turnip: remove some dead/redundant code
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "ir3/ir3_nir.h"
31 #include "main/menums.h"
32 #include "nir/nir.h"
33 #include "nir/nir_builder.h"
34 #include "spirv/nir_spirv.h"
35 #include "util/debug.h"
36 #include "util/mesa-sha1.h"
37 #include "util/u_atomic.h"
38 #include "vk_format.h"
39 #include "vk_util.h"
40
41 #include "tu_cs.h"
42
43 /* Emit IB that preloads the descriptors that the shader uses */
44
45 static inline uint32_t
46 tu6_vkstage2opcode(VkShaderStageFlags stage)
47 {
48 switch (stage) {
49 case VK_SHADER_STAGE_VERTEX_BIT:
50 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
51 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
52 case VK_SHADER_STAGE_GEOMETRY_BIT:
53 return CP_LOAD_STATE6_GEOM;
54 case VK_SHADER_STAGE_FRAGMENT_BIT:
55 case VK_SHADER_STAGE_COMPUTE_BIT:
56 return CP_LOAD_STATE6_FRAG;
57 default:
58 unreachable("bad shader type");
59 }
60 }
61
62 static enum a6xx_state_block
63 tu6_tex_stage2sb(VkShaderStageFlags stage)
64 {
65 switch (stage) {
66 case VK_SHADER_STAGE_VERTEX_BIT:
67 return SB6_VS_TEX;
68 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
69 return SB6_HS_TEX;
70 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
71 return SB6_DS_TEX;
72 case VK_SHADER_STAGE_GEOMETRY_BIT:
73 return SB6_GS_TEX;
74 case VK_SHADER_STAGE_FRAGMENT_BIT:
75 return SB6_FS_TEX;
76 case VK_SHADER_STAGE_COMPUTE_BIT:
77 return SB6_CS_TEX;
78 default:
79 unreachable("bad shader stage");
80 }
81 }
82
83 static enum a6xx_state_block
84 tu6_ubo_stage2sb(VkShaderStageFlags stage)
85 {
86 switch (stage) {
87 case VK_SHADER_STAGE_VERTEX_BIT:
88 return SB6_VS_SHADER;
89 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
90 return SB6_HS_SHADER;
91 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
92 return SB6_DS_SHADER;
93 case VK_SHADER_STAGE_GEOMETRY_BIT:
94 return SB6_GS_SHADER;
95 case VK_SHADER_STAGE_FRAGMENT_BIT:
96 return SB6_FS_SHADER;
97 case VK_SHADER_STAGE_COMPUTE_BIT:
98 return SB6_CS_SHADER;
99 default:
100 unreachable("bad shader stage");
101 }
102 }
103
104 static void
105 emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
106 enum a6xx_state_block sb, unsigned base, unsigned offset,
107 unsigned count)
108 {
109 /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
110 * clear if emitting more packets will even help anything. Presumably the
111 * descriptor cache is relatively small, and these packets stop doing
112 * anything when there are too many descriptors.
113 */
114 tu_cs_emit_pkt7(cs, opcode, 3);
115 tu_cs_emit(cs,
116 CP_LOAD_STATE6_0_STATE_TYPE(st) |
117 CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
118 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
119 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
120 tu_cs_emit_qw(cs, offset | (base << 28));
121 }
122
123 static unsigned
124 tu6_load_state_size(struct tu_pipeline_layout *layout, bool compute)
125 {
126 const unsigned load_state_size = 4;
127 unsigned size = 0;
128 for (unsigned i = 0; i < layout->num_sets; i++) {
129 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
130 for (unsigned j = 0; j < set_layout->binding_count; j++) {
131 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
132 unsigned count = 0;
133 /* Note: some users, like amber for example, pass in
134 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
135 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
136 */
137 VkShaderStageFlags stages = compute ?
138 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
139 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
140 unsigned stage_count = util_bitcount(stages);
141 switch (binding->type) {
142 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
143 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
144 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
145 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
146 /* IBO-backed resources only need one packet for all graphics stages */
147 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
148 count += 1;
149 if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
150 count += 1;
151 break;
152 case VK_DESCRIPTOR_TYPE_SAMPLER:
153 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
154 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
155 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
156 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
157 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
158 /* Textures and UBO's needs a packet for each stage */
159 count = stage_count;
160 break;
161 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
162 /* Because of how we pack combined images and samplers, we
163 * currently can't use one packet for the whole array.
164 */
165 count = stage_count * binding->array_size * 2;
166 break;
167 default:
168 unreachable("bad descriptor type");
169 }
170 size += count * load_state_size;
171 }
172 }
173 return size;
174 }
175
176 static void
177 tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
178 {
179 unsigned size = tu6_load_state_size(pipeline->layout, compute);
180 if (size == 0)
181 return;
182
183 struct tu_cs cs;
184 tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
185
186 struct tu_pipeline_layout *layout = pipeline->layout;
187 for (unsigned i = 0; i < layout->num_sets; i++) {
188 /* From 13.2.7. Descriptor Set Binding:
189 *
190 * A compatible descriptor set must be bound for all set numbers that
191 * any shaders in a pipeline access, at the time that a draw or
192 * dispatch command is recorded to execute using that pipeline.
193 * However, if none of the shaders in a pipeline statically use any
194 * bindings with a particular set number, then no descriptor set need
195 * be bound for that set number, even if the pipeline layout includes
196 * a non-trivial descriptor set layout for that set number.
197 *
198 * This means that descriptor sets unused by the pipeline may have a
199 * garbage or 0 BINDLESS_BASE register, which will cause context faults
200 * when prefetching descriptors from these sets. Skip prefetching for
201 * descriptors from them to avoid this. This is also an optimization,
202 * since these prefetches would be useless.
203 */
204 if (!(pipeline->active_desc_sets & (1u << i)))
205 continue;
206
207 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
208 for (unsigned j = 0; j < set_layout->binding_count; j++) {
209 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
210 unsigned base = i;
211 unsigned offset = binding->offset / 4;
212 /* Note: some users, like amber for example, pass in
213 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
214 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
215 */
216 VkShaderStageFlags stages = compute ?
217 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
218 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
219 unsigned count = binding->array_size;
220 if (count == 0 || stages == 0)
221 continue;
222 switch (binding->type) {
223 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
224 base = MAX_SETS;
225 offset = (layout->input_attachment_count +
226 layout->set[i].dynamic_offset_start +
227 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
228 /* fallthrough */
229 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
230 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
231 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
232 /* IBO-backed resources only need one packet for all graphics stages */
233 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
234 emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
235 base, offset, count);
236 }
237 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
238 emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
239 base, offset, count);
240 }
241 break;
242 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
243 base = MAX_SETS;
244 offset = (layout->set[i].input_attachment_start +
245 binding->input_attachment_offset) * A6XX_TEX_CONST_DWORDS;
246 case VK_DESCRIPTOR_TYPE_SAMPLER:
247 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
248 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
249 unsigned stage_log2;
250 for_each_bit(stage_log2, stages) {
251 VkShaderStageFlags stage = 1 << stage_log2;
252 emit_load_state(&cs, tu6_vkstage2opcode(stage),
253 binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
254 ST6_SHADER : ST6_CONSTANTS,
255 tu6_tex_stage2sb(stage), base, offset, count);
256 }
257 break;
258 }
259 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
260 base = MAX_SETS;
261 offset = (layout->input_attachment_count +
262 layout->set[i].dynamic_offset_start +
263 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
264 /* fallthrough */
265 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
266 unsigned stage_log2;
267 for_each_bit(stage_log2, stages) {
268 VkShaderStageFlags stage = 1 << stage_log2;
269 emit_load_state(&cs, tu6_vkstage2opcode(stage), ST6_UBO,
270 tu6_ubo_stage2sb(stage), base, offset, count);
271 }
272 break;
273 }
274 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
275 unsigned stage_log2;
276 for_each_bit(stage_log2, stages) {
277 VkShaderStageFlags stage = 1 << stage_log2;
278 /* TODO: We could emit less CP_LOAD_STATE6 if we used
279 * struct-of-arrays instead of array-of-structs.
