multithreading tests from 152 lab 5
[riscv-tests.git] / mt / bm_matmul / matmul_mi.c
diff --git a/mt/bm_matmul/matmul_mi.c b/mt/bm_matmul/matmul_mi.c
new file mode 100644 (file)
index 0000000..2471a4a
--- /dev/null
@@ -0,0 +1,348 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA     : Christopher Celio
+// Student: 
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h. 
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes 
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+  
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+   
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+    unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+    code; \
+    _c += rdcycle(), _i += rdinstret(); \
+    if (coreid == 0) \
+      printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+             stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+  } while(0)
+
+//--------------------------------------------------------------------------
+// Helper functions
+    
+void printArray( char name[], int n, data_t arr[] )
+{
+   int i;
+   if (coreid != 0)
+      return;
+  
+   printf( " %10s :", name );
+   for ( i = 0; i < n; i++ )
+      printf( " %3ld ", (long) arr[i] );
+   printf( "\n" );
+}
+      
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+   if (coreid != 0)
+      return;
+
+   size_t i;
+   for (i = 0; i < n; i++)
+   {
+      if (test[i] != correct[i])
+      {
+         printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", 
+            i, (long)test[i], i, (long)correct[i]);
+         exit(-1);
+      }
+   }
+   
+   return;
+}
+//--------------------------------------------------------------------------
+// matmul function
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   int i, j, k;
+
+   if (coreid > 0)
+      return;
+  
+   for ( i = 0; i < lda; i++ )
+      for ( j = 0; j < lda; j++ )  
+      {
+         for ( k = 0; k < lda; k++ ) 
+         {
+            C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+         }
+      }
+
+}
+
+
+void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   
+   // ***************************** //
+   // **** ADD YOUR CODE HERE ***** //
+   // ***************************** //
+   //
+   // feel free to make a separate function for MI and MSI versions.
+       int i, j, k;
+    int space=lda/ncores;
+    int max= space*coreid+space;
+       static data_t B1[32*32];
+       if (coreid==ncores-1){  
+               for (i=0; i<lda*lda/2;i++)
+               {
+                       B1[i]=B[i];
+               }
+       }
+       else{
+               for (i=lda*lda/2;i<lda*lda;i++)
+                       B1[i]=B[i];     
+       }
+       data_t temp=0;
+       data_t temp1=0;
+       data_t temp2=0;
+       data_t temp3=0;
+       data_t tempB=0;
+
+       data_t temp_1=0;
+       data_t temp1_1=0;
+       data_t temp2_1=0;
+       data_t temp3_1=0;
+       data_t tempB_1=0;
+
+       data_t temp_2=0;
+       data_t temp1_2=0;
+       data_t temp2_2=0;
+       data_t temp3_2=0;
+       data_t tempB_2=0;
+
+       data_t temp_3=0;
+       data_t temp1_3=0;
+       data_t temp2_3=0;
+       data_t temp3_3=0;
+       data_t tempB_3=0;
+       barrier();
+       if (coreid!=ncores-1){
+               for (i=space*coreid;i<max/4*4;i+=4)
+               {
+                       for(j=0;j<lda/4*4;j+=4)
+                       {
+                               temp=C[j+i*lda];
+                               temp1=C[j+(i+1)*lda];
+                               temp2=C[j+(i+2)*lda];
+                               temp3=C[j+(i+3)*lda];
+                               temp_1=C[j+1+i*lda];
+                               temp1_1=C[j+1+(i+1)*lda];
+                               temp2_1=C[j+1+(i+2)*lda];
+                               temp3_1=C[j+1+(i+3)*lda];
+                               temp_2=C[j+2+i*lda];
+                               temp1_2=C[j+2+(i+1)*lda];
+                               temp2_2=C[j+2+(i+2)*lda];
+                               temp3_2=C[j+2+(i+3)*lda];
+                               temp_3=C[j+3+i*lda];
+                               temp1_3=C[j+3+(i+1)*lda];
+                               temp2_3=C[j+3+(i+2)*lda];
+                               temp3_3=C[j+3+(i+3)*lda];
+                               for (k=0;k<lda;k++)
+                               {
+                                       tempB=B[j+k*lda];
+                                       temp+=A[k+i*lda]*tempB; 
+                                       temp1+=A[k+(i+1)*lda]*tempB;
+                                       temp2+=A[k+(i+2)*lda]*tempB;
+                                       temp3+=A[k+(i+3)*lda]*tempB;
+                                       
+                                       tempB_1=B[j+1+k*lda];
+                                       temp_1+=A[k+i*lda]*tempB_1;     
+                                       temp1_1+=A[k+(i+1)*lda]*tempB_1;
+                                       temp2_1+=A[k+(i+2)*lda]*tempB_1;
+                                       temp3_1+=A[k+(i+3)*lda]*tempB_1;
+                               
+                                       tempB_2=B[j+2+k*lda];
+                                       temp_2+=A[k+i*lda]*tempB_2;     
+                                       temp1_2+=A[k+(i+1)*lda]*tempB_2;
+                                       temp2_2+=A[k+(i+2)*lda]*tempB_2;
+                                       temp3_2+=A[k+(i+3)*lda]*tempB_2;
+                               
+                                       tempB_3=B[j+3+k*lda];
+                                       temp_3+=A[k+i*lda]*tempB_3;     
+                                       temp1_3+=A[k+(i+1)*lda]*tempB_3;
+                                       temp2_3+=A[k+(i+2)*lda]*tempB_3;
