pysvp64db: fix traversal
[openpower-isa.git] / openpower / isa / fpcvt.mdwn
1 <!-- X Instructions here described in PowerISA Version 3.0 B Book 1 -->
2
3 <!-- Section 4.6.7 Floating-point Rounding and Conversion instructions. P 159 - 166 -->
4
5 # Floating Convert with round Signed Doubleword to Single-Precision format
6
7 X-Form
8
9 * fcfids FRT,FRB (Rc=0)
10 * fcfids. FRT,FRB (Rc=1)
11
12 Pseudo-code:
13
14 FRT <- INT2FP(FRB, 'sint2single')
15
16 Special Registers Altered:
17
18 FPRF FR FI
19 FX XX
20 CR1 (if Rc=1)
21
22 # [DRAFT] Floating Convert From Integer In GPR
23
24 X-Form
25
26 * ctfpr FRT,RB,IT (Rc=0)
27 * ctfpr. FRT,RB,IT (Rc=1)
28
29 Pseudo-code:
30
31 if IT[0] = 0 then # 32-bit int -> 64-bit float
32 # rounding never necessary, so don't touch FPSCR
33 # based off xvcvsxwdp
34 if IT = 0 then # Signed 32-bit
35 src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
36 else # IT = 1 -- Unsigned 32-bit
37 src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
38 FRT <- bfp64_CONVERT_FROM_BFP(src)
39 else
40 # rounding may be necessary. based off xscvuxdsp
41 reset_xflags()
42 switch(IT)
43 case(0): # Signed 32-bit
44 src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
45 case(1): # Unsigned 32-bit
46 src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
47 case(2): # Signed 64-bit
48 src <- bfp_CONVERT_FROM_SI64((RB))
49 default: # Unsigned 64-bit
50 src <- bfp_CONVERT_FROM_UI64((RB))
51 rnd <- bfp_ROUND_TO_BFP64(0b0, FPSCR.RN, src)
52 result <- bfp64_CONVERT_FROM_BFP(rnd)
53 cls <- fprf_CLASS_BFP64(result)
54 if xx_flag = 1 then SetFX(FPSCR.XX)
55 FRT <- result
56 FPSCR.FPRF <- cls
57 FPSCR.FR <- inc_flag
58 FPSCR.FI <- xx_flag
59
60 Special Registers Altered:
61
62 CR1 (if Rc=1)
63 FPRF FR FI FX XX (if IT[0]=1)
64
65 # [DRAFT] Floating Convert From Integer In GPR Single
66
67 X-Form
68
69 * ctfprs FRT,RB,IT (Rc=0)
70 * ctfprs. FRT,RB,IT (Rc=1)
71
72 Pseudo-code:
73
74 <!-- note the PowerISA spec. explicitly has empty lines before/after SetFX, -->
75 <!-- don't remove them -->
76 # rounding may be necessary. based off xscvuxdsp
77 reset_xflags()
78 switch(IT)
79 case(0): # Signed 32-bit
80 src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
81 case(1): # Unsigned 32-bit
82 src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
83 case(2): # Signed 64-bit
84 src <- bfp_CONVERT_FROM_SI64((RB))
85 default: # Unsigned 64-bit
86 src <- bfp_CONVERT_FROM_UI64((RB))
87 rnd <- bfp_ROUND_TO_BFP32(FPSCR.RN, src)
88 result32 <- bfp32_CONVERT_FROM_BFP(rnd)
89 cls <- fprf_CLASS_BFP32(result32)
90 result <- DOUBLE(result32)
91 if xx_flag = 1 then SetFX(FPSCR.XX)
92 FRT <- result
93 FPSCR.FPRF <- cls
94 FPSCR.FR <- inc_flag
95 FPSCR.FI <- xx_flag
96
97 Special Registers Altered:
98
99 CR1 (if Rc=1)
100 FPRF FR FI FX XX
101
102 # [DRAFT] Floating Convert To Integer In GPR
103
104 XO-Form
105
106 * cffpr RT,FRB,CVM,IT (OE=0 Rc=0)
107 * cffpr. RT,FRB,CVM,IT (OE=0 Rc=1)
108 * cffpro RT,FRB,CVM,IT (OE=1 Rc=0)
109 * cffpro. RT,FRB,CVM,IT (OE=1 Rc=1)
110
111 Pseudo-code:
112
113 <!-- EXTRA_UNINIT_REGS: RT -->
114 # based on xscvdpuxws
115 reset_xflags()
116 src <- bfp_CONVERT_FROM_BFP64((FRB))
117 switch(IT)
118 case(0): # Signed 32-bit
119 range_min <- bfp_CONVERT_FROM_SI32(0x8000_0000)
120 range_max <- bfp_CONVERT_FROM_SI32(0x7FFF_FFFF)
121 js_mask <- 0x0000_0000_FFFF_FFFF
122 case(1): # Unsigned 32-bit
123 range_min <- bfp_CONVERT_FROM_UI32(0)
124 range_max <- bfp_CONVERT_FROM_UI32(0xFFFF_FFFF)
125 js_mask <- 0x0000_0000_FFFF_FFFF
126 case(2): # Signed 64-bit