280 */
281 for (unsigned i = 0; i < count; i++) {
282 unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
283 unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
284 emit_load_state(&cs, tu6_vkstage2opcode(stage),
285 ST6_CONSTANTS, tu6_tex_stage2sb(stage),
286 base, tex_offset, 1);
287 emit_load_state(&cs, tu6_vkstage2opcode(stage),
288 ST6_SHADER, tu6_tex_stage2sb(stage),
289 base, sam_offset, 1);
290 }
291 }
292 break;
293 }
294 default:
295 unreachable("bad descriptor type");
296 }
297 }
298 }
299
300 pipeline->load_state.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
301 }
302
303 struct tu_pipeline_builder
304 {
305 struct tu_device *device;
306 struct tu_pipeline_cache *cache;
307 struct tu_pipeline_layout *layout;
308 const VkAllocationCallbacks *alloc;
309 const VkGraphicsPipelineCreateInfo *create_info;
310
311 struct tu_shader *shaders[MESA_SHADER_STAGES];
312 uint32_t shader_offsets[MESA_SHADER_STAGES];
313 uint32_t binning_vs_offset;
314 uint32_t shader_total_size;
315
316 bool rasterizer_discard;
317 /* these states are affectd by rasterizer_discard */
318 VkSampleCountFlagBits samples;
319 bool use_color_attachments;
320 bool use_dual_src_blend;
321 uint32_t color_attachment_count;
322 VkFormat color_attachment_formats[MAX_RTS];
323 VkFormat depth_attachment_format;
324 uint32_t render_components;
325 };
326
327 static enum tu_dynamic_state_bits
328 tu_dynamic_state_bit(VkDynamicState state)
329 {
330 switch (state) {
331 case VK_DYNAMIC_STATE_VIEWPORT:
332 return TU_DYNAMIC_VIEWPORT;
333 case VK_DYNAMIC_STATE_SCISSOR:
334 return TU_DYNAMIC_SCISSOR;
335 case VK_DYNAMIC_STATE_LINE_WIDTH:
336 return TU_DYNAMIC_LINE_WIDTH;
337 case VK_DYNAMIC_STATE_DEPTH_BIAS:
338 return TU_DYNAMIC_DEPTH_BIAS;
339 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
340 return TU_DYNAMIC_BLEND_CONSTANTS;
341 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
342 return TU_DYNAMIC_DEPTH_BOUNDS;
343 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
344 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
345 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
346 return TU_DYNAMIC_STENCIL_WRITE_MASK;
347 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
348 return TU_DYNAMIC_STENCIL_REFERENCE;
349 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
350 return TU_DYNAMIC_SAMPLE_LOCATIONS;
351 default:
352 unreachable("invalid dynamic state");
353 return 0;
354 }
355 }
356
357 static bool
358 tu_logic_op_reads_dst(VkLogicOp op)
359 {
360 switch (op) {
361 case VK_LOGIC_OP_CLEAR:
362 case VK_LOGIC_OP_COPY:
363 case VK_LOGIC_OP_COPY_INVERTED:
364 case VK_LOGIC_OP_SET:
365 return false;
366 default:
367 return true;
368 }
369 }
370
371 static VkBlendFactor
372 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
373 {
374 /* treat dst alpha as 1.0 and avoid reading it */
375 switch (factor) {
376 case VK_BLEND_FACTOR_DST_ALPHA:
377 return VK_BLEND_FACTOR_ONE;
378 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
379 return VK_BLEND_FACTOR_ZERO;
380 default:
381 return factor;
382 }
383 }
384
385 static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
386 {
387 switch (factor) {
388 case VK_BLEND_FACTOR_SRC1_COLOR:
389 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
390 case VK_BLEND_FACTOR_SRC1_ALPHA:
391 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
392 return true;
393 default:
394 return false;
395 }
396 }
397
398 static bool
399 tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
400 {
401 if (!info)
402 return false;
403
404 for (unsigned i = 0; i < info->attachmentCount; i++) {
405 const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
406 if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
407 tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
408 tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
409 tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
410 return true;
411 }
412
413 return false;
414 }
415
416 static enum pc_di_primtype
417 tu6_primtype(VkPrimitiveTopology topology)
418 {
419 switch (topology) {
420 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
421 return DI_PT_POINTLIST;
422 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
423 return DI_PT_LINELIST;
424 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
425 return DI_PT_LINESTRIP;
426 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
427 return DI_PT_TRILIST;
428 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
429 return DI_PT_TRISTRIP;
430 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
431 return DI_PT_TRIFAN;
432 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
433 return DI_PT_LINE_ADJ;
434 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
435 return DI_PT_LINESTRIP_ADJ;
436 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
437 return DI_PT_TRI_ADJ;
438 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
439 return DI_PT_TRISTRIP_ADJ;
440 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
441 default:
442 unreachable("invalid primitive topology");
443 return DI_PT_NONE;
444 }
445 }
446
447 static enum adreno_compare_func
448 tu6_compare_func(VkCompareOp op)
449 {
450 switch (op) {
451 case VK_COMPARE_OP_NEVER:
452 return FUNC_NEVER;
453 case VK_COMPARE_OP_LESS:
454 return FUNC_LESS;
455 case VK_COMPARE_OP_EQUAL:
456 return FUNC_EQUAL;
457 case VK_COMPARE_OP_LESS_OR_EQUAL:
458 return FUNC_LEQUAL;
459 case VK_COMPARE_OP_GREATER:
460 return FUNC_GREATER;
461 case VK_COMPARE_OP_NOT_EQUAL:
462 return FUNC_NOTEQUAL;
463 case VK_COMPARE_OP_GREATER_OR_EQUAL:
464 return FUNC_GEQUAL;
465 case VK_COMPARE_OP_ALWAYS:
466 return FUNC_ALWAYS;
467 default:
468 unreachable("invalid VkCompareOp");
469 return FUNC_NEVER;
470 }
471 }
472
473 static enum adreno_stencil_op
474 tu6_stencil_op(VkStencilOp op)
475 {
476 switch (op) {
477 case VK_STENCIL_OP_KEEP:
478 return STENCIL_KEEP;
479 case VK_STENCIL_OP_ZERO:
480 return STENCIL_ZERO;
481 case VK_STENCIL_OP_REPLACE:
482 return STENCIL_REPLACE;
483 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
484 return STENCIL_INCR_CLAMP;
485 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
486 return STENCIL_DECR_CLAMP;
487 case VK_STENCIL_OP_INVERT:
488 return STENCIL_INVERT;
489 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
490 return STENCIL_INCR_WRAP;
491 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
492 return STENCIL_DECR_WRAP;
493 default:
494 unreachable("invalid VkStencilOp");
495 return STENCIL_KEEP;
496 }
497 }
498
499 static enum a3xx_rop_code
500 tu6_rop(VkLogicOp op)
501 {
502 switch (op) {
503 case VK_LOGIC_OP_CLEAR:
504 return ROP_CLEAR;
505 case VK_LOGIC_OP_AND:
506 return ROP_AND;
507 case VK_LOGIC_OP_AND_REVERSE:
508 return ROP_AND_REVERSE;
509 case VK_LOGIC_OP_COPY:
510 return ROP_COPY;
511 case VK_LOGIC_OP_AND_INVERTED:
512 return ROP_AND_INVERTED;
513 case VK_LOGIC_OP_NO_OP:
514 return ROP_NOOP;
515 case VK_LOGIC_OP_XOR:
516 return ROP_XOR;
517 case VK_LOGIC_OP_OR:
518 return ROP_OR;
519 case VK_LOGIC_OP_NOR:
520 return ROP_NOR;
521 case VK_LOGIC_OP_EQUIVALENT:
522 return ROP_EQUIV;
523 case VK_LOGIC_OP_INVERT:
524 return ROP_INVERT;
525 case VK_LOGIC_OP_OR_REVERSE:
526 return ROP_OR_REVERSE;
527 case VK_LOGIC_OP_COPY_INVERTED:
528 return ROP_COPY_INVERTED;
529 case VK_LOGIC_OP_OR_INVERTED:
530 return ROP_OR_INVERTED;
531 case VK_LOGIC_OP_NAND:
532 return ROP_NAND;
533 case VK_LOGIC_OP_SET:
534 return ROP_SET;
535 default:
536 unreachable("invalid VkLogicOp");
537 return ROP_NOOP;
538 }
539 }
540
541 static enum adreno_rb_blend_factor
542 tu6_blend_factor(VkBlendFactor factor)
543 {
544 switch (factor) {
545 case VK_BLEND_FACTOR_ZERO:
546 return FACTOR_ZERO;
547 case VK_BLEND_FACTOR_ONE:
548 return FACTOR_ONE;
549 case VK_BLEND_FACTOR_SRC_COLOR:
550 return FACTOR_SRC_COLOR;
551 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
552 return FACTOR_ONE_MINUS_SRC_COLOR;
553 case VK_BLEND_FACTOR_DST_COLOR:
554 return FACTOR_DST_COLOR;
555 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
556 return FACTOR_ONE_MINUS_DST_COLOR;
557 case VK_BLEND_FACTOR_SRC_ALPHA:
558 return FACTOR_SRC_ALPHA;
559 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
560 return FACTOR_ONE_MINUS_SRC_ALPHA;
561 case VK_BLEND_FACTOR_DST_ALPHA:
562 return FACTOR_DST_ALPHA;
563 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
564 return FACTOR_ONE_MINUS_DST_ALPHA;
565 case VK_BLEND_FACTOR_CONSTANT_COLOR:
566 return FACTOR_CONSTANT_COLOR;
567 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
568 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
569 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
570 return FACTOR_CONSTANT_ALPHA;
571 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
572 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
573 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
574 return FACTOR_SRC_ALPHA_SATURATE;
575 case VK_BLEND_FACTOR_SRC1_COLOR:
576 return FACTOR_SRC1_COLOR;
577 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
578 return FACTOR_ONE_MINUS_SRC1_COLOR;
579 case VK_BLEND_FACTOR_SRC1_ALPHA:
580 return FACTOR_SRC1_ALPHA;
581 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
582 return FACTOR_ONE_MINUS_SRC1_ALPHA;
583 default:
584 unreachable("invalid VkBlendFactor");
585 return FACTOR_ZERO;
586 }
587 }
588
589 static enum a3xx_rb_blend_opcode
590 tu6_blend_op(VkBlendOp op)
591 {
592 switch (op) {
593 case VK_BLEND_OP_ADD:
594 return BLEND_DST_PLUS_SRC;
595 case VK_BLEND_OP_SUBTRACT:
596 return BLEND_SRC_MINUS_DST;
597 case VK_BLEND_OP_REVERSE_SUBTRACT:
598 return BLEND_DST_MINUS_SRC;
599 case VK_BLEND_OP_MIN:
600 return BLEND_MIN_DST_SRC;
601 case VK_BLEND_OP_MAX:
602 return BLEND_MAX_DST_SRC;
603 default:
604 unreachable("invalid VkBlendOp");
605 return BLEND_DST_PLUS_SRC;
606 }
607 }
608
609 void
610 tu6_emit_xs_config(struct tu_cs *cs,
611 gl_shader_stage stage, /* xs->type, but xs may be NULL */
