turnip: share code between 3D blit/clear path and tu_pipeline
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "ir3/ir3_nir.h"
31 #include "main/menums.h"
32 #include "nir/nir.h"
33 #include "nir/nir_builder.h"
34 #include "spirv/nir_spirv.h"
35 #include "util/debug.h"
36 #include "util/mesa-sha1.h"
37 #include "util/u_atomic.h"
38 #include "vk_format.h"
39 #include "vk_util.h"
40
41 #include "tu_cs.h"
42
43 /* Emit IB that preloads the descriptors that the shader uses */
44
45 static inline uint32_t
46 tu6_vkstage2opcode(VkShaderStageFlags stage)
47 {
48 switch (stage) {
49 case VK_SHADER_STAGE_VERTEX_BIT:
50 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
51 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
52 case VK_SHADER_STAGE_GEOMETRY_BIT:
53 return CP_LOAD_STATE6_GEOM;
54 case VK_SHADER_STAGE_FRAGMENT_BIT:
55 case VK_SHADER_STAGE_COMPUTE_BIT:
56 return CP_LOAD_STATE6_FRAG;
57 default:
58 unreachable("bad shader type");
59 }
60 }
61
62 static enum a6xx_state_block
63 tu6_tex_stage2sb(VkShaderStageFlags stage)
64 {
65 switch (stage) {
66 case VK_SHADER_STAGE_VERTEX_BIT:
67 return SB6_VS_TEX;
68 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
69 return SB6_HS_TEX;
70 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
71 return SB6_DS_TEX;
72 case VK_SHADER_STAGE_GEOMETRY_BIT:
73 return SB6_GS_TEX;
74 case VK_SHADER_STAGE_FRAGMENT_BIT:
75 return SB6_FS_TEX;
76 case VK_SHADER_STAGE_COMPUTE_BIT:
77 return SB6_CS_TEX;
78 default:
79 unreachable("bad shader stage");
80 }
81 }
82
83 static enum a6xx_state_block
84 tu6_ubo_stage2sb(VkShaderStageFlags stage)
85 {
86 switch (stage) {
87 case VK_SHADER_STAGE_VERTEX_BIT:
88 return SB6_VS_SHADER;
89 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
90 return SB6_HS_SHADER;
91 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
92 return SB6_DS_SHADER;
93 case VK_SHADER_STAGE_GEOMETRY_BIT:
94 return SB6_GS_SHADER;
95 case VK_SHADER_STAGE_FRAGMENT_BIT:
96 return SB6_FS_SHADER;
97 case VK_SHADER_STAGE_COMPUTE_BIT:
98 return SB6_CS_SHADER;
99 default:
100 unreachable("bad shader stage");
101 }
102 }
103
104 static void
105 emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
106 enum a6xx_state_block sb, unsigned base, unsigned offset,
107 unsigned count)
108 {
109 /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
110 * clear if emitting more packets will even help anything. Presumably the
111 * descriptor cache is relatively small, and these packets stop doing
112 * anything when there are too many descriptors.
113 */
114 tu_cs_emit_pkt7(cs, opcode, 3);
115 tu_cs_emit(cs,
116 CP_LOAD_STATE6_0_STATE_TYPE(st) |
117 CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
118 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
119 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
120 tu_cs_emit_qw(cs, offset | (base << 28));
121 }
122
123 static unsigned
124 tu6_load_state_size(struct tu_pipeline_layout *layout, bool compute)
125 {
126 const unsigned load_state_size = 4;
127 unsigned size = 0;
128 for (unsigned i = 0; i < layout->num_sets; i++) {
129 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
130 for (unsigned j = 0; j < set_layout->binding_count; j++) {
131 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
132 unsigned count = 0;
133 /* Note: some users, like amber for example, pass in
134 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
135 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
136 */
137 VkShaderStageFlags stages = compute ?
138 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
139 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
140 unsigned stage_count = util_bitcount(stages);
141 switch (binding->type) {
142 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
143 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
144 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
145 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
146 /* IBO-backed resources only need one packet for all graphics stages */
147 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
148 count += 1;
149 if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
150 count += 1;
151 break;
152 case VK_DESCRIPTOR_TYPE_SAMPLER:
153 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
154 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
155 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
156 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
157 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
158 /* Textures and UBO's needs a packet for each stage */
159 count = stage_count;
160 break;
161 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
162 /* Because of how we pack combined images and samplers, we
163 * currently can't use one packet for the whole array.
164 */
165 count = stage_count * binding->array_size * 2;
166 break;
167 default:
168 unreachable("bad descriptor type");
169 }
170 size += count * load_state_size;
171 }
172 }
173 return size;
174 }
175
176 static void
177 tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
178 {
179 unsigned size = tu6_load_state_size(pipeline->layout, compute);
180 if (size == 0)
181 return;
182
183 struct tu_cs cs;
184 tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
185
186 struct tu_pipeline_layout *layout = pipeline->layout;
187 for (unsigned i = 0; i < layout->num_sets; i++) {
188 /* From 13.2.7. Descriptor Set Binding:
189 *
190 * A compatible descriptor set must be bound for all set numbers that
191 * any shaders in a pipeline access, at the time that a draw or
192 * dispatch command is recorded to execute using that pipeline.
193 * However, if none of the shaders in a pipeline statically use any
194 * bindings with a particular set number, then no descriptor set need
195 * be bound for that set number, even if the pipeline layout includes
196 * a non-trivial descriptor set layout for that set number.
197 *
198 * This means that descriptor sets unused by the pipeline may have a
199 * garbage or 0 BINDLESS_BASE register, which will cause context faults
200 * when prefetching descriptors from these sets. Skip prefetching for
201 * descriptors from them to avoid this. This is also an optimization,
202 * since these prefetches would be useless.
