda/ncores); j+=4)
+            {
+                
+                int sum = A[j*lda + k] * d0;
+                sum += A[j*lda + k + 1] * d1;
+                sum += A[j*lda + k + 2] * d2;
+                sum += A[j*lda + k + 3] * d3;
+                C[j*lda +i] += sum;
+                
+                sum = A[j*lda + k] * c0;
+                sum += A[j*lda + k + 1] * c1;
+                sum += A[j*lda + k + 2] * c2;
+                sum += A[j*lda + k + 3] * c3;
+                C[j*lda + i + 1] += sum;
+                
+                sum = A[(j+1)*lda + k] * d0;
+                sum += A[(j+1)*lda + k + 1] * d1;
+                sum += A[(j+1)*lda + k + 2] * d2;
+                sum += A[(j+1)*lda + k + 3] * d3;
+                C[(j+1)*lda +i] += sum;
+                
+                sum = A[(j+1)*lda + k] * c0;
+                sum += A[(j+1)*lda + k + 1] * c1;
+                sum += A[(j+1)*lda + k + 2] * c2;
+                sum += A[(j+1)*lda + k + 3] * c3;
+                C[(j+1)*lda + i + 1] += sum;
+                
+                sum = A[(j+2)*lda + k] * d0;
+                sum += A[(j+2)*lda + k + 1] * d1;
+                sum += A[(j+2)*lda + k + 2] * d2;
+                sum += A[(j+2)*lda + k + 3] * d3;
+                C[(j+2)*lda +i] += sum;
+                
+                sum = A[(j+2)*lda + k] * c0;
+                sum += A[(j+2)*lda + k + 1] * c1;
+                sum += A[(j+2)*lda + k + 2] * c2;
+                sum += A[(j+2)*lda + k + 3] * c3;
+                C[(j+2)*lda + i + 1] += sum;
+                
+                sum = A[(j+3)*lda + k] * d0;
+                sum += A[(j+3)*lda + k + 1] * d1;
+                sum += A[(j+3)*lda + k + 2] * d2;
+                sum += A[(j+3)*lda + k + 3] * d3;
+                C[(j+3)*lda +i] += sum;
+                
+                sum = A[(j+3)*lda + k] * c0;
+                sum += A[(j+3)*lda + k + 1] * c1;
+                sum += A[(j+3)*lda + k + 2] * c2;
+                sum += A[(j+3)*lda + k + 3] * c3;
+                C[(j+3)*lda + i + 1] += sum;
+                
+            }
+            barrier();
+        }
+    }
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+
+void thread_entry(int cid, int nc)
+{
+    coreid = cid;
+    ncores = nc;
+    
+    // static allocates data in the binary, which is visible to both threads
+    static data_t results_data[ARRAY_SIZE];
+    
+    
+//    // Execute the provided, naive matmul
+//    barrier();
+//    stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+//    
+//    
+//    // verify
+//    verify(ARRAY_SIZE, results_data, verify_data);
+//    
+//    // clear results from the first trial
+//    size_t i;
+//    if (coreid == 0) 
+//        for (i=0; i < ARRAY_SIZE; i++)
+//            results_data[i] = 0;
+//    barrier();
+    
+    
+    // Execute your faster matmul
+    barrier();
+    stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+    
+#ifdef DEBUG
+    printArray("results:", ARRAY_SIZE, results_data);
+    printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+    
+    // verify
+    verify(ARRAY_SIZE, results_data, verify_data);
+    barrier();
+    
+    exit(0);
+}
+