612 const struct ir3_shader_variant *xs,
613 uint64_t binary_iova)
614 {
615 static const struct xs_config {
616 uint16_t reg_sp_xs_ctrl;
617 uint16_t reg_sp_xs_config;
618 uint16_t reg_hlsq_xs_ctrl;
619 uint16_t reg_sp_vs_obj_start;
620 uint8_t opcode;
621 enum a6xx_state_block sb : 8;
622 } xs_config[] = {
623 [MESA_SHADER_VERTEX] = {
624 REG_A6XX_SP_VS_CTRL_REG0,
625 REG_A6XX_SP_VS_CONFIG,
626 REG_A6XX_HLSQ_VS_CNTL,
627 REG_A6XX_SP_VS_OBJ_START_LO,
628 CP_LOAD_STATE6_GEOM,
629 SB6_VS_SHADER,
630 },
631 [MESA_SHADER_TESS_CTRL] = {
632 REG_A6XX_SP_HS_CTRL_REG0,
633 REG_A6XX_SP_HS_CONFIG,
634 REG_A6XX_HLSQ_HS_CNTL,
635 REG_A6XX_SP_HS_OBJ_START_LO,
636 CP_LOAD_STATE6_GEOM,
637 SB6_HS_SHADER,
638 },
639 [MESA_SHADER_TESS_EVAL] = {
640 REG_A6XX_SP_DS_CTRL_REG0,
641 REG_A6XX_SP_DS_CONFIG,
642 REG_A6XX_HLSQ_DS_CNTL,
643 REG_A6XX_SP_DS_OBJ_START_LO,
644 CP_LOAD_STATE6_GEOM,
645 SB6_DS_SHADER,
646 },
647 [MESA_SHADER_GEOMETRY] = {
648 REG_A6XX_SP_GS_CTRL_REG0,
649 REG_A6XX_SP_GS_CONFIG,
650 REG_A6XX_HLSQ_GS_CNTL,
651 REG_A6XX_SP_GS_OBJ_START_LO,
652 CP_LOAD_STATE6_GEOM,
653 SB6_GS_SHADER,
654 },
655 [MESA_SHADER_FRAGMENT] = {
656 REG_A6XX_SP_FS_CTRL_REG0,
657 REG_A6XX_SP_FS_CONFIG,
658 REG_A6XX_HLSQ_FS_CNTL,
659 REG_A6XX_SP_FS_OBJ_START_LO,
660 CP_LOAD_STATE6_FRAG,
661 SB6_FS_SHADER,
662 },
663 [MESA_SHADER_COMPUTE] = {
664 REG_A6XX_SP_CS_CTRL_REG0,
665 REG_A6XX_SP_CS_CONFIG,
666 REG_A6XX_HLSQ_CS_CNTL,
667 REG_A6XX_SP_CS_OBJ_START_LO,
668 CP_LOAD_STATE6_FRAG,
669 SB6_CS_SHADER,
670 },
671 };
672 const struct xs_config *cfg = &xs_config[stage];
673
674 if (!xs) {
675 /* shader stage disabled */
676 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 1);
677 tu_cs_emit(cs, 0);
678
679 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
680 tu_cs_emit(cs, 0);
681 return;
682 }
683
684 bool is_fs = xs->type == MESA_SHADER_FRAGMENT;
685 enum a3xx_threadsize threadsize = FOUR_QUADS;
686
687 /* TODO:
688 * the "threadsize" field may have nothing to do with threadsize,
689 * use a value that matches the blob until it is figured out
690 */
691 if (xs->type == MESA_SHADER_GEOMETRY)
692 threadsize = TWO_QUADS;
693
694 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_ctrl, 1);
695 tu_cs_emit(cs,
696 A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) |
697 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) |
698 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
699 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) |
700 COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) |
701 COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) |
702 /* only fragment shader sets VARYING bit */
703 COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) |
704 /* unknown bit, seems unnecessary */
705 COND(is_fs, 0x1000000));
706
707 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 2);
708 tu_cs_emit(cs, A6XX_SP_VS_CONFIG_ENABLED |
709 COND(xs->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
710 COND(xs->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
711 COND(xs->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
712 COND(xs->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO) |
713 A6XX_SP_VS_CONFIG_NTEX(xs->num_samp) |
714 A6XX_SP_VS_CONFIG_NSAMP(xs->num_samp));
715 tu_cs_emit(cs, xs->instrlen);
716
717 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
718 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(xs->constlen, 4)) |
719 A6XX_HLSQ_VS_CNTL_ENABLED);
720
721 /* emit program binary
722 * binary_iova should be aligned to 1 instrlen unit (128 bytes)
723 */
724
725 assert((binary_iova & 0x7f) == 0);
726
727 tu_cs_emit_pkt4(cs, cfg->reg_sp_vs_obj_start, 2);
728 tu_cs_emit_qw(cs, binary_iova);
729
730 tu_cs_emit_pkt7(cs, cfg->opcode, 3);
731 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
732 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
733 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
734 CP_LOAD_STATE6_0_STATE_BLOCK(cfg->sb) |
735 CP_LOAD_STATE6_0_NUM_UNIT(xs->instrlen));
736 tu_cs_emit_qw(cs, binary_iova);
737
738 /* emit immediates */
739
740 const struct ir3_const_state *const_state = &xs->shader->const_state;
741 uint32_t base = const_state->offsets.immediate;
742 int size = const_state->immediates_count;
743
744 /* truncate size to avoid writing constants that shader
745 * does not use:
746 */
747 size = MIN2(size + base, xs->constlen) - base;
748
749 if (size <= 0)
750 return;
751
752 tu_cs_emit_pkt7(cs, cfg->opcode, 3 + size * 4);
753 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
754 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
755 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
756 CP_LOAD_STATE6_0_STATE_BLOCK(cfg->sb) |
757 CP_LOAD_STATE6_0_NUM_UNIT(size));
758 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
759 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
760
761 for (unsigned i = 0; i < size; i++) {
762 tu_cs_emit(cs, const_state->immediates[i].val[0]);
763 tu_cs_emit(cs, const_state->immediates[i].val[1]);
764 tu_cs_emit(cs, const_state->immediates[i].val[2]);
765 tu_cs_emit(cs, const_state->immediates[i].val[3]);
766 }
767 }
768
769 static void
770 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
771 const struct ir3_shader_variant *v,
772 uint32_t binary_iova)
773 {
774 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
775 tu_cs_emit(cs, 0xff);
776
777 tu6_emit_xs_config(cs, MESA_SHADER_COMPUTE, v, binary_iova);
778
779 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
780 tu_cs_emit(cs, 0x41);
781
782 uint32_t local_invocation_id =
783 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
784 uint32_t work_group_id =
785 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
786
787 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
788 tu_cs_emit(cs,
789 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
790 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
791 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
792 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
793 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
794 }
795
796 static void
797 tu6_emit_vs_system_values(struct tu_cs *cs,
798 const struct ir3_shader_variant *vs,
799 const struct ir3_shader_variant *gs,
800 bool primid_passthru)
801 {
802 const uint32_t vertexid_regid =
803 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
804 const uint32_t instanceid_regid =
805 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
806 const uint32_t primitiveid_regid = gs ?
807 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
808 regid(63, 0);
809 const uint32_t gsheader_regid = gs ?
810 ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
811 regid(63, 0);
812
813 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
814 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
815 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
816 A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
817 0xfc000000);
818 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
819 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
820 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
821 tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
822 0xfc00); /* VFD_CONTROL_5 */
823 tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
824 }
825
826 /* Add any missing varyings needed for stream-out. Otherwise varyings not
827 * used by fragment shader will be stripped out.
828 */
829 static void
830 tu6_link_streamout(struct ir3_shader_linkage *l,
831 const struct ir3_shader_variant *v)
832 {
833 const struct ir3_stream_output_info *info = &v->shader->stream_output;
834
835 /*
836 * First, any stream-out varyings not already in linkage map (ie. also
837 * consumed by frag shader) need to be added:
838 */
839 for (unsigned i = 0; i < info->num_outputs; i++) {
840 const struct ir3_stream_output *out = &info->output[i];
841 unsigned compmask =
842 (1 << (out->num_components + out->start_component)) - 1;
843 unsigned k = out->register_index;
844 unsigned idx, nextloc = 0;
845
846 /* psize/pos need to be the last entries in linkage map, and will
847 * get added link_stream_out, so skip over them:
848 */
849 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
850 v->outputs[k].slot == VARYING_SLOT_POS)
851 continue;
852
853 for (idx = 0; idx < l->cnt; idx++) {
854 if (l->var[idx].regid == v->outputs[k].regid)
855 break;
856 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
857 }
858
859 /* add if not already in linkage map: */
860 if (idx == l->cnt)
861 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
862
863 /* expand component-mask if needed, ie streaming out all components
864 * but frag shader doesn't consume all components:
865 */
866 if (compmask & ~l->var[idx].compmask) {
867 l->var[idx].compmask |= compmask;
868 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
869 util_last_bit(l->var[idx].compmask));
870 }
871 }
872 }
873
874 static void
875 tu6_setup_streamout(const struct ir3_shader_variant *v,
876 struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
877 {
878 const struct ir3_stream_output_info *info = &v->shader->stream_output;
879
880 memset(tf, 0, sizeof(*tf));
881
882 tf->prog_count = align(l->max_loc, 2) / 2;
883
884 debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
885
886 /* set stride info to the streamout state */
887 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
888 tf->stride[i] = info->stride[i];
889
890 for (unsigned i = 0; i < info->num_outputs; i++) {
891 const struct ir3_stream_output *out = &info->output[i];
892 unsigned k = out->register_index;
893 unsigned idx;
894
895 /* Skip it, if there's an unused reg in the middle of outputs. */
896 if (v->outputs[k].regid == INVALID_REG)
897 continue;
898
899 tf->ncomp[out->output_buffer] += out->num_components;
900
901 /* linkage map sorted by order frag shader wants things, so
902 * a bit less ideal here..