203 */
204 if (!(pipeline->active_desc_sets & (1u << i)))
205 continue;
206
207 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
208 for (unsigned j = 0; j < set_layout->binding_count; j++) {
209 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
210 unsigned base = i;
211 unsigned offset = binding->offset / 4;
212 /* Note: some users, like amber for example, pass in
213 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
214 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
215 */
216 VkShaderStageFlags stages = compute ?
217 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
218 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
219 unsigned count = binding->array_size;
220 if (count == 0 || stages == 0)
221 continue;
222 switch (binding->type) {
223 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
224 base = MAX_SETS;
225 offset = (layout->input_attachment_count +
226 layout->set[i].dynamic_offset_start +
227 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
228 /* fallthrough */
229 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
230 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
231 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
232 /* IBO-backed resources only need one packet for all graphics stages */
233 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
234 emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
235 base, offset, count);
236 }
237 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
238 emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
239 base, offset, count);
240 }
241 break;
242 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
243 base = MAX_SETS;
244 offset = (layout->set[i].input_attachment_start +
245 binding->input_attachment_offset) * A6XX_TEX_CONST_DWORDS;
246 case VK_DESCRIPTOR_TYPE_SAMPLER:
247 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
248 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
249 unsigned stage_log2;
250 for_each_bit(stage_log2, stages) {
251 VkShaderStageFlags stage = 1 << stage_log2;
252 emit_load_state(&cs, tu6_vkstage2opcode(stage),
253 binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
254 ST6_SHADER : ST6_CONSTANTS,
255 tu6_tex_stage2sb(stage), base, offset, count);
256 }
257 break;
258 }
259 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
260 base = MAX_SETS;
261 offset = (layout->input_attachment_count +
262 layout->set[i].dynamic_offset_start +
263 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
264 /* fallthrough */
265 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
266 unsigned stage_log2;
267 for_each_bit(stage_log2, stages) {
268 VkShaderStageFlags stage = 1 << stage_log2;
269 emit_load_state(&cs, tu6_vkstage2opcode(stage), ST6_UBO,
270 tu6_ubo_stage2sb(stage), base, offset, count);
271 }
272 break;
273 }
274 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
275 unsigned stage_log2;
276 for_each_bit(stage_log2, stages) {
277 VkShaderStageFlags stage = 1 << stage_log2;
278 /* TODO: We could emit less CP_LOAD_STATE6 if we used
279 * struct-of-arrays instead of array-of-structs.
280 */
281 for (unsigned i = 0; i < count; i++) {
282 unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
283 unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
284 emit_load_state(&cs, tu6_vkstage2opcode(stage),
285 ST6_CONSTANTS, tu6_tex_stage2sb(stage),
286 base, tex_offset, 1);
287 emit_load_state(&cs, tu6_vkstage2opcode(stage),
288 ST6_SHADER, tu6_tex_stage2sb(stage),
289 base, sam_offset, 1);
290 }
291 }
292 break;
293 }
294 default:
295 unreachable("bad descriptor type");
296 }
297 }
298 }
299
300 pipeline->load_state.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
301 }
302
303 struct tu_pipeline_builder
304 {
305 struct tu_device *device;
306 struct tu_pipeline_cache *cache;
307 struct tu_pipeline_layout *layout;
308 const VkAllocationCallbacks *alloc;
309 const VkGraphicsPipelineCreateInfo *create_info;
310
311 struct tu_shader *shaders[MESA_SHADER_STAGES];
312 uint32_t shader_offsets[MESA_SHADER_STAGES];
313 uint32_t binning_vs_offset;
314 uint32_t shader_total_size;
315
316 bool rasterizer_discard;
317 /* these states are affectd by rasterizer_discard */
318 VkSampleCountFlagBits samples;
319 bool use_color_attachments;
320 bool use_dual_src_blend;
321 uint32_t color_attachment_count;
322 VkFormat color_attachment_formats[MAX_RTS];
323 VkFormat depth_attachment_format;
324 uint32_t render_components;
325 };
326
327 static enum tu_dynamic_state_bits
328 tu_dynamic_state_bit(VkDynamicState state)
329 {
330 switch (state) {
331 case VK_DYNAMIC_STATE_VIEWPORT:
332 return TU_DYNAMIC_VIEWPORT;
333 case VK_DYNAMIC_STATE_SCISSOR:
334 return TU_DYNAMIC_SCISSOR;
335 case VK_DYNAMIC_STATE_LINE_WIDTH:
336 return TU_DYNAMIC_LINE_WIDTH;
337 case VK_DYNAMIC_STATE_DEPTH_BIAS:
338 return TU_DYNAMIC_DEPTH_BIAS;
339 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
340 return TU_DYNAMIC_BLEND_CONSTANTS;
341 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
342 return TU_DYNAMIC_DEPTH_BOUNDS;
343 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
344 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
345 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
346 return TU_DYNAMIC_STENCIL_WRITE_MASK;
347 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
348 return TU_DYNAMIC_STENCIL_REFERENCE;
349 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
350 return TU_DYNAMIC_SAMPLE_LOCATIONS;
351 default:
352 unreachable("invalid dynamic state");
353 return 0;
354 }
355 }
356
357 static gl_shader_stage
358 tu_shader_stage(VkShaderStageFlagBits stage)
359 {
360 switch (stage) {
361 case VK_SHADER_STAGE_VERTEX_BIT:
362 return MESA_SHADER_VERTEX;
363 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
364 return MESA_SHADER_TESS_CTRL;
365 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
366 return MESA_SHADER_TESS_EVAL;
