multithreading tests from 152 lab 5
[riscv-tests.git] / mt / bt_matmul / matmul.c~
diff --git a/mt/bt_matmul/matmul.c~ b/mt/bt_matmul/matmul.c~
new file mode 100644 (file)
index 0000000..99ac845
--- /dev/null
@@ -0,0 +1,260 @@
+//**************************************************************************
+// Multi-threaded Matrix Multiply benchmark
+//--------------------------------------------------------------------------
+// TA     : Christopher Celio
+// Student: 
+//
+//
+// This benchmark multiplies two 2-D arrays together and writes the results to
+// a third vector. The input data (and reference data) should be generated
+// using the matmul_gendata.pl perl script and dumped to a file named
+// dataset.h. 
+
+
+// print out arrays, etc.
+//#define DEBUG
+
+//--------------------------------------------------------------------------
+// Includes 
+
+#include <string.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+
+//--------------------------------------------------------------------------
+// Input/Reference Data
+
+typedef float data_t;
+#include "dataset.h"
+  
+//--------------------------------------------------------------------------
+// Basic Utilities and Multi-thread Support
+
+__thread unsigned long coreid;
+unsigned long ncores;
+
+#include "util.h"
+   
+#define stringify_1(s) #s
+#define stringify(s) stringify_1(s)
+#define stats(code) do { \
+    unsigned long _c = -rdcycle(), _i = -rdinstret(); \
+    code; \
+    _c += rdcycle(), _i += rdinstret(); \
+    if (coreid == 0) \
+      printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
+             stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
+  } while(0)
+
+//--------------------------------------------------------------------------
+// Helper functions
+    
+void printArray( char name[], int n, data_t arr[] )
+{
+   int i;
+   if (coreid != 0)
+      return;
+  
+   printf( " %10s :", name );
+   for ( i = 0; i < n; i++ )
+      printf( " %3ld ", (long) arr[i] );
+   printf( "\n" );
+}
+      
+void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct)
+{
+   if (coreid != 0)
+      return;
+
+   size_t i;
+   for (i = 0; i < n; i++)
+   {
+      if (test[i] != correct[i])
+      {
+         printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", 
+            i, (long)test[i], i, (long)correct[i]);
+         exit(-1);
+      }
+   }
+   
+   return;
+}
+//--------------------------------------------------------------------------
+// matmul function
+// single-thread, naive version
+void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   int i, j, k;
+
+   if (coreid > 0)
+      return;
+  
+   for ( i = 0; i < lda; i++ )
+      for ( j = 0; j < lda; j++ )  
+      {
+         for ( k = 0; k < lda; k++ ) 
+         {
+            C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
+         }
+      }
+
+}
+
+
+void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
+{
+   
+   // ***************************** //
+   // **** ADD YOUR CODE HERE ***** //
+   // ***************************** //
+   //
+   // feel free to make a separate function for MI and MSI versions.
+   int i, j, k;
+   int temp0, temp1,temp2,temp3,temp4,temp5,temp6,temp7;
+       int start = coreid*lda/2;
+       int end = start + lda/2;
+   int j_lda;
+       int temp_i;
+       int temp_A0, temp_A1, temp_A2, temp_A3 ;
+
+                for ( i = start; i < end; i+=8){
+                   for ( j = 0; j < lda; j++)  
+                   {
+                                       j_lda = j*lda;
+                                       temp0 = C[(i+0) + j_lda];
+                                       temp1 = C[(i+1) + j_lda];
+                                       temp2 = C[(i+2) + j_lda];
+                                       temp3 = C[(i+3) + j_lda];
+                                       temp4 = C[(i+4) + j_lda];
+                                       temp5 = C[(i+5) + j_lda];
+                                       temp6 = C[(i+6) + j_lda];
+                                       temp7 = C[(i+7) + j_lda];
+                                       
+                                       
+
+                      for ( k = 0; k < lda; k+=4) 
+                      {
+                               temp_i = i;
+                               temp_A0         = A[j_lda + (k+0)] ;
+                               temp_A1         = A[j_lda + (k+1)] ;
+                               temp_A2         = A[j_lda + (k+2)] ;
+                               temp_A3 = A[j_lda + (k+3)] ;
+
+
+                               temp0 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp0 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp0 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp0 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+
+                               temp1 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp1 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp1 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp1 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+                               
+                               temp2 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp2 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp2 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp2 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+
+                               
+                               temp3 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp3 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp3 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp3 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+
+                               temp4 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp4 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp4 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp4 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+                               
+                               temp5 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp5 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp5 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp5 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+
+                               temp6 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp6 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp6 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp6 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+
+                               
+                               temp7 += temp_A0 * B[(k+0)*lda + temp_i];
+                               temp7 += temp_A1 * B[(k+1)*lda + temp_i];
+                               temp7 += temp_A2 * B[(k+2)*lda + temp_i];
+                               temp7 += temp_A3 * B[(k+3)*lda + temp_i];
+                               temp_i++;
+
+                      }
+
+                                       C[i + j*lda] = temp0;
+                                       C[(i+1) + j*lda] = temp1;
+                                       C[(i+2) + j*lda] = temp2;
+                                       C[(i+3) + j*lda] = temp3;
+                                       C[(i+4) + j*lda] = temp4;
+                                       C[(i+5) + j*lda] = temp5;
+                                       C[(i+6) + j*lda] = temp6;
+                                       C[(i+7) + j*lda] = temp7;
+
+                   }
+                 }
+}
+
+//--------------------------------------------------------------------------
+// Main
+//
+// all threads start executing thread_entry(). Use their "coreid" to
+// differentiate between threads (each thread is running on a separate core).
+  
+void thread_entry(int cid, int nc)
+{
+   coreid = cid;
+   ncores = nc;
+
+   // static allocates data in the binary, which is visible to both threads
+   static data_t results_data[ARRAY_SIZE];
+
+       /*
+   // Execute the provided, naive matmul
+   barrier();
+   stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   
+   // clear results from the first trial
+   size_t i;
+   if (coreid == 0) 
+      for (i=0; i < ARRAY_SIZE; i++)
+         results_data[i] = 0;
+   barrier();
+
+   */
+   // Execute your faster matmul
+   barrier();
+   stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier());
+#ifdef DEBUG
+   printArray("results:", ARRAY_SIZE, results_data);
+   printArray("verify :", ARRAY_SIZE, verify_data);
+#endif
+   
+   // verify
+   verify(ARRAY_SIZE, results_data, verify_data);
+   barrier();
+
+   exit(0);
+}