903 */
904 for (idx = 0; idx < l->cnt; idx++)
905 if (l->var[idx].regid == v->outputs[k].regid)
906 break;
907
908 debug_assert(idx < l->cnt);
909
910 for (unsigned j = 0; j < out->num_components; j++) {
911 unsigned c = j + out->start_component;
912 unsigned loc = l->var[idx].loc + c;
913 unsigned off = j + out->dst_offset; /* in dwords */
914
915 if (loc & 1) {
916 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
917 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
918 A6XX_VPC_SO_PROG_B_OFF(off * 4);
919 } else {
920 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
921 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
922 A6XX_VPC_SO_PROG_A_OFF(off * 4);
923 }
924 }
925 }
926
927 tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
928 COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
929 COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
930 COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
931 COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
932 }
933
934 static void
935 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
936 enum a6xx_state_block block, uint32_t offset,
937 uint32_t size, uint32_t *dwords) {
938 assert(size % 4 == 0);
939
940 tu_cs_emit_pkt7(cs, opcode, 3 + size);
941 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
942 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
943 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
944 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
945 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
946
947 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
948 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
949 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
950
951 tu_cs_emit_array(cs, dwords, size);
952 }
953
954 static void
955 tu6_emit_link_map(struct tu_cs *cs,
956 const struct ir3_shader_variant *producer,
957 const struct ir3_shader_variant *consumer) {
958 const struct ir3_const_state *const_state = &consumer->shader->const_state;
959 uint32_t base = const_state->offsets.primitive_map;
960 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
961 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
962 int size = DIV_ROUND_UP(num_loc, 4);
963
964 size = (MIN2(size + base, consumer->constlen) - base) * 4;
965 if (size <= 0)
966 return;
967
968 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, SB6_GS_SHADER, 0, size,
969 patch_locs);
970 }
971
972 static uint16_t
973 gl_primitive_to_tess(uint16_t primitive) {
974 switch (primitive) {
975 case GL_POINTS:
976 return TESS_POINTS;
977 case GL_LINE_STRIP:
978 return TESS_LINES;
979 case GL_TRIANGLE_STRIP:
980 return TESS_CW_TRIS;
981 default:
982 unreachable("");
983 }
984 }
985
986 void
987 tu6_emit_vpc(struct tu_cs *cs,
988 const struct ir3_shader_variant *vs,
989 const struct ir3_shader_variant *gs,
990 const struct ir3_shader_variant *fs,
991 struct tu_streamout_state *tf)
992 {
993 const struct ir3_shader_variant *last_shader = gs ?: vs;
994 struct ir3_shader_linkage linkage = { .primid_loc = 0xff };
995 if (fs)
996 ir3_link_shaders(&linkage, last_shader, fs, true);
997
998 if (last_shader->shader->stream_output.num_outputs)
999 tu6_link_streamout(&linkage, last_shader);
1000
1001 /* We do this after linking shaders in order to know whether PrimID
1002 * passthrough needs to be enabled.
1003 */
1004 bool primid_passthru = linkage.primid_loc != 0xff;
1005 tu6_emit_vs_system_values(cs, vs, gs, primid_passthru);
1006
1007 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
1008 tu_cs_emit(cs, ~linkage.varmask[0]);
1009 tu_cs_emit(cs, ~linkage.varmask[1]);
1010 tu_cs_emit(cs, ~linkage.varmask[2]);
1011 tu_cs_emit(cs, ~linkage.varmask[3]);
1012
1013 /* a6xx finds position/pointsize at the end */
1014 const uint32_t position_regid =
1015 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
1016 const uint32_t pointsize_regid =
1017 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
1018 const uint32_t layer_regid = gs ?
1019 ir3_find_output_regid(gs, VARYING_SLOT_LAYER) : regid(63, 0);
1020
1021 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
1022 if (layer_regid != regid(63, 0)) {
1023 layer_loc = linkage.max_loc;
1024 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
1025 }
1026 if (position_regid != regid(63, 0)) {
1027 position_loc = linkage.max_loc;
1028 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
1029 }
1030 if (pointsize_regid != regid(63, 0)) {
1031 pointsize_loc = linkage.max_loc;
1032 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
1033 }
1034
1035 if (last_shader->shader->stream_output.num_outputs)
1036 tu6_setup_streamout(last_shader, &linkage, tf);
1037
1038 /* map outputs of the last shader to VPC */
1039 assert(linkage.cnt <= 32);
1040 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
1041 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
1042 uint32_t sp_out[16];
1043 uint32_t sp_vpc_dst[8];
1044 for (uint32_t i = 0; i < linkage.cnt; i++) {
1045 ((uint16_t *) sp_out)[i] =
1046 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
1047 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
1048 ((uint8_t *) sp_vpc_dst)[i] =
1049 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
1050 }
1051
1052 if (gs)
1053 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_OUT_REG(0), sp_out_count);
1054 else
1055 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_out_count);
1056 tu_cs_emit_array(cs, sp_out, sp_out_count);
1057
1058 if (gs)
1059 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_VPC_DST_REG(0), sp_vpc_dst_count);
1060 else
1061 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vpc_dst_count);
1062 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
1063
1064 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1);
1065 tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU));
1066
1067 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
1068 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs ? fs->total_in : 0) |
1069 COND(fs && fs->total_in, A6XX_VPC_CNTL_0_VARYING) |
1070 A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
1071 A6XX_VPC_CNTL_0_UNKLOC(0xff));
1072
1073 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
1074 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
1075 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
1076 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
1077
1078 if (gs) {
1079 uint32_t vertices_out, invocations, output, vec4_size;
1080 /* this detects the tu_clear_blit path, which doesn't set ->nir */
1081 if (gs->shader->nir) {
1082 tu6_emit_link_map(cs, vs, gs);
1083 vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
1084 output = gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
1085 invocations = gs->shader->nir->info.gs.invocations - 1;
1086 /* Size of per-primitive alloction in ldlw memory in vec4s. */
1087 vec4_size = gs->shader->nir->info.gs.vertices_in *
1088 DIV_ROUND_UP(vs->shader->output_size, 4);
1089 } else {
1090 vertices_out = 3;
1091 output = TESS_CW_TRIS;
1092 invocations = 0;
1093 vec4_size = 0;
1094 }
1095
1096 uint32_t primitive_regid =
1097 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID);
1098 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK_GS, 1);
1099 tu_cs_emit(cs, A6XX_VPC_PACK_GS_POSITIONLOC(position_loc) |
1100 A6XX_VPC_PACK_GS_PSIZELOC(pointsize_loc) |
1101 A6XX_VPC_PACK_GS_STRIDE_IN_VPC(linkage.max_loc));
1102
1103 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9105, 1);
1104 tu_cs_emit(cs, A6XX_VPC_UNKNOWN_9105_LAYERLOC(layer_loc) | 0xff00);
1105
1106 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_809C, 1);
1107 tu_cs_emit(cs, CONDREG(layer_regid,
1108 A6XX_GRAS_UNKNOWN_809C_GS_WRITES_LAYER));
1109
1110 uint32_t flags_regid = ir3_find_output_regid(gs,
1111 VARYING_SLOT_GS_VERTEX_FLAGS_IR3);
1112
1113 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL_GS, 1);
1114 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_GS_GSOUT(linkage.cnt) |
1115 A6XX_SP_PRIMITIVE_CNTL_GS_FLAGS_REGID(flags_regid));
1116
1117 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_2, 1);
1118 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_2_STRIDE_IN_VPC(linkage.max_loc) |
1119 CONDREG(pointsize_regid, A6XX_PC_PRIMITIVE_CNTL_2_PSIZE) |
1120 CONDREG(layer_regid, A6XX_PC_PRIMITIVE_CNTL_2_LAYER) |
1121 CONDREG(primitive_regid, A6XX_PC_PRIMITIVE_CNTL_2_PRIMITIVE_ID));
1122
1123 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
1124 tu_cs_emit(cs,
1125 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
1126 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
1127 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
1128
1129 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
1130 tu_cs_emit(cs, 0);
1131
1132 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8003, 1);
1133 tu_cs_emit(cs, 0);
1134
1135 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
1136 tu_cs_emit(cs, 0xff);
1137
1138 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9102, 1);
1139 tu_cs_emit(cs, 0xffff00);
1140
1141 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
1142 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
1143
1144 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
1145 tu_cs_emit(cs, 0);
1146
1147 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
1148 tu_cs_emit(cs, vs->shader->output_size);
1149 }
1150
1151 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
1152 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
1153
1154 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
1155 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
1156 (last_shader->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
1157 }
1158
1159 static int
1160 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
1161 uint32_t index,
1162 uint8_t *interp_mode,
1163 uint8_t *ps_repl_mode)
1164 {
1165 enum
1166 {
1167 INTERP_SMOOTH = 0,
1168 INTERP_FLAT = 1,
1169 INTERP_ZERO = 2,
1170 INTERP_ONE = 3,
1171 };
1172 enum
1173 {
1174 PS_REPL_NONE = 0,
1175 PS_REPL_S = 1,
1176 PS_REPL_T = 2,
1177 PS_REPL_ONE_MINUS_T = 3,
1178 };
1179
1180 const uint32_t compmask = fs->inputs[index].compmask;
1181
1182 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
1183 * fourth component occupy three consecutive varying slots
1184 */
1185 int shift = 0;
1186 *interp_mode = 0;
1187 *ps_repl_mode = 0;
1188 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
1189 if (compmask & 0x1) {
1190 *ps_repl_mode |= PS_REPL_S << shift;
1191 shift += 2;
1192 }
1193 if (compmask & 0x2) {
1194 *ps_repl_mode |= PS_REPL_T << shift;
1195 shift += 2;
1196 }
1197 if (compmask & 0x4) {
1198 *interp_mode |= INTERP_ZERO << shift;
1199 shift += 2;
1200 }
1201 if (compmask & 0x8) {
1202 *interp_mode |= INTERP_ONE << 6;
1203 shift += 2;
1204 }
1205 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
1206 fs->inputs[index].rasterflat) {
1207 for (int i = 0; i < 4; i++) {
1208 if (compmask & (1 << i)) {
1209 *interp_mode |= INTERP_FLAT << shift;
1210 shift += 2;
1211 }
1212 }
1213 }
1214
1215 return shift;
1216 }
1217
1218 static void
1219 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
1220 const struct ir3_shader_variant *fs)
1221 {
1222 uint32_t interp_modes[8] = { 0 };
1223 uint32_t ps_repl_modes[8] = { 0 };
1224
1225 if (fs) {
1226 for (int i = -1;
1227 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
1228
1229 /* get the mode for input i */
1230 uint8_t interp_mode;
1231 uint8_t ps_repl_mode;
1232 const int bits =
1233 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
1234
1235 /* OR the mode into the array */
1236 const uint32_t inloc = fs->inputs[i].inloc * 2;
1237 uint32_t n = inloc / 32;
1238 uint32_t shift = inloc % 32;
1239 interp_modes[n] |= interp_mode << shift;
1240 ps_repl_modes[n] |= ps_repl_mode << shift;
1241 if (shift + bits > 32) {
1242 n++;
1243 shift = 32 - shift;
1244
1245 interp_modes[n] |= interp_mode >> shift;
1246 ps_repl_modes[n] |= ps_repl_mode >> shift;
1247 }
1248 }
1249 }
1250
1251 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
1252 tu_cs_emit_array(cs, interp_modes, 8);
1253
1254 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
1255 tu_cs_emit_array(cs, ps_repl_modes, 8);
1256 }
1257
1258 void
1259 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
1260 {
1261 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
1262 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
1263 uint32_t smask_in_regid;
1264
1265 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
1266 bool enable_varyings = fs->total_in > 0;
1267
1268 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1269 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1270 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1271 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1272 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1273 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1274 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1275 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1276 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1277