367 case VK_SHADER_STAGE_GEOMETRY_BIT:
368 return MESA_SHADER_GEOMETRY;
369 case VK_SHADER_STAGE_FRAGMENT_BIT:
370 return MESA_SHADER_FRAGMENT;
371 case VK_SHADER_STAGE_COMPUTE_BIT:
372 return MESA_SHADER_COMPUTE;
373 default:
374 unreachable("invalid VkShaderStageFlagBits");
375 return MESA_SHADER_NONE;
376 }
377 }
378
379 static bool
380 tu_logic_op_reads_dst(VkLogicOp op)
381 {
382 switch (op) {
383 case VK_LOGIC_OP_CLEAR:
384 case VK_LOGIC_OP_COPY:
385 case VK_LOGIC_OP_COPY_INVERTED:
386 case VK_LOGIC_OP_SET:
387 return false;
388 default:
389 return true;
390 }
391 }
392
393 static VkBlendFactor
394 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
395 {
396 /* treat dst alpha as 1.0 and avoid reading it */
397 switch (factor) {
398 case VK_BLEND_FACTOR_DST_ALPHA:
399 return VK_BLEND_FACTOR_ONE;
400 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
401 return VK_BLEND_FACTOR_ZERO;
402 default:
403 return factor;
404 }
405 }
406
407 static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
408 {
409 switch (factor) {
410 case VK_BLEND_FACTOR_SRC1_COLOR:
411 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
412 case VK_BLEND_FACTOR_SRC1_ALPHA:
413 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
414 return true;
415 default:
416 return false;
417 }
418 }
419
420 static bool
421 tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
422 {
423 if (!info)
424 return false;
425
426 for (unsigned i = 0; i < info->attachmentCount; i++) {
427 const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
428 if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
429 tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
430 tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
431 tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
432 return true;
433 }
434
435 return false;
436 }
437
438 static enum pc_di_primtype
439 tu6_primtype(VkPrimitiveTopology topology)
440 {
441 switch (topology) {
442 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
443 return DI_PT_POINTLIST;
444 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
445 return DI_PT_LINELIST;
446 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
447 return DI_PT_LINESTRIP;
448 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
449 return DI_PT_TRILIST;
450 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
451 return DI_PT_TRISTRIP;
452 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
453 return DI_PT_TRIFAN;
454 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
455 return DI_PT_LINE_ADJ;
456 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
457 return DI_PT_LINESTRIP_ADJ;
458 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
459 return DI_PT_TRI_ADJ;
460 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
461 return DI_PT_TRISTRIP_ADJ;
462 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
463 default:
464 unreachable("invalid primitive topology");
465 return DI_PT_NONE;
466 }
467 }
468
469 static enum adreno_compare_func
470 tu6_compare_func(VkCompareOp op)
471 {
472 switch (op) {
473 case VK_COMPARE_OP_NEVER:
474 return FUNC_NEVER;
475 case VK_COMPARE_OP_LESS:
476 return FUNC_LESS;
477 case VK_COMPARE_OP_EQUAL:
478 return FUNC_EQUAL;
479 case VK_COMPARE_OP_LESS_OR_EQUAL:
480 return FUNC_LEQUAL;
481 case VK_COMPARE_OP_GREATER:
482 return FUNC_GREATER;
483 case VK_COMPARE_OP_NOT_EQUAL:
484 return FUNC_NOTEQUAL;
485 case VK_COMPARE_OP_GREATER_OR_EQUAL:
486 return FUNC_GEQUAL;
487 case VK_COMPARE_OP_ALWAYS:
488 return FUNC_ALWAYS;
489 default:
490 unreachable("invalid VkCompareOp");
491 return FUNC_NEVER;
492 }
493 }
494
495 static enum adreno_stencil_op
496 tu6_stencil_op(VkStencilOp op)
497 {
498 switch (op) {
499 case VK_STENCIL_OP_KEEP:
500 return STENCIL_KEEP;
501 case VK_STENCIL_OP_ZERO:
502 return STENCIL_ZERO;
503 case VK_STENCIL_OP_REPLACE:
504 return STENCIL_REPLACE;
505 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
506 return STENCIL_INCR_CLAMP;
507 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
508 return STENCIL_DECR_CLAMP;
509 case VK_STENCIL_OP_INVERT:
510 return STENCIL_INVERT;
511 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
512 return STENCIL_INCR_WRAP;
513 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
514 return STENCIL_DECR_WRAP;
515 default:
516 unreachable("invalid VkStencilOp");
517 return STENCIL_KEEP;
518 }
519 }
520
521 static enum a3xx_rop_code
522 tu6_rop(VkLogicOp op)
523 {
524 switch (op) {
525 case VK_LOGIC_OP_CLEAR:
526 return ROP_CLEAR;
527 case VK_LOGIC_OP_AND:
528 return ROP_AND;
529 case VK_LOGIC_OP_AND_REVERSE:
530 return ROP_AND_REVERSE;
531 case VK_LOGIC_OP_COPY:
532 return ROP_COPY;
533 case VK_LOGIC_OP_AND_INVERTED:
534 return ROP_AND_INVERTED;
535 case VK_LOGIC_OP_NO_OP:
536 return ROP_NOOP;
537 case VK_LOGIC_OP_XOR:
538 return ROP_XOR;
539 case VK_LOGIC_OP_OR:
540 return ROP_OR;
541 case VK_LOGIC_OP_NOR:
542 return ROP_NOR;
543 case VK_LOGIC_OP_EQUIVALENT:
544 return ROP_EQUIV;
545 case VK_LOGIC_OP_INVERT:
546 return ROP_INVERT;
547 case VK_LOGIC_OP_OR_REVERSE:
548 return ROP_OR_REVERSE;
549 case VK_LOGIC_OP_COPY_INVERTED:
550 return ROP_COPY_INVERTED;
551 case VK_LOGIC_OP_OR_INVERTED:
552 return ROP_OR_INVERTED;
553 case VK_LOGIC_OP_NAND:
554 return ROP_NAND;
555 case VK_LOGIC_OP_SET:
556 return ROP_SET;
557 default:
558 unreachable("invalid VkLogicOp");
559 return ROP_NOOP;
560 }
561 }
562
563 static enum adreno_rb_blend_factor
564 tu6_blend_factor(VkBlendFactor factor)
565 {
566 switch (factor) {
567 case VK_BLEND_FACTOR_ZERO:
568 return FACTOR_ZERO;
569 case VK_BLEND_FACTOR_ONE:
570 return FACTOR_ONE;
571 case VK_BLEND_FACTOR_SRC_COLOR:
572 return FACTOR_SRC_COLOR;
573 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
574 return FACTOR_ONE_MINUS_SRC_COLOR;
575 case VK_BLEND_FACTOR_DST_COLOR:
576 return FACTOR_DST_COLOR;
577 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