127 range_min <- bfp_CONVERT_FROM_SI64(-0x8000_0000_0000_0000)
128 range_max <- bfp_CONVERT_FROM_SI64(0x7FFF_FFFF_FFFF_FFFF)
129 js_mask <- 0xFFFF_FFFF_FFFF_FFFF
130 default: # Unsigned 64-bit
131 range_min <- bfp_CONVERT_FROM_UI64(0)
132 range_max <- bfp_CONVERT_FROM_UI64(0xFFFF_FFFF_FFFF_FFFF)
133 js_mask <- 0xFFFF_FFFF_FFFF_FFFF
134 if (CVM[2] = 1) | (FPSCR.RN = 0b01) then
135 rnd <- bfp_ROUND_TO_INTEGER_TRUNC(src)
136 else if FPSCR.RN = 0b00 then
137 rnd <- bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)
138 else if FPSCR.RN = 0b10 then
139 rnd <- bfp_ROUND_TO_INTEGER_CEIL(src)
140 else if FPSCR.RN = 0b11 then
141 rnd <- bfp_ROUND_TO_INTEGER_FLOOR(src)
142 switch(CVM)
143 case(0, 1): # OpenPower semantics
144 if IsNaN(rnd) then
145 result <- si64_CONVERT_FROM_BFP(range_min)
146 else if bfp_COMPARE_GT(rnd, range_max) then
147 result <- ui64_CONVERT_FROM_BFP(range_max)
148 else if bfp_COMPARE_LT(rnd, range_min) then
149 result <- si64_CONVERT_FROM_BFP(range_min)
150 else if IT[1] = 1 then # Unsigned 32/64-bit
151 result <- ui64_CONVERT_FROM_BFP(rnd)
152 else # Signed 32/64-bit
153 result <- si64_CONVERT_FROM_BFP(rnd)
154 case(2, 3): # Java/Saturating semantics
155 if IsNaN(rnd) then
156 result <- [0] * 64
157 else if bfp_COMPARE_GT(rnd, range_max) then
158 result <- ui64_CONVERT_FROM_BFP(range_max)
159 else if bfp_COMPARE_LT(rnd, range_min) then
160 result <- si64_CONVERT_FROM_BFP(range_min)
161 else if IT[1] = 1 then # Unsigned 32/64-bit
162 result <- ui64_CONVERT_FROM_BFP(rnd)
163 else # Signed 32/64-bit
164 result <- si64_CONVERT_FROM_BFP(rnd)
165 default: # JavaScript semantics
166 # CVM = 6, 7 are illegal instructions
167 # using a 128-bit intermediate works here because the largest type
168 # this instruction can convert from has 53 significand bits, and
169 # the largest type this instruction can convert to has 64 bits,
170 # and the sum of those is strictly less than the 128 bits of the
171 # intermediate result.
172 limit <- bfp_CONVERT_FROM_UI128([1] * 128)
173 if IsInf(rnd) | IsNaN(rnd) then
174 result <- [0] * 64
175 else if bfp_COMPARE_GT(bfp_ABSOLUTE(rnd), limit) then
176 result <- [0] * 64
177 else
178 result128 <- si128_CONVERT_FROM_BFP(rnd)
179 result <- result128[64:127] & js_mask
180 switch(IT)
181 case(0): # Signed 32-bit
182 result <- EXTS64(result[32:63])
183 result_bfp <- bfp_CONVERT_FROM_SI32(result[32:63])
184 case(1): # Unsigned 32-bit
185 result <- EXTZ64(result[32:63])
186 result_bfp <- bfp_CONVERT_FROM_UI32(result[32:63])
187 case(2): # Signed 64-bit
188 result_bfp <- bfp_CONVERT_FROM_SI64(result)
189 default: # Unsigned 64-bit
190 result_bfp <- bfp_CONVERT_FROM_UI64(result)
191 overflow <- 0 # signals SO only when OE = 1
192 if IsNaN(src) | ¬bfp_COMPARE_EQ(rnd, result_bfp) then
193 overflow <- 1 # signals SO only when OE = 1
194 vxcvi_flag <- 1
195 xx_flag <- 0
196 inc_flag <- 0
197 else
198 xx_flag <- ¬bfp_COMPARE_EQ(src, result_bfp)
199 inc_flag <- bfp_COMPARE_GT(bfp_ABSOLUTE(result_bfp), bfp_ABSOLUTE(src))
200 if vxsnan_flag = 1 then SetFX(FPSCR.VXSNAN)
201 if vxcvi_flag = 1 then SetFX(FPSCR.VXCVI)
202 if xx_flag = 1 then SetFX(FPSCR.XX)
203 vx_flag <- vxsnan_flag | vxcvi_flag
204 vex_flag <- FPSCR.VE & vx_flag
205 if vex_flag = 0 then
206 RT <- result
207 FPSCR.FPRF <- undefined(0b00000)
208 FPSCR.FR <- inc_flag
209 FPSCR.FI <- xx_flag
210 else
211 FPSCR.FR <- 0
212 FPSCR.FI <- 0
213
214 Special Registers Altered:
215
216 CR0 (if Rc=1)
217 SO OV OV32 (if OE=1)
218 FPRF=0bUUUUU FR FI FX XX VXSNAN VXCV