1278 if (fs->num_sampler_prefetch > 0) {
1279 assert(VALIDREG(ij_pix_regid));
1280 /* also, it seems like ij_pix is *required* to be r0.x */
1281 assert(ij_pix_regid == regid(0, 0));
1282 }
1283
1284 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1285 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1286 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1287 0x7000); // XXX);
1288 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1289 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1290 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1291 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1292 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1293 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1294 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1295 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1296 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1297 }
1298
1299 if (fs->num_sampler_prefetch > 0) {
1300 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
1301 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1302 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1303 tu_cs_emit(cs,
1304 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
1305 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
1306 }
1307 }
1308
1309 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1310 tu_cs_emit(cs, 0x7);
1311 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1312 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1313 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1314 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
1315 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
1316 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
1317 0xfc00fc00);
1318 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1319 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1320 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
1321 0x0000fc00);
1322 tu_cs_emit(cs, 0xfc);
1323
1324 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1325 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1326
1327 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1328 tu_cs_emit(cs,
1329 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
1330 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
1331 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
1332 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
1333 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1334 COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_SIZE |
1335 A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)) |
1336 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
1337
1338 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1339 tu_cs_emit(cs,
1340 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
1341 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
1342 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
1343 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1344 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
1345 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1346 COND(fs->fragcoord_compmask != 0, A6XX_RB_RENDER_CONTROL0_SIZE |
1347 A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)) |
1348 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
1349 tu_cs_emit(cs,
1350 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1351 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1352 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
1353 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1354
1355 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1356 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1357
1358 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1359 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1360
1361 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1362 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1363 }
1364
1365 static void
1366 tu6_emit_fs_outputs(struct tu_cs *cs,
1367 const struct ir3_shader_variant *fs,
1368 uint32_t mrt_count, bool dual_src_blend,
1369 uint32_t render_components)
1370 {
1371 uint32_t smask_regid, posz_regid;
1372
1373 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1374 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1375
1376 uint32_t fragdata_regid[8];
1377 if (fs->color0_mrt) {
1378 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1379 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1380 fragdata_regid[i] = fragdata_regid[0];
1381 } else {
1382 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1383 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1384 }
1385
1386 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1387 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1388 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1389 COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) |
1390 0xfc000000);
1391 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1392
1393 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1394 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1395 // TODO we could have a mix of half and full precision outputs,
1396 // we really need to figure out half-precision from IR3_REG_HALF
1397 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1398 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1399 }
1400
1401 tu_cs_emit_regs(cs,
1402 A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
1403
1404 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1405 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1406 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
1407 COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
1408 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1409
1410 tu_cs_emit_regs(cs,
1411 A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
1412
1413 enum a6xx_ztest_mode zmode;
1414
1415 if (fs->no_earlyz || fs->has_kill || fs->writes_pos) {
1416 zmode = A6XX_LATE_Z;
1417 } else {
1418 zmode = A6XX_EARLY_Z;
1419 }
1420
1421 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1422 tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1423
1424 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1425 tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1426 }
1427
1428 static void
1429 tu6_emit_geometry_consts(struct tu_cs *cs,
1430 const struct ir3_shader_variant *vs,
1431 const struct ir3_shader_variant *gs) {
1432 unsigned num_vertices = gs->shader->nir->info.gs.vertices_in;
1433
1434 uint32_t params[4] = {
1435 vs->shader->output_size * num_vertices * 4, /* primitive stride */
1436 vs->shader->output_size * 4, /* vertex stride */
1437 0,
1438 0,
1439 };
1440 uint32_t vs_base = vs->shader->const_state.offsets.primitive_param;
1441 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1442 ARRAY_SIZE(params), params);
1443
1444 uint32_t gs_base = gs->shader->const_state.offsets.primitive_param;
1445 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1446 ARRAY_SIZE(params), params);
1447 }
1448
1449 /* get pointer to first variant, return NULL if shader is NULL */
1450 static const struct ir3_shader_variant *
1451 tu_shader_get_variant(const struct tu_shader *shader)
1452 {
1453 return shader ? &shader->variants[0] : NULL;
1454 }
1455
1456 static void
1457 tu6_emit_program(struct tu_cs *cs,
1458 struct tu_pipeline_builder *builder,
1459 const struct tu_bo *binary_bo,
1460 bool binning_pass,
1461 struct tu_streamout_state *tf)
1462 {
1463 const struct ir3_shader_variant *vs =
1464 tu_shader_get_variant(builder->shaders[MESA_SHADER_VERTEX]);
1465 const struct ir3_shader_variant *gs =
1466 tu_shader_get_variant(builder->shaders[MESA_SHADER_GEOMETRY]);
1467 const struct ir3_shader_variant *fs =
1468 tu_shader_get_variant(builder->shaders[MESA_SHADER_FRAGMENT]);
1469 gl_shader_stage stage = MESA_SHADER_VERTEX;
1470
1471 STATIC_ASSERT(MESA_SHADER_VERTEX == 0);
1472
1473 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
1474 tu_cs_emit(cs, 0xff); /* XXX */
1475
1476 /* if we have streamout, use full VS in binning pass, as the
1477 * binning pass VS will have outputs on other than position/psize
1478 * stripped out
1479 *
1480 * GS also can have streamout, but we completely disable the
1481 * the binning pass variant when GS is present because we don't
1482 * support compiling correct binning pass variants with GS
1483 */
1484 if (binning_pass && vs->shader->stream_output.num_outputs == 0 && !gs) {
1485 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1486 tu6_emit_xs_config(cs, stage, vs,
1487 binary_bo->iova + builder->binning_vs_offset);
1488 stage++;
1489 }
1490
1491 for (; stage < ARRAY_SIZE(builder->shaders); stage++) {
1492 const struct ir3_shader_variant *xs =
1493 tu_shader_get_variant(builder->shaders[stage]);
1494
1495 if (stage == MESA_SHADER_FRAGMENT && binning_pass)
1496 fs = xs = NULL;
1497
1498 tu6_emit_xs_config(cs, stage, xs,
1499 binary_bo->iova + builder->shader_offsets[stage]);
1500 }
1501
1502 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
1503 tu_cs_emit(cs, 0);
1504
1505 tu6_emit_vpc(cs, vs, gs, fs, tf);
1506 tu6_emit_vpc_varying_modes(cs, fs);
1507
1508 if (fs) {
1509 tu6_emit_fs_inputs(cs, fs);
1510 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
1511 builder->use_dual_src_blend,
1512 builder->render_components);
1513 } else {
1514 /* TODO: check if these can be skipped if fs is disabled */
1515 struct ir3_shader_variant dummy_variant = {};
1516 tu6_emit_fs_inputs(cs, &dummy_variant);
1517 tu6_emit_fs_outputs(cs, &dummy_variant, builder->color_attachment_count,
1518 builder->use_dual_src_blend,
1519 builder->render_components);
1520 }
1521
1522 if (gs)
1523 tu6_emit_geometry_consts(cs, vs, gs);
1524 }
1525
1526 static void
1527 tu6_emit_vertex_input(struct tu_cs *cs,
1528 const struct ir3_shader_variant *vs,
1529 const VkPipelineVertexInputStateCreateInfo *info,
1530 uint32_t *bindings_used)
1531 {
1532 uint32_t vfd_decode_idx = 0;
1533 uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
1534
1535 for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
1536 const VkVertexInputBindingDescription *binding =
1537 &info->pVertexBindingDescriptions[i];
1538
1539 tu_cs_emit_regs(cs,
1540 A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride));
1541
1542 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1543 binding_instanced |= 1 << binding->binding;
1544
1545 *bindings_used |= 1 << binding->binding;
1546 }
1547
1548 /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
1549
1550 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
1551 const VkVertexInputAttributeDescription *attr =
1552 &info->pVertexAttributeDescriptions[i];
1553 uint32_t input_idx;
1554
1555 for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
1556 if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
1557 break;
1558 }
1559
1560 /* attribute not used, skip it */
1561 if (input_idx == vs->inputs_count)
1562 continue;
1563
1564 const struct tu_native_format format = tu6_format_vtx(attr->format);
1565 tu_cs_emit_regs(cs,
1566 A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
1567 .idx = attr->binding,
1568 .offset = attr->offset,
1569 .instanced = binding_instanced & (1 << attr->binding),
1570 .format = format.fmt,
1571 .swap = format.swap,
1572 .unk30 = 1,
1573 ._float = !vk_format_is_int(attr->format)),
1574 A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, 1));
1575
1576 tu_cs_emit_regs(cs,
1577 A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
1578 .writemask = vs->inputs[input_idx].compmask,
1579 .regid = vs->inputs[input_idx].regid));
1580
1581 vfd_decode_idx++;
1582 }
1583
1584 tu_cs_emit_regs(cs,
1585 A6XX_VFD_CONTROL_0(
1586 .fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */
1587 .decode_cnt = vfd_decode_idx));
1588 }
1589
1590 static uint32_t
1591 tu6_guardband_adj(uint32_t v)
1592 {
1593 if (v > 256)
1594 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1595 else
1596 return 511;
1597 }
1598
1599 void
1600 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1601 {
1602 float offsets[3];
1603 float scales[3];
1604 scales[0] = viewport->width / 2.0f;
1605 scales[1] = viewport->height / 2.0f;
1606 scales[2] = viewport->maxDepth - viewport->minDepth;
1607 offsets[0] = viewport->x + scales[0];
1608 offsets[1] = viewport->y + scales[1];
1609 offsets[2] = viewport->minDepth;
1610
1611 VkOffset2D min;
1612 VkOffset2D max;
1613 min.x = (int32_t) viewport->x;
1614 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1615 if (viewport->height >= 0.0f) {
1616 min.y = (int32_t) viewport->y;
1617 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1618 } else {
1619 min.y = (int32_t)(viewport->y + viewport->height);
1620 max.y = (int32_t) ceilf(viewport->y);
1621 }
1622 /* the spec allows viewport->height to be 0.0f */
1623 if (min.y == max.y)
1624 max.y++;
1625 assert(min.x >= 0 && min.x < max.x);
1626 assert(min.y >= 0 && min.y < max.y);
1627
1628 VkExtent2D guardband_adj;
1629 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1630 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1631