578 return FACTOR_ONE_MINUS_DST_COLOR;
579 case VK_BLEND_FACTOR_SRC_ALPHA:
580 return FACTOR_SRC_ALPHA;
581 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
582 return FACTOR_ONE_MINUS_SRC_ALPHA;
583 case VK_BLEND_FACTOR_DST_ALPHA:
584 return FACTOR_DST_ALPHA;
585 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
586 return FACTOR_ONE_MINUS_DST_ALPHA;
587 case VK_BLEND_FACTOR_CONSTANT_COLOR:
588 return FACTOR_CONSTANT_COLOR;
589 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
590 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
591 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
592 return FACTOR_CONSTANT_ALPHA;
593 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
594 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
595 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
596 return FACTOR_SRC_ALPHA_SATURATE;
597 case VK_BLEND_FACTOR_SRC1_COLOR:
598 return FACTOR_SRC1_COLOR;
599 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
600 return FACTOR_ONE_MINUS_SRC1_COLOR;
601 case VK_BLEND_FACTOR_SRC1_ALPHA:
602 return FACTOR_SRC1_ALPHA;
603 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
604 return FACTOR_ONE_MINUS_SRC1_ALPHA;
605 default:
606 unreachable("invalid VkBlendFactor");
607 return FACTOR_ZERO;
608 }
609 }
610
611 static enum a3xx_rb_blend_opcode
612 tu6_blend_op(VkBlendOp op)
613 {
614 switch (op) {
615 case VK_BLEND_OP_ADD:
616 return BLEND_DST_PLUS_SRC;
617 case VK_BLEND_OP_SUBTRACT:
618 return BLEND_SRC_MINUS_DST;
619 case VK_BLEND_OP_REVERSE_SUBTRACT:
620 return BLEND_DST_MINUS_SRC;
621 case VK_BLEND_OP_MIN:
622 return BLEND_MIN_DST_SRC;
623 case VK_BLEND_OP_MAX:
624 return BLEND_MAX_DST_SRC;
625 default:
626 unreachable("invalid VkBlendOp");
627 return BLEND_DST_PLUS_SRC;
628 }
629 }
630
631 void
632 tu6_emit_xs_config(struct tu_cs *cs,
633 gl_shader_stage stage, /* xs->type, but xs may be NULL */
634 const struct ir3_shader_variant *xs,
635 uint64_t binary_iova)
636 {
637 static const struct xs_config {
638 uint16_t reg_sp_xs_ctrl;
639 uint16_t reg_sp_xs_config;
640 uint16_t reg_hlsq_xs_ctrl;
641 uint16_t reg_sp_vs_obj_start;
642 uint8_t opcode;
643 enum a6xx_state_block sb : 8;
644 } xs_config[] = {
645 [MESA_SHADER_VERTEX] = {
646 REG_A6XX_SP_VS_CTRL_REG0,
647 REG_A6XX_SP_VS_CONFIG,
648 REG_A6XX_HLSQ_VS_CNTL,
649 REG_A6XX_SP_VS_OBJ_START_LO,
650 CP_LOAD_STATE6_GEOM,
651 SB6_VS_SHADER,
652 },
653 [MESA_SHADER_TESS_CTRL] = {
654 REG_A6XX_SP_HS_CTRL_REG0,
655 REG_A6XX_SP_HS_CONFIG,
656 REG_A6XX_HLSQ_HS_CNTL,
657 REG_A6XX_SP_HS_OBJ_START_LO,
658 CP_LOAD_STATE6_GEOM,
659 SB6_HS_SHADER,
660 },
661 [MESA_SHADER_TESS_EVAL] = {
662 REG_A6XX_SP_DS_CTRL_REG0,
663 REG_A6XX_SP_DS_CONFIG,
664 REG_A6XX_HLSQ_DS_CNTL,
665 REG_A6XX_SP_DS_OBJ_START_LO,
666 CP_LOAD_STATE6_GEOM,
667 SB6_DS_SHADER,
668 },
669 [MESA_SHADER_GEOMETRY] = {
670 REG_A6XX_SP_GS_CTRL_REG0,
671 REG_A6XX_SP_GS_CONFIG,
672 REG_A6XX_HLSQ_GS_CNTL,
673 REG_A6XX_SP_GS_OBJ_START_LO,
674 CP_LOAD_STATE6_GEOM,
675 SB6_GS_SHADER,
676 },
677 [MESA_SHADER_FRAGMENT] = {
678 REG_A6XX_SP_FS_CTRL_REG0,
679 REG_A6XX_SP_FS_CONFIG,
680 REG_A6XX_HLSQ_FS_CNTL,
681 REG_A6XX_SP_FS_OBJ_START_LO,
682 CP_LOAD_STATE6_FRAG,
683 SB6_FS_SHADER,
684 },
685 [MESA_SHADER_COMPUTE] = {
686 REG_A6XX_SP_CS_CTRL_REG0,
687 REG_A6XX_SP_CS_CONFIG,
688 REG_A6XX_HLSQ_CS_CNTL,
689 REG_A6XX_SP_CS_OBJ_START_LO,
690 CP_LOAD_STATE6_FRAG,
691 SB6_CS_SHADER,
692 },
693 };
694 const struct xs_config *cfg = &xs_config[stage];
695
696 if (!xs) {
697 /* shader stage disabled */
698 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 1);
699 tu_cs_emit(cs, 0);
700
701 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
702 tu_cs_emit(cs, 0);
703 return;
704 }
705
706 bool is_fs = xs->type == MESA_SHADER_FRAGMENT;
707 enum a3xx_threadsize threadsize = FOUR_QUADS;
708
709 /* TODO:
710 * the "threadsize" field may have nothing to do with threadsize,
711 * use a value that matches the blob until it is figured out
712 */
713 if (xs->type == MESA_SHADER_GEOMETRY)
714 threadsize = TWO_QUADS;
715
716 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_ctrl, 1);
717 tu_cs_emit(cs,
718 A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) |
719 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) |
720 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
721 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) |
722 COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) |
723 COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) |
724 /* only fragment shader sets VARYING bit */
725 COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) |
726 /* unknown bit, seems unnecessary */
727 COND(is_fs, 0x1000000));
728
729 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 2);
730 tu_cs_emit(cs, A6XX_SP_VS_CONFIG_ENABLED |
731 COND(xs->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
732 COND(xs->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
733 COND(xs->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
734 COND(xs->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO) |
735 A6XX_SP_VS_CONFIG_NTEX(xs->num_samp) |
736 A6XX_SP_VS_CONFIG_NSAMP(xs->num_samp));
737 tu_cs_emit(cs, xs->instrlen);
738
739 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
740 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(xs->constlen, 4)) |
741 A6XX_HLSQ_VS_CNTL_ENABLED);
742
743 /* emit program binary
744 * binary_iova should be aligned to 1 instrlen unit (128 bytes)
745 */
746
747 assert((binary_iova & 0x7f) == 0);
748
749 tu_cs_emit_pkt4(cs, cfg->reg_sp_vs_obj_start, 2);
750 tu_cs_emit_qw(cs, binary_iova);
751
752 tu_cs_emit_pkt7(cs, cfg->opcode, 3);
753 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
754 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
755 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
756 CP_LOAD_STATE6_0_STATE_BLOCK(cfg->sb) |
757 CP_LOAD_STATE6_0_NUM_UNIT(xs->instrlen));