+                                       temp3_3+=A[k+(i+3)*lda]*tempB_3;
+                               }
+                               C[j+i*lda]=temp;
+                               C[j+(i+1)*lda]=temp1;
+                               C[j+(i+2)*lda]=temp2;
+                               C[j+(i+3)*lda]=temp3;
+                               
+                               C[j+1+i*lda]=temp_1;
+                               C[j+1+(i+1)*lda]=temp1_1;
+                               C[j+1+(i+2)*lda]=temp2_1;
+                               C[j+1+(i+3)*lda]=temp3_1;
+                               
+                               C[j+2+i*lda]=temp_2;
+                               C[j+2+(i+1)*lda]=temp1_2;
+                               C[j+2+(i+2)*lda]=temp2_2;
+                               C[j+2+(i+3)*lda]=temp3_2;
+
+                               C[j+3+i*lda]=temp_3;
+                               C[j+3+(i+1)*lda]=temp1_3;
+                               C[j+3+(i+2)*lda]=temp2_3;
+                               C[j+3+(i+3)*lda]=temp3_3;
+                               
+                       }
+               }
+       }
+       else{
+               for (i=space*coreid;i<lda/4*4;i+=4)
+               {
+                       for(j=0;j<lda/4*4;j+=4)
+                       {
+                               temp=C[j+i*lda];
+                               temp1=C[j+(i+1)*lda];
+                               temp2=C[j+(i+2)*lda];
+                               temp3=C[j+(i+3)*lda];
+                               temp_1=C[j+1+i*lda];
+                               temp1_1=C[j+1+(i+1)*lda];
+                               temp2_1=C[j+1+(i+2)*lda];
+                               temp3_1=C[j+1+(i+3)*lda];
+                               temp_2=C[j+2+i*lda];
+                               temp1_2=C[j+2+(i+1)*lda];
+                               temp2_2=C[j+2+(i+2)*lda];
+                               temp3_2=C[j+2+(i+3)*lda];
+                               temp_3=C[j+3+i*lda];
+                               temp1_3=C[j+3+(i+1)*lda];
+                               temp2_3=C[j+3+(i+2)*lda];
+                               temp3_3=C[j+3+(i+3)*lda];
+                               for (k=0;k<lda;k++)
+                               {
+                                       tempB=B1[j+k*lda];
+                                       temp+=A[k+i*lda]*tempB; 
+                                       temp1+=A[k+(i+1)*lda]*tempB;
+                                       temp2+=A[k+(i+2)*lda]*tempB;
+                                       temp3+=A[k+(i+3)*lda]*tempB;
+                                       
+                                       tempB_1=B1[j+1+k*lda];
+                                       temp_1+=A[k+i*lda]*tempB_1;     
+                                       temp1_1+=A[k+(i+1)*lda]*tempB_1;
+                                       temp2_1+=A[k+(i+2)*lda]*tempB_1;
+                                       temp3_1+=A[k+(i+3)*lda]*tempB_1;
+                               
+                                       tempB_2=B1[j+2+k*lda];
+                                       temp_2+=A[k+i*lda]*tempB_2;     
+                                       temp1_2+=A[k+(i+1)*lda]*tempB_2;
+                                       temp2_2+=A[k+(i+2)*lda]*tempB_2;
+                                       temp3_2+=A[k+(i+3)*lda]*tempB_2;
+                               
+                                       tempB_3=B1[j+3+k*lda];
+                                       temp_3+=A[k+i*lda]*tempB_3;     
+                                       temp1_3+=A[k+(i+1)*lda]*tempB_3;
+                                       temp2_3+=A[k+(i+2)*lda]*tempB_3;
+                                       temp3_3+=A[k+(i+3)*lda]*tempB_3;
+                               }
+                               C[j+i*lda]=temp;
+                               C[j+(i+1)*lda]=temp1;
+                               C[j+(i+2)*lda]=temp2;
+                               C[j+(i+3)*lda]=temp3;
+                               
+                               C[j+1+i*lda]=temp_1;
+                               C[j+1+(i+1)*lda]=temp1_1;
+                               C[j+1+(i+2)*lda]=temp2_1;
+                               C[j+1+(i+3)*lda]=temp3_1;
+                               
+                               C[j+2+i*lda]=temp_2;
+                               C[j+2+(i+1)*lda]=temp1_2;
+                               C[j+2+(i+2)*lda]=temp2_2;
+                               C[j+2+(i+3)*lda]=temp3_2;
+
+                               C[j+3+i*lda]=temp_3;
+                               C[j+3+(i+1)*lda]=temp1_3;
+                               C[j+3+(i+2)*lda]=temp2_3;
+                               C[j+3+(i+3)*lda]=temp3_3;
+                               
+                       }
+               }
+       }
+
+
+       
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+  
+void thread_entry(int cid, int nc)
+{
+   coreid = cid;
+   ncores = nc;
+
+   // static allocates data in the binary, which is visible to both threads
+   static data_t results_data[ARRAY_SIZE];
+
+
+//   // Execute the provided, naive matmul
+//   barrier();
+//   stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+// 
+//   
+//   // verify
+//   verify(ARRAY_SIZE, results_data, verify_data);
+//   
+//   // clear results from the first trial
+//   size_t i;
+//   if (coreid == 0) 
+//      for (i=0; i < ARRAY_SIZE; i++)
+//         results_data[i] = 0;
+//   barrier();
+
+   
+   // Execute your faster matmul
+   barrier();
+   stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+#ifdef DEBUG
+   printArray("results:", ARRAY_SIZE, results_data);
+   printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   barrier();
+
+   exit(0);
+}
+