1632 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1633 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1634 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1635 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1636 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1637 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1638 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1639
1640 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1641 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1642 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1643 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1644 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1645
1646 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1647 tu_cs_emit(cs,
1648 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1649 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1650
1651 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1652 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1653
1654 tu_cs_emit_regs(cs,
1655 A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
1656 A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
1657
1658 tu_cs_emit_regs(cs,
1659 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1660 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1661 }
1662
1663 void
1664 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1665 {
1666 const VkOffset2D min = scissor->offset;
1667 const VkOffset2D max = {
1668 scissor->offset.x + scissor->extent.width,
1669 scissor->offset.y + scissor->extent.height,
1670 };
1671
1672 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1673 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1674 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1675 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1676 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1677 }
1678
1679 void
1680 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
1681 {
1682 if (!samp_loc) {
1683 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
1684 tu_cs_emit(cs, 0);
1685
1686 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
1687 tu_cs_emit(cs, 0);
1688
1689 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
1690 tu_cs_emit(cs, 0);
1691 return;
1692 }
1693
1694 assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
1695 assert(samp_loc->sampleLocationGridSize.width == 1);
1696 assert(samp_loc->sampleLocationGridSize.height == 1);
1697
1698 uint32_t sample_config =
1699 A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
1700 uint32_t sample_locations = 0;
1701 for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
1702 sample_locations |=
1703 (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
1704 A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
1705 }
1706
1707 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
1708 tu_cs_emit(cs, sample_config);
1709 tu_cs_emit(cs, sample_locations);
1710
1711 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
1712 tu_cs_emit(cs, sample_config);
1713 tu_cs_emit(cs, sample_locations);
1714
1715 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
1716 tu_cs_emit(cs, sample_config);
1717 tu_cs_emit(cs, sample_locations);
1718 }
1719
1720 static void
1721 tu6_emit_gras_unknowns(struct tu_cs *cs)
1722 {
1723 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1724 tu_cs_emit(cs, 0x0);
1725 }
1726
1727 static void
1728 tu6_emit_point_size(struct tu_cs *cs)
1729 {
1730 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1731 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1732 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1733 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1734 }
1735
1736 static uint32_t
1737 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1738 VkSampleCountFlagBits samples)
1739 {
1740 uint32_t gras_su_cntl = 0;
1741
1742 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1743 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1744 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1745 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1746
1747 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1748 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1749
1750 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1751
1752 if (rast_info->depthBiasEnable)
1753 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1754
1755 if (samples > VK_SAMPLE_COUNT_1_BIT)
1756 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1757
1758 return gras_su_cntl;
1759 }
1760
1761 void
1762 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1763 uint32_t gras_su_cntl,
1764 float line_width)
1765 {
1766 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1767 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1768
1769 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1770 tu_cs_emit(cs, gras_su_cntl);
1771 }
1772
1773 void
1774 tu6_emit_depth_bias(struct tu_cs *cs,
1775 float constant_factor,
1776 float clamp,
1777 float slope_factor)
1778 {
1779 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1780 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1781 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1782 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1783 }
1784
1785 static void
1786 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1787 {
1788 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1789 tu_cs_emit(cs, 0);
1790 }
1791
1792 static void
1793 tu6_emit_depth_control(struct tu_cs *cs,
1794 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1795 const VkPipelineRasterizationStateCreateInfo *rast_info)
1796 {
1797 assert(!ds_info->depthBoundsTestEnable);
1798
1799 uint32_t rb_depth_cntl = 0;
1800 if (ds_info->depthTestEnable) {
1801 rb_depth_cntl |=
1802 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1803 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1804 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1805
1806 if (rast_info->depthClampEnable)
1807 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1808
1809 if (ds_info->depthWriteEnable)
1810 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1811 }
1812
1813 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1814 tu_cs_emit(cs, rb_depth_cntl);
1815 }
1816
1817 static void
1818 tu6_emit_stencil_control(struct tu_cs *cs,
1819 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1820 {
1821 uint32_t rb_stencil_control = 0;
1822 if (ds_info->stencilTestEnable) {
1823 const VkStencilOpState *front = &ds_info->front;
1824 const VkStencilOpState *back = &ds_info->back;
1825 rb_stencil_control |=
1826 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1827 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1828 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1829 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1830 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1831 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1832 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1833 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1834 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1835 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1836 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1837 }
1838
1839 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1840 tu_cs_emit(cs, rb_stencil_control);
1841 }
1842
1843 void
1844 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1845 {
1846 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1847 tu_cs_emit(
1848 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1849 }
1850
1851 void
1852 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1853 {
1854 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1855 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1856 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1857 }
1858
1859 void
1860 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1861 {
1862 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1863 tu_cs_emit(cs,
1864 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1865 }
1866
1867 static uint32_t
1868 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1869 bool has_alpha)
1870 {
1871 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1872 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1873 has_alpha ? att->srcColorBlendFactor
1874 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1875 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1876 has_alpha ? att->dstColorBlendFactor
1877 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1878 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1879 const enum adreno_rb_blend_factor src_alpha_factor =
1880 tu6_blend_factor(att->srcAlphaBlendFactor);
1881 const enum adreno_rb_blend_factor dst_alpha_factor =
1882 tu6_blend_factor(att->dstAlphaBlendFactor);
1883
1884 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1885 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1886 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1887 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1888 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1889 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1890 }
1891
1892 static uint32_t
1893 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1894 uint32_t rb_mrt_control_rop,
1895 bool is_int,
1896 bool has_alpha)
1897 {
1898 uint32_t rb_mrt_control =
1899 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1900
1901 /* ignore blending and logic op for integer attachments */
1902 if (is_int) {
1903 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1904 return rb_mrt_control;
1905 }
1906
1907 rb_mrt_control |= rb_mrt_control_rop;
1908
1909 if (att->blendEnable) {
1910 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1911
1912 if (has_alpha)
1913 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1914 }
1915
1916 return rb_mrt_control;
1917 }
1918
1919 static void
1920 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1921 const VkPipelineColorBlendStateCreateInfo *blend_info,
1922 const VkFormat attachment_formats[MAX_RTS],
1923 uint32_t *blend_enable_mask)
1924 {
1925 *blend_enable_mask = 0;
1926
1927 bool rop_reads_dst = false;
1928 uint32_t rb_mrt_control_rop = 0;
1929 if (blend_info->logicOpEnable) {
1930 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1931 rb_mrt_control_rop =
1932 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1933 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1934 }
1935
1936 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1937 const VkPipelineColorBlendAttachmentState *att =
1938 &blend_info->pAttachments[i];
1939 const VkFormat format = attachment_formats[i];
1940
1941 uint32_t rb_mrt_control = 0;
1942 uint32_t rb_mrt_blend_control = 0;
1943 if (format != VK_FORMAT_UNDEFINED) {
1944 const bool is_int = vk_format_is_int(format);
1945 const bool has_alpha = vk_format_has_alpha(format);
1946
1947 rb_mrt_control =
1948 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1949 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1950
1951 if (att->blendEnable || rop_reads_dst)
1952 *blend_enable_mask |= 1 << i;
1953 }
1954
1955 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1956 tu_cs_emit(cs, rb_mrt_control);
1957 tu_cs_emit(cs, rb_mrt_blend_control);
1958 }
1959 }
1960
1961 static void
1962 tu6_emit_blend_control(struct tu_cs *cs,
1963 uint32_t blend_enable_mask,
1964 bool dual_src_blend,
1965 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1966 {
1967 const uint32_t sample_mask =
1968 msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff)
1969 : ((1 << msaa_info->rasterizationSamples) - 1);
1970
1971 tu_cs_emit_regs(cs,
1972 A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask,
1973 .dual_color_in_enable = dual_src_blend,
1974 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1975 .unk8 = true));
1976
1977 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1978 tu_cs_emit_regs(cs,
1979 A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask,
1980 .independent_blend = true,
1981 .sample_mask = sample_mask,
1982 .dual_color_in_enable = dual_src_blend,
1983 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1984 .alpha_to_one = msaa_info->alphaToOneEnable));
1985 }
1986
1987 void
1988 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1989 {
1990 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1991 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1992 }
1993
1994 static VkResult
1995 tu_pipeline_create(struct tu_device *dev,
1996 struct tu_pipeline_layout *layout,
1997 bool compute,
1998 const VkAllocationCallbacks *pAllocator,
1999 struct tu_pipeline **out_pipeline)
2000 {
2001 struct tu_pipeline *pipeline =
2002 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
2003 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2004 if (!pipeline)
2005 return VK_ERROR_OUT_OF_HOST_MEMORY;
2006
2007 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
2008
2009 /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
2010 * that LOAD_STATE can potentially take up a large amount of space so we
2011 * calculate its size explicitly.