758 tu_cs_emit_qw(cs, binary_iova);
759
760 /* emit immediates */
761
762 const struct ir3_const_state *const_state = &xs->shader->const_state;
763 uint32_t base = const_state->offsets.immediate;
764 int size = const_state->immediates_count;
765
766 /* truncate size to avoid writing constants that shader
767 * does not use:
768 */
769 size = MIN2(size + base, xs->constlen) - base;
770
771 if (size <= 0)
772 return;
773
774 tu_cs_emit_pkt7(cs, cfg->opcode, 3 + size * 4);
775 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
776 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
777 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
778 CP_LOAD_STATE6_0_STATE_BLOCK(cfg->sb) |
779 CP_LOAD_STATE6_0_NUM_UNIT(size));
780 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
781 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
782
783 for (unsigned i = 0; i < size; i++) {
784 tu_cs_emit(cs, const_state->immediates[i].val[0]);
785 tu_cs_emit(cs, const_state->immediates[i].val[1]);
786 tu_cs_emit(cs, const_state->immediates[i].val[2]);
787 tu_cs_emit(cs, const_state->immediates[i].val[3]);
788 }
789 }
790
791 static void
792 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
793 const struct ir3_shader_variant *v,
794 uint32_t binary_iova)
795 {
796 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
797 tu_cs_emit(cs, 0xff);
798
799 tu6_emit_xs_config(cs, MESA_SHADER_COMPUTE, v, binary_iova);
800
801 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
802 tu_cs_emit(cs, 0x41);
803
804 uint32_t local_invocation_id =
805 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
806 uint32_t work_group_id =
807 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
808
809 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
810 tu_cs_emit(cs,
811 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
812 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
813 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
814 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
815 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
816 }
817
818 static void
819 tu6_emit_vs_system_values(struct tu_cs *cs,
820 const struct ir3_shader_variant *vs,
821 const struct ir3_shader_variant *gs,
822 bool primid_passthru)
823 {
824 const uint32_t vertexid_regid =
825 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
826 const uint32_t instanceid_regid =
827 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
828 const uint32_t primitiveid_regid = gs ?
829 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
830 regid(63, 0);
831 const uint32_t gsheader_regid = gs ?
832 ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
833 regid(63, 0);
834
835 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
836 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
837 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
838 A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
839 0xfc000000);
840 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
841 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
842 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
843 tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
844 0xfc00); /* VFD_CONTROL_5 */
845 tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
846 }
847
848 /* Add any missing varyings needed for stream-out. Otherwise varyings not
849 * used by fragment shader will be stripped out.
850 */
851 static void
852 tu6_link_streamout(struct ir3_shader_linkage *l,
853 const struct ir3_shader_variant *v)
854 {
855 const struct ir3_stream_output_info *info = &v->shader->stream_output;
856
857 /*
858 * First, any stream-out varyings not already in linkage map (ie. also
859 * consumed by frag shader) need to be added:
860 */
861 for (unsigned i = 0; i < info->num_outputs; i++) {
862 const struct ir3_stream_output *out = &info->output[i];
863 unsigned compmask =
864 (1 << (out->num_components + out->start_component)) - 1;
865 unsigned k = out->register_index;
866 unsigned idx, nextloc = 0;
867
868 /* psize/pos need to be the last entries in linkage map, and will
869 * get added link_stream_out, so skip over them:
870 */
871 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
872 v->outputs[k].slot == VARYING_SLOT_POS)
873 continue;
874
875 for (idx = 0; idx < l->cnt; idx++) {
876 if (l->var[idx].regid == v->outputs[k].regid)
877 break;
878 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
879 }
880
881 /* add if not already in linkage map: */
882 if (idx == l->cnt)
883 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
884
885 /* expand component-mask if needed, ie streaming out all components
886 * but frag shader doesn't consume all components:
887 */
888 if (compmask & ~l->var[idx].compmask) {
889 l->var[idx].compmask |= compmask;
890 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
891 util_last_bit(l->var[idx].compmask));
892 }
893 }
894 }
895
896 static void
897 tu6_setup_streamout(const struct ir3_shader_variant *v,
898 struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
899 {
900 const struct ir3_stream_output_info *info = &v->shader->stream_output;
901
902 memset(tf, 0, sizeof(*tf));
903
904 tf->prog_count = align(l->max_loc, 2) / 2;
905
906 debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
907
908 /* set stride info to the streamout state */
909 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
910 tf->stride[i] = info->stride[i];
911
912 for (unsigned i = 0; i < info->num_outputs; i++) {
913 const struct ir3_stream_output *out = &info->output[i];
914 unsigned k = out->register_index;
915 unsigned idx;
916
917 /* Skip it, if there's an unused reg in the middle of outputs. */
918 if (v->outputs[k].regid == INVALID_REG)
919 continue;
920
921 tf->ncomp[out->output_buffer] += out->num_components;
922
923 /* linkage map sorted by order frag shader wants things, so
924 * a bit less ideal here..
925 */
926 for (idx = 0; idx < l->cnt; idx++)
927 if (l->var[idx].regid == v->outputs[k].regid)
928 break;
929
930 debug_assert(idx < l->cnt);
931
932 for (unsigned j = 0; j < out->num_components; j++) {
933 unsigned c = j + out->start_component;
934 unsigned loc = l->var[idx].loc + c;
935 unsigned off = j + out->dst_offset; /* in dwords */
936
937 if (loc & 1) {
938 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
939 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
940 A6XX_VPC_SO_PROG_B_OFF(off * 4);
941 } else {
942 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
943 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
944 A6XX_VPC_SO_PROG_A_OFF(off * 4);
945 }
946 }
947 }
948
949 tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
950 COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
951 COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
952 COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
953 COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
954 }
955
956 static void
957 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
958 enum a6xx_state_block block, uint32_t offset,
959 uint32_t size, uint32_t *dwords) {
960 assert(size % 4 == 0);
961
962 tu_cs_emit_pkt7(cs, opcode, 3 + size);
963 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
964 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
965 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
966 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
967 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
968
969 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
970 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
971 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
972
973 tu_cs_emit_array(cs, dwords, size);
974 }
975
976 static void
977 tu6_emit_link_map(struct tu_cs *cs,
978 const struct ir3_shader_variant *producer,
979 const struct ir3_shader_variant *consumer) {
980 const struct ir3_const_state *const_state = &consumer->shader->const_state;
981 uint32_t base = const_state->offsets.primitive_map;
982 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
983 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
984 int size = DIV_ROUND_UP(num_loc, 4);
985
986 size = (MIN2(size + base, consumer->constlen) - base) * 4;
987 if (size <= 0)
988 return;
989
990 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, SB6_GS_SHADER, 0, size,
991 patch_locs);
992 }
993
994 static uint16_t
995 gl_primitive_to_tess(uint16_t primitive) {
996 switch (primitive) {
997 case GL_POINTS:
998 return TESS_POINTS;
999 case GL_LINE_STRIP:
1000 return TESS_LINES;
1001 case GL_TRIANGLE_STRIP:
1002 return TESS_CW_TRIS;
1003 default:
1004 unreachable("");
1005 }
1006 }
1007
1008 void
1009 tu6_emit_vpc(struct tu_cs *cs,
1010 const struct ir3_shader_variant *vs,
1011 const struct ir3_shader_variant *gs,
1012 const struct ir3_shader_variant *fs,
1013 struct tu_streamout_state *tf)
1014 {
1015 const struct ir3_shader_variant *last_shader = gs ?: vs;
1016 struct ir3_shader_linkage linkage = { .primid_loc = 0xff };
1017 if (fs)
1018 ir3_link_shaders(&linkage, last_shader, fs, true);
1019
1020 if (last_shader->shader->stream_output.num_outputs)
1021 tu6_link_streamout(&linkage, last_shader);
1022
1023 /* We do this after linking shaders in order to know whether PrimID
1024 * passthrough needs to be enabled.
1025 */
1026 bool primid_passthru = linkage.primid_loc != 0xff;
1027 tu6_emit_vs_system_values(cs, vs, gs, primid_passthru);
1028
1029 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
1030 tu_cs_emit(cs, ~linkage.varmask[0]);
1031 tu_cs_emit(cs, ~linkage.varmask[1]);
1032 tu_cs_emit(cs, ~linkage.varmask[2]);
1033 tu_cs_emit(cs, ~linkage.varmask[3]);
1034
1035 /* a6xx finds position/pointsize at the end */
1036 const uint32_t position_regid =
1037 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
1038 const uint32_t pointsize_regid =
1039 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
1040 const uint32_t layer_regid = gs ?
1041 ir3_find_output_regid(gs, VARYING_SLOT_LAYER) : regid(63, 0);
1042
1043 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
1044 if (layer_regid != regid(63, 0)) {
1045 layer_loc = linkage.max_loc;
1046 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
1047 }
1048 if (position_regid != regid(63, 0)) {
1049 position_loc = linkage.max_loc;
1050 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
1051 }
1052 if (pointsize_regid != regid(63, 0)) {
1053 pointsize_loc = linkage.max_loc;
1054 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
1055 }
1056
1057 if (last_shader->shader->stream_output.num_outputs)
1058 tu6_setup_streamout(last_shader, &linkage, tf);
1059
1060 /* map outputs of the last shader to VPC */
1061 assert(linkage.cnt <= 32);
1062 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
1063 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
1064 uint32_t sp_out[16];
1065 uint32_t sp_vpc_dst[8];
1066 for (uint32_t i = 0; i < linkage.cnt; i++) {
1067 ((uint16_t *) sp_out)[i] =
1068 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
1069 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
1070 ((uint8_t *) sp_vpc_dst)[i] =
1071 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
1072 }
1073
1074 if (gs)
1075 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_OUT_REG(0), sp_out_count);
1076 else
1077 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_out_count);
1078 tu_cs_emit_array(cs, sp_out, sp_out_count);
1079
1080 if (gs)
1081 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_VPC_DST_REG(0), sp_vpc_dst_count);
1082 else
1083 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vpc_dst_count);
1084 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
1085
1086 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1);
1087 tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU));
1088
1089 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
1090 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs ? fs->total_in : 0) |
1091 COND(fs && fs->total_in, A6XX_VPC_CNTL_0_VARYING) |
1092 A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
1093 A6XX_VPC_CNTL_0_UNKLOC(0xff));
1094
1095 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
1096 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
1097 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
1098 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
1099
1100 if (gs) {
1101 tu6_emit_link_map(cs, vs, gs);
1102
1103 uint32_t primitive_regid =
1104 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID);
1105 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK_GS, 1);
1106 tu_cs_emit(cs, A6XX_VPC_PACK_GS_POSITIONLOC(position_loc) |
1107 A6XX_VPC_PACK_GS_PSIZELOC(pointsize_loc) |
1108 A6XX_VPC_PACK_GS_STRIDE_IN_VPC(linkage.max_loc));
1109
1110 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9105, 1);
1111 tu_cs_emit(cs, A6XX_VPC_UNKNOWN_9105_LAYERLOC(layer_loc) | 0xff00);
1112
1113 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_809C, 1);
1114 tu_cs_emit(cs, CONDREG(layer_regid,
1115 A6XX_GRAS_UNKNOWN_809C_GS_WRITES_LAYER));
1116
1117 uint32_t flags_regid = ir3_find_output_regid(gs,
1118 VARYING_SLOT_GS_VERTEX_FLAGS_IR3);
1119
1120 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL_GS, 1);
1121 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_GS_GSOUT(linkage.cnt) |
1122 A6XX_SP_PRIMITIVE_CNTL_GS_FLAGS_REGID(flags_regid));
1123
1124 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_2, 1);
1125 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_2_STRIDE_IN_VPC(linkage.max_loc) |
1126 CONDREG(pointsize_regid, A6XX_PC_PRIMITIVE_CNTL_2_PSIZE) |
1127 CONDREG(layer_regid, A6XX_PC_PRIMITIVE_CNTL_2_LAYER) |
1128 CONDREG(primitive_regid, A6XX_PC_PRIMITIVE_CNTL_2_PRIMITIVE_ID));
1129
1130 uint32_t vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
1131 uint16_t output =
1132 gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
1133 uint32_t invocations = gs->shader->nir->info.gs.invocations - 1;
1134 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
1135 tu_cs_emit(cs,