2012 */
2013 unsigned load_state_size = tu6_load_state_size(layout, compute);
2014 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048 + load_state_size);
2015 if (result != VK_SUCCESS) {
2016 vk_free2(&dev->alloc, pAllocator, pipeline);
2017 return result;
2018 }
2019
2020 *out_pipeline = pipeline;
2021
2022 return VK_SUCCESS;
2023 }
2024
2025 static VkResult
2026 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
2027 {
2028 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
2029 NULL
2030 };
2031 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
2032 gl_shader_stage stage =
2033 vk_to_mesa_shader_stage(builder->create_info->pStages[i].stage);
2034 stage_infos[stage] = &builder->create_info->pStages[i];
2035 }
2036
2037 struct tu_shader_compile_options options;
2038 tu_shader_compile_options_init(&options, builder->create_info);
2039
2040 /* compile shaders in reverse order */
2041 struct tu_shader *next_stage_shader = NULL;
2042 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
2043 stage > MESA_SHADER_NONE; stage--) {
2044 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
2045 if (!stage_info && stage != MESA_SHADER_FRAGMENT)
2046 continue;
2047
2048 struct tu_shader *shader =
2049 tu_shader_create(builder->device, stage, stage_info, builder->layout,
2050 builder->alloc);
2051 if (!shader)
2052 return VK_ERROR_OUT_OF_HOST_MEMORY;
2053
2054 VkResult result =
2055 tu_shader_compile(builder->device, shader, next_stage_shader,
2056 &options, builder->alloc);
2057 if (result != VK_SUCCESS)
2058 return result;
2059
2060 builder->shaders[stage] = shader;
2061 builder->shader_offsets[stage] = builder->shader_total_size;
2062 builder->shader_total_size +=
2063 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
2064
2065 next_stage_shader = shader;
2066 }
2067
2068 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2069 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2070 const struct ir3_shader_variant *variant;
2071
2072 if (vs->ir3_shader.stream_output.num_outputs)
2073 variant = &vs->variants[0];
2074 else
2075 variant = &vs->variants[1];
2076
2077 builder->binning_vs_offset = builder->shader_total_size;
2078 builder->shader_total_size +=
2079 sizeof(uint32_t) * variant->info.sizedwords;
2080 }
2081
2082 return VK_SUCCESS;
2083 }
2084
2085 static VkResult
2086 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
2087 struct tu_pipeline *pipeline)
2088 {
2089 struct tu_bo *bo = &pipeline->program.binary_bo;
2090
2091 VkResult result =
2092 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
2093 if (result != VK_SUCCESS)
2094 return result;
2095
2096 result = tu_bo_map(builder->device, bo);
2097 if (result != VK_SUCCESS)
2098 return result;
2099
2100 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2101 const struct tu_shader *shader = builder->shaders[i];
2102 if (!shader)
2103 continue;
2104
2105 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
2106 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
2107 }
2108
2109 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2110 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2111 const struct ir3_shader_variant *variant;
2112 void *bin;
2113
2114 if (vs->ir3_shader.stream_output.num_outputs) {
2115 variant = &vs->variants[0];
2116 bin = vs->binary;
2117 } else {
2118 variant = &vs->variants[1];
2119 bin = vs->binning_binary;
2120 }
2121
2122 memcpy(bo->map + builder->binning_vs_offset, bin,
2123 sizeof(uint32_t) * variant->info.sizedwords);
2124 }
2125
2126 return VK_SUCCESS;
2127 }
2128
2129 static void
2130 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
2131 struct tu_pipeline *pipeline)
2132 {
2133 const VkPipelineDynamicStateCreateInfo *dynamic_info =
2134 builder->create_info->pDynamicState;
2135
2136 if (!dynamic_info)
2137 return;
2138
2139 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
2140 pipeline->dynamic_state.mask |=
2141 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
2142 }
2143 }
2144
2145 static void
2146 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
2147 struct tu_shader *shader,
2148 struct ir3_shader_variant *v)
2149 {
2150 link->ubo_state = v->shader->ubo_state;
2151 link->const_state = v->shader->const_state;
2152 link->constlen = v->constlen;
2153 link->push_consts = shader->push_consts;
2154 }
2155
2156 static void
2157 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
2158 struct tu_pipeline *pipeline)
2159 {
2160 struct tu_cs prog_cs;
2161 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2162 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
2163 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2164
2165 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2166 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
2167 pipeline->program.binning_state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2168
2169 VkShaderStageFlags stages = 0;
2170 for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
2171 stages |= builder->create_info->pStages[i].stage;
2172 }
2173 pipeline->active_stages = stages;
2174
2175 uint32_t desc_sets = 0;
2176 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2177 if (!builder->shaders[i])
2178 continue;
2179
2180 tu_pipeline_set_linkage(&pipeline->program.link[i],
2181 builder->shaders[i],
2182 &builder->shaders[i]->variants[0]);
2183 desc_sets |= builder->shaders[i]->active_desc_sets;
2184 }
2185 pipeline->active_desc_sets = desc_sets;
2186
2187 if (builder->shaders[MESA_SHADER_FRAGMENT]) {
2188 memcpy(pipeline->program.input_attachment_idx,
2189 builder->shaders[MESA_SHADER_FRAGMENT]->attachment_idx,
2190 sizeof(pipeline->program.input_attachment_idx));
2191 }
2192 }
2193
2194 static void
2195 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
2196 struct tu_pipeline *pipeline)
2197 {
2198 const VkPipelineVertexInputStateCreateInfo *vi_info =
2199 builder->create_info->pVertexInputState;
2200 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2201
2202 struct tu_cs vi_cs;
2203 tu_cs_begin_sub_stream(&pipeline->cs,
2204 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2205 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
2206 &pipeline->vi.bindings_used);
2207 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2208
2209 if (vs->has_binning_pass) {
2210 tu_cs_begin_sub_stream(&pipeline->cs,
2211 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2212 tu6_emit_vertex_input(
2213 &vi_cs, &vs->variants[1], vi_info, &pipeline->vi.bindings_used);
2214 pipeline->vi.binning_state_ib =
2215 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2216 }
2217 }
2218
2219 static void
2220 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2221 struct tu_pipeline *pipeline)
2222 {
2223 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2224 builder->create_info->pInputAssemblyState;
2225
2226 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2227 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2228 }
2229
2230 static void
2231 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2232 struct tu_pipeline *pipeline)
2233 {
2234 /* The spec says:
2235 *
2236 * pViewportState is a pointer to an instance of the
2237 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2238 * pipeline has rasterization disabled."
2239 *
2240 * We leave the relevant registers stale in that case.
2241 */
2242 if (builder->rasterizer_discard)
2243 return;
2244
2245 const VkPipelineViewportStateCreateInfo *vp_info =
2246 builder->create_info->pViewportState;
2247
2248 struct tu_cs vp_cs;
2249 tu_cs_begin_sub_stream(&pipeline->cs, 21, &vp_cs);
2250
2251 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
2252 assert(vp_info->viewportCount == 1);
2253 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
2254 }
2255
2256 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
2257 assert(vp_info->scissorCount == 1);
2258 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
2259 }
2260
2261 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
2262 }
2263
2264 static void
2265 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2266 struct tu_pipeline *pipeline)
2267 {
2268 const VkPipelineRasterizationStateCreateInfo *rast_info =
2269 builder->create_info->pRasterizationState;
2270
2271 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
2272
2273 struct tu_cs rast_cs;
2274 tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
2275
2276
2277 tu_cs_emit_regs(&rast_cs,
2278 A6XX_GRAS_CL_CNTL(
2279 .znear_clip_disable = rast_info->depthClampEnable,
2280 .zfar_clip_disable = rast_info->depthClampEnable,
2281 .unk5 = rast_info->depthClampEnable,
2282 .zero_gb_scale_z = 1,
2283 .vp_clip_code_ignore = 1));
2284 /* move to hw ctx init? */
2285 tu6_emit_gras_unknowns(&rast_cs);
2286 tu6_emit_point_size(&rast_cs);
2287
2288 const uint32_t gras_su_cntl =
2289 tu6_gras_su_cntl(rast_info, builder->samples);
2290
2291 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
2292 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
2293
2294 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
2295 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
2296 rast_info->depthBiasClamp,
2297 rast_info->depthBiasSlopeFactor);
2298 }
2299
2300 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
2301
2302 pipeline->rast.gras_su_cntl = gras_su_cntl;
2303 }
2304
2305 static void
2306 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2307 struct tu_pipeline *pipeline)
2308 {
2309 /* The spec says:
2310 *
2311 * pDepthStencilState is a pointer to an instance of the
2312 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2313 * the pipeline has rasterization disabled or if the subpass of the
2314 * render pass the pipeline is created against does not use a
2315 * depth/stencil attachment.
2316 *
2317 * Disable both depth and stencil tests if there is no ds attachment,
2318 * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
2319 * only the separate stencil attachment
2320 */
2321 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2322 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2323 builder->depth_attachment_format != VK_FORMAT_UNDEFINED
2324 ? builder->create_info->pDepthStencilState
2325 : &dummy_ds_info;
2326 const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
2327 builder->depth_attachment_format != VK_FORMAT_S8_UINT
2328 ? ds_info : &dummy_ds_info;
2329
2330 struct tu_cs ds_cs;
2331 tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
2332
2333 /* move to hw ctx init? */
2334 tu6_emit_alpha_control_disable(&ds_cs);
2335
2336 tu6_emit_depth_control(&ds_cs, ds_info_depth,
2337 builder->create_info->pRasterizationState);
2338 tu6_emit_stencil_control(&ds_cs, ds_info);
2339
2340 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
2341 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
2342 ds_info->back.compareMask);
2343 }
2344 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
2345 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
2346 ds_info->back.writeMask);
2347 }
2348 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
2349 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
2350 ds_info->back.reference);
2351 }
2352
2353 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
2354 }
2355
2356 static void
2357 tu_pipeline_builder_parse_multisample_and_color_blend(
2358 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2359 {
2360 /* The spec says:
2361 *
2362 * pMultisampleState is a pointer to an instance of the
2363 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2364 * has rasterization disabled.
2365 *
2366 * Also,
2367 *
2368 * pColorBlendState is a pointer to an instance of the
2369 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2370 * pipeline has rasterization disabled or if the subpass of the render
2371 * pass the pipeline is created against does not use any color
2372 * attachments.
2373 *
2374 * We leave the relevant registers stale when rasterization is disabled.