1136 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
1137 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
1138 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
1139
1140 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
1141 tu_cs_emit(cs, 0);
1142
1143 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8003, 1);
1144 tu_cs_emit(cs, 0);
1145
1146 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
1147 tu_cs_emit(cs, 0xff);
1148
1149 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9102, 1);
1150 tu_cs_emit(cs, 0xffff00);
1151
1152 /* Size of per-primitive alloction in ldlw memory in vec4s. */
1153 uint32_t vec4_size =
1154 gs->shader->nir->info.gs.vertices_in *
1155 DIV_ROUND_UP(vs->shader->output_size, 4);
1156 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
1157 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
1158
1159 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
1160 tu_cs_emit(cs, 0);
1161
1162 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
1163 tu_cs_emit(cs, vs->shader->output_size);
1164 }
1165
1166 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
1167 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
1168
1169 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
1170 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
1171 (last_shader->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
1172 }
1173
1174 static int
1175 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
1176 uint32_t index,
1177 uint8_t *interp_mode,
1178 uint8_t *ps_repl_mode)
1179 {
1180 enum
1181 {
1182 INTERP_SMOOTH = 0,
1183 INTERP_FLAT = 1,
1184 INTERP_ZERO = 2,
1185 INTERP_ONE = 3,
1186 };
1187 enum
1188 {
1189 PS_REPL_NONE = 0,
1190 PS_REPL_S = 1,
1191 PS_REPL_T = 2,
1192 PS_REPL_ONE_MINUS_T = 3,
1193 };
1194
1195 const uint32_t compmask = fs->inputs[index].compmask;
1196
1197 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
1198 * fourth component occupy three consecutive varying slots
1199 */
1200 int shift = 0;
1201 *interp_mode = 0;
1202 *ps_repl_mode = 0;
1203 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
1204 if (compmask & 0x1) {
1205 *ps_repl_mode |= PS_REPL_S << shift;
1206 shift += 2;
1207 }
1208 if (compmask & 0x2) {
1209 *ps_repl_mode |= PS_REPL_T << shift;
1210 shift += 2;
1211 }
1212 if (compmask & 0x4) {
1213 *interp_mode |= INTERP_ZERO << shift;
1214 shift += 2;
1215 }
1216 if (compmask & 0x8) {
1217 *interp_mode |= INTERP_ONE << 6;
1218 shift += 2;
1219 }
1220 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
1221 fs->inputs[index].rasterflat) {
1222 for (int i = 0; i < 4; i++) {
1223 if (compmask & (1 << i)) {
1224 *interp_mode |= INTERP_FLAT << shift;
1225 shift += 2;
1226 }
1227 }
1228 }
1229
1230 return shift;
1231 }
1232
1233 static void
1234 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
1235 const struct ir3_shader_variant *fs)
1236 {
1237 uint32_t interp_modes[8] = { 0 };
1238 uint32_t ps_repl_modes[8] = { 0 };
1239
1240 if (fs) {
1241 for (int i = -1;
1242 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
1243
1244 /* get the mode for input i */
1245 uint8_t interp_mode;
1246 uint8_t ps_repl_mode;
1247 const int bits =
1248 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
1249
1250 /* OR the mode into the array */
1251 const uint32_t inloc = fs->inputs[i].inloc * 2;
1252 uint32_t n = inloc / 32;
1253 uint32_t shift = inloc % 32;
1254 interp_modes[n] |= interp_mode << shift;
1255 ps_repl_modes[n] |= ps_repl_mode << shift;
1256 if (shift + bits > 32) {
1257 n++;
1258 shift = 32 - shift;
1259
1260 interp_modes[n] |= interp_mode >> shift;
1261 ps_repl_modes[n] |= ps_repl_mode >> shift;
1262 }
1263 }
1264 }
1265
1266 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
1267 tu_cs_emit_array(cs, interp_modes, 8);
1268
1269 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
1270 tu_cs_emit_array(cs, ps_repl_modes, 8);
1271 }
1272
1273 void
1274 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
1275 {
1276 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
1277 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
1278 uint32_t smask_in_regid;
1279
1280 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
1281 bool enable_varyings = fs->total_in > 0;
1282
1283 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1284 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1285 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1286 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1287 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1288 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1289 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1290 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1291 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1292
1293 if (fs->num_sampler_prefetch > 0) {
1294 assert(VALIDREG(ij_pix_regid));
1295 /* also, it seems like ij_pix is *required* to be r0.x */
1296 assert(ij_pix_regid == regid(0, 0));
1297 }
1298
1299 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1300 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1301 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1302 0x7000); // XXX);
1303 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1304 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1305 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1306 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1307 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1308 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1309 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1310 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1311 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1312 }
1313
1314 if (fs->num_sampler_prefetch > 0) {
1315 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
1316 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1317 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1318 tu_cs_emit(cs,
1319 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
1320 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
1321 }
1322 }
1323
1324 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1325 tu_cs_emit(cs, 0x7);
1326 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1327 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1328 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1329 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
1330 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
1331 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
1332 0xfc00fc00);
1333 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1334 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1335 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
1336 0x0000fc00);
1337 tu_cs_emit(cs, 0xfc);
1338
1339 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1340 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1341
1342 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1343 tu_cs_emit(cs,
1344 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
1345 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
1346 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
1347 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
1348 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1349 COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_SIZE |
1350 A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)) |
1351 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
1352
1353 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1354 tu_cs_emit(cs,
1355 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
1356 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
1357 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
1358 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1359 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
1360 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1361 COND(fs->fragcoord_compmask != 0, A6XX_RB_RENDER_CONTROL0_SIZE |
1362 A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)) |
1363 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
1364 tu_cs_emit(cs,