2375 */
2376 if (builder->rasterizer_discard)
2377 return;
2378
2379 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2380 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2381 builder->create_info->pMultisampleState;
2382 const VkPipelineColorBlendStateCreateInfo *blend_info =
2383 builder->use_color_attachments ? builder->create_info->pColorBlendState
2384 : &dummy_blend_info;
2385
2386 struct tu_cs blend_cs;
2387 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 18, &blend_cs);
2388
2389 uint32_t blend_enable_mask;
2390 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
2391 builder->color_attachment_formats,
2392 &blend_enable_mask);
2393
2394 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
2395 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
2396
2397 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SAMPLE_LOCATIONS)) {
2398 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
2399 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
2400 const VkSampleLocationsInfoEXT *samp_loc = NULL;
2401
2402 if (sample_locations && sample_locations->sampleLocationsEnable)
2403 samp_loc = &sample_locations->sampleLocationsInfo;
2404
2405 tu6_emit_sample_locations(&blend_cs, samp_loc);
2406 }
2407
2408 tu6_emit_blend_control(&blend_cs, blend_enable_mask,
2409 builder->use_dual_src_blend, msaa_info);
2410
2411 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
2412 }
2413
2414 static void
2415 tu_pipeline_finish(struct tu_pipeline *pipeline,
2416 struct tu_device *dev,
2417 const VkAllocationCallbacks *alloc)
2418 {
2419 tu_cs_finish(&pipeline->cs);
2420
2421 if (pipeline->program.binary_bo.gem_handle)
2422 tu_bo_finish(dev, &pipeline->program.binary_bo);
2423 }
2424
2425 static VkResult
2426 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2427 struct tu_pipeline **pipeline)
2428 {
2429 VkResult result = tu_pipeline_create(builder->device, builder->layout,
2430 false, builder->alloc, pipeline);
2431 if (result != VK_SUCCESS)
2432 return result;
2433
2434 (*pipeline)->layout = builder->layout;
2435
2436 /* compile and upload shaders */
2437 result = tu_pipeline_builder_compile_shaders(builder);
2438 if (result == VK_SUCCESS)
2439 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
2440 if (result != VK_SUCCESS) {
2441 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
2442 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
2443 *pipeline = VK_NULL_HANDLE;
2444
2445 return result;
2446 }
2447
2448 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2449 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2450 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2451 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2452 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2453 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2454 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2455 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2456 tu6_emit_load_state(*pipeline, false);
2457
2458 /* we should have reserved enough space upfront such that the CS never
2459 * grows
2460 */
2461 assert((*pipeline)->cs.bo_count == 1);
2462
2463 return VK_SUCCESS;
2464 }
2465
2466 static void
2467 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2468 {
2469 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2470 if (!builder->shaders[i])
2471 continue;
2472 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2473 }
2474 }
2475
2476 static void
2477 tu_pipeline_builder_init_graphics(
2478 struct tu_pipeline_builder *builder,
2479 struct tu_device *dev,
2480 struct tu_pipeline_cache *cache,
2481 const VkGraphicsPipelineCreateInfo *create_info,
2482 const VkAllocationCallbacks *alloc)
2483 {
2484 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2485
2486 *builder = (struct tu_pipeline_builder) {
2487 .device = dev,
2488 .cache = cache,
2489 .create_info = create_info,
2490 .alloc = alloc,
2491 .layout = layout,
2492 };
2493
2494 builder->rasterizer_discard =
2495 create_info->pRasterizationState->rasterizerDiscardEnable;
2496
2497 if (builder->rasterizer_discard) {
2498 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2499 } else {
2500 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2501
2502 const struct tu_render_pass *pass =
2503 tu_render_pass_from_handle(create_info->renderPass);
2504 const struct tu_subpass *subpass =
2505 &pass->subpasses[create_info->subpass];
2506
2507 const uint32_t a = subpass->depth_stencil_attachment.attachment;
2508 builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
2509 pass->attachments[a].format : VK_FORMAT_UNDEFINED;
2510
2511 assert(subpass->color_count == 0 ||
2512 !create_info->pColorBlendState ||
2513 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2514 builder->color_attachment_count = subpass->color_count;
2515 for (uint32_t i = 0; i < subpass->color_count; i++) {
2516 const uint32_t a = subpass->color_attachments[i].attachment;
2517 if (a == VK_ATTACHMENT_UNUSED)
2518 continue;
2519
2520 builder->color_attachment_formats[i] = pass->attachments[a].format;
2521 builder->use_color_attachments = true;
2522 builder->render_components |= 0xf << (i * 4);
2523 }
2524
2525 if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
2526 builder->color_attachment_count++;
2527 builder->use_dual_src_blend = true;
2528 /* dual source blending has an extra fs output in the 2nd slot */
2529 if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
2530 builder->render_components |= 0xf << 4;
2531 }
2532 }
2533 }
2534
2535 static VkResult
2536 tu_graphics_pipeline_create(VkDevice device,
2537 VkPipelineCache pipelineCache,
2538 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2539 const VkAllocationCallbacks *pAllocator,
2540 VkPipeline *pPipeline)
2541 {
2542 TU_FROM_HANDLE(tu_device, dev, device);
2543 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2544
2545 struct tu_pipeline_builder builder;
2546 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2547 pCreateInfo, pAllocator);
2548
2549 struct tu_pipeline *pipeline = NULL;
2550 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2551 tu_pipeline_builder_finish(&builder);
2552
2553 if (result == VK_SUCCESS)
2554 *pPipeline = tu_pipeline_to_handle(pipeline);
2555 else
2556 *pPipeline = VK_NULL_HANDLE;
2557
2558 return result;
2559 }
2560
2561 VkResult
2562 tu_CreateGraphicsPipelines(VkDevice device,
2563 VkPipelineCache pipelineCache,
2564 uint32_t count,
2565 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2566 const VkAllocationCallbacks *pAllocator,
2567 VkPipeline *pPipelines)
2568 {
2569 VkResult final_result = VK_SUCCESS;
2570
2571 for (uint32_t i = 0; i < count; i++) {
2572 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2573 &pCreateInfos[i], pAllocator,
2574 &pPipelines[i]);
2575
2576 if (result != VK_SUCCESS)
2577 final_result = result;
2578 }
2579
2580 return final_result;
2581 }
2582
2583 static VkResult
2584 tu_compute_upload_shader(VkDevice device,
2585 struct tu_pipeline *pipeline,
2586 struct tu_shader *shader)
2587 {
2588 TU_FROM_HANDLE(tu_device, dev, device);
2589 struct tu_bo *bo = &pipeline->program.binary_bo;
2590 struct ir3_shader_variant *v = &shader->variants[0];
2591
2592 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2593 VkResult result =
2594 tu_bo_init_new(dev, bo, shader_size);
2595 if (result != VK_SUCCESS)
2596 return result;
2597
2598 result = tu_bo_map(dev, bo);
2599 if (result != VK_SUCCESS)
2600 return result;
2601
2602 memcpy(bo->map, shader->binary, shader_size);
2603
2604 return VK_SUCCESS;
2605 }
2606
2607
2608 static VkResult
2609 tu_compute_pipeline_create(VkDevice device,
2610 VkPipelineCache _cache,
2611 const VkComputePipelineCreateInfo *pCreateInfo,
2612 const VkAllocationCallbacks *pAllocator,
2613 VkPipeline *pPipeline)
2614 {
2615 TU_FROM_HANDLE(tu_device, dev, device);
2616 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2617 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2618 VkResult result;
2619
2620 struct tu_pipeline *pipeline;
2621
2622 *pPipeline = VK_NULL_HANDLE;
2623
2624 result = tu_pipeline_create(dev, layout, true, pAllocator, &pipeline);
2625 if (result != VK_SUCCESS)
2626 return result;
2627
2628 pipeline->layout = layout;
2629
2630 struct tu_shader_compile_options options;
2631 tu_shader_compile_options_init(&options, NULL);
2632
2633 struct tu_shader *shader =
2634 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2635 if (!shader) {
2636 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2637 goto fail;
2638 }
2639
2640 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2641 if (result != VK_SUCCESS)
2642 goto fail;
2643
2644 struct ir3_shader_variant *v = &shader->variants[0];
2645
2646 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2647 shader, v);
2648
2649 result = tu_compute_upload_shader(device, pipeline, shader);
2650 if (result != VK_SUCCESS)
2651 goto fail;
2652
2653 for (int i = 0; i < 3; i++)
2654 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2655
2656 struct tu_cs prog_cs;
2657 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2658 tu6_emit_cs_config(&prog_cs, shader, v, pipeline->program.binary_bo.iova);
2659 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2660
2661 tu6_emit_load_state(pipeline, true);
2662
2663 *pPipeline = tu_pipeline_to_handle(pipeline);
2664 return VK_SUCCESS;
2665
2666 fail:
2667 if (shader)
2668 tu_shader_destroy(dev, shader, pAllocator);
2669
2670 tu_pipeline_finish(pipeline, dev, pAllocator);
2671 vk_free2(&dev->alloc, pAllocator, pipeline);
2672
2673 return result;
2674 }
2675
2676 VkResult
2677 tu_CreateComputePipelines(VkDevice device,
2678 VkPipelineCache pipelineCache,
2679 uint32_t count,
2680 const VkComputePipelineCreateInfo *pCreateInfos,
2681 const VkAllocationCallbacks *pAllocator,
2682 VkPipeline *pPipelines)
2683 {
2684 VkResult final_result = VK_SUCCESS;
2685
2686 for (uint32_t i = 0; i < count; i++) {
2687 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2688 &pCreateInfos[i],
2689 pAllocator, &pPipelines[i]);
2690 if (result != VK_SUCCESS)
2691 final_result = result;
2692 }
2693
2694 return final_result;
2695 }
2696
2697 void
2698 tu_DestroyPipeline(VkDevice _device,
2699 VkPipeline _pipeline,
2700 const VkAllocationCallbacks *pAllocator)
2701 {
2702 TU_FROM_HANDLE(tu_device, dev, _device);
2703 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2704
2705 if (!_pipeline)
2706 return;
2707
2708 tu_pipeline_finish(pipeline, dev, pAllocator);
2709 vk_free2(&dev->alloc, pAllocator, pipeline);
2710 }