1365 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1366 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1367 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
1368 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1369
1370 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1371 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1372
1373 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1374 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1375
1376 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1377 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1378 }
1379
1380 static void
1381 tu6_emit_fs_outputs(struct tu_cs *cs,
1382 const struct ir3_shader_variant *fs,
1383 uint32_t mrt_count, bool dual_src_blend,
1384 uint32_t render_components)
1385 {
1386 uint32_t smask_regid, posz_regid;
1387
1388 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1389 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1390
1391 uint32_t fragdata_regid[8];
1392 if (fs->color0_mrt) {
1393 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1394 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1395 fragdata_regid[i] = fragdata_regid[0];
1396 } else {
1397 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1398 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1399 }
1400
1401 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1402 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1403 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1404 COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) |
1405 0xfc000000);
1406 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1407
1408 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1409 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1410 // TODO we could have a mix of half and full precision outputs,
1411 // we really need to figure out half-precision from IR3_REG_HALF
1412 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1413 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1414 }
1415
1416 tu_cs_emit_regs(cs,
1417 A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
1418
1419 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1420 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1421 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
1422 COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
1423 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1424
1425 tu_cs_emit_regs(cs,
1426 A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
1427
1428 enum a6xx_ztest_mode zmode;
1429
1430 if (fs->no_earlyz || fs->has_kill || fs->writes_pos) {
1431 zmode = A6XX_LATE_Z;
1432 } else {
1433 zmode = A6XX_EARLY_Z;
1434 }
1435
1436 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1437 tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1438
1439 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1440 tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1441 }
1442
1443 static void
1444 tu6_emit_geometry_consts(struct tu_cs *cs,
1445 const struct ir3_shader_variant *vs,
1446 const struct ir3_shader_variant *gs) {
1447 unsigned num_vertices = gs->shader->nir->info.gs.vertices_in;
1448
1449 uint32_t params[4] = {
1450 vs->shader->output_size * num_vertices * 4, /* primitive stride */
1451 vs->shader->output_size * 4, /* vertex stride */
1452 0,
1453 0,
1454 };
1455 uint32_t vs_base = vs->shader->const_state.offsets.primitive_param;
1456 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1457 ARRAY_SIZE(params), params);
1458
1459 uint32_t gs_base = gs->shader->const_state.offsets.primitive_param;
1460 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1461 ARRAY_SIZE(params), params);
1462 }
1463
1464 /* get pointer to first variant, return NULL if shader is NULL */
1465 static const struct ir3_shader_variant *
1466 tu_shader_get_variant(const struct tu_shader *shader)
1467 {
1468 return shader ? &shader->variants[0] : NULL;
1469 }
1470
1471 static void
1472 tu6_emit_program(struct tu_cs *cs,
1473 struct tu_pipeline_builder *builder,
1474 const struct tu_bo *binary_bo,
1475 bool binning_pass,
1476 struct tu_streamout_state *tf)
1477 {
1478 const struct ir3_shader_variant *vs =
1479 tu_shader_get_variant(builder->shaders[MESA_SHADER_VERTEX]);
1480 const struct ir3_shader_variant *gs =
1481 tu_shader_get_variant(builder->shaders[MESA_SHADER_GEOMETRY]);
1482 const struct ir3_shader_variant *fs =
1483 tu_shader_get_variant(builder->shaders[MESA_SHADER_FRAGMENT]);
1484 gl_shader_stage stage = MESA_SHADER_VERTEX;
1485
1486 STATIC_ASSERT(MESA_SHADER_VERTEX == 0);
1487
1488 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
1489 tu_cs_emit(cs, 0xff); /* XXX */
1490
1491 /* if we have streamout, use full VS in binning pass, as the
1492 * binning pass VS will have outputs on other than position/psize
1493 * stripped out
1494 *
1495 * GS also can have streamout, but we completely disable the
1496 * the binning pass variant when GS is present because we don't
1497 * support compiling correct binning pass variants with GS
1498 */
1499 if (binning_pass && vs->shader->stream_output.num_outputs == 0 && !gs) {
1500 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1501 tu6_emit_xs_config(cs, stage, vs,
1502 binary_bo->iova + builder->binning_vs_offset);
1503 stage++;
1504 }
1505
1506 for (; stage < ARRAY_SIZE(builder->shaders); stage++) {
1507 const struct ir3_shader_variant *xs =
1508 tu_shader_get_variant(builder->shaders[stage]);
1509
1510 if (stage == MESA_SHADER_FRAGMENT && binning_pass)
1511 fs = xs = NULL;
1512
1513 tu6_emit_xs_config(cs, stage, xs,
1514 binary_bo->iova + builder->shader_offsets[stage]);
1515 }
1516
1517 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
1518 tu_cs_emit(cs, 0);
1519
1520 tu6_emit_vpc(cs, vs, gs, fs, tf);
1521 tu6_emit_vpc_varying_modes(cs, fs);
1522
1523 if (fs) {
1524 tu6_emit_fs_inputs(cs, fs);
1525 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
1526 builder->use_dual_src_blend,
1527 builder->render_components);
1528 } else {
1529 /* TODO: check if these can be skipped if fs is disabled */
1530 struct ir3_shader_variant dummy_variant = {};
1531 tu6_emit_fs_inputs(cs, &dummy_variant);
1532 tu6_emit_fs_outputs(cs, &dummy_variant, builder->color_attachment_count,
1533 builder->use_dual_src_blend,
1534 builder->render_components);
1535 }
1536
1537 if (gs)
1538 tu6_emit_geometry_consts(cs, vs, gs);
1539 }
1540
1541 static void
1542 tu6_emit_vertex_input(struct tu_cs *cs,
1543 const struct ir3_shader_variant *vs,
1544 const VkPipelineVertexInputStateCreateInfo *info,
1545 uint32_t *bindings_used)
1546 {
1547 uint32_t vfd_decode_idx = 0;
1548 uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
1549
1550 for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
1551 const VkVertexInputBindingDescription *binding =
1552 &info->pVertexBindingDescriptions[i];
1553
1554 tu_cs_emit_regs(cs,
1555 A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride));
1556
1557 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1558 binding_instanced |= 1 << binding->binding;
1559
1560 *bindings_used |= 1 << binding->binding;
1561 }
1562
1563 /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
1564
1565 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
1566 const VkVertexInputAttributeDescription *attr =
1567 &info->pVertexAttributeDescriptions[i];
1568 uint32_t input_idx;
1569
1570 for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
1571 if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
1572 break;
1573 }
1574
1575 /* attribute not used, skip it */
1576 if (input_idx == vs->inputs_count)
1577 continue;
1578
1579 const struct tu_native_format format = tu6_format_vtx(attr->format);
1580 tu_cs_emit_regs(cs,
1581 A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
1582 .idx = attr->binding,
1583 .offset = attr->offset,
1584 .instanced = binding_instanced & (1 << attr->binding),
1585 .format = format.fmt,
1586 .swap = format.swap,
1587 .unk30 = 1,
1588 ._float = !vk_format_is_int(attr->format)),
1589 A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, 1));
1590
1591 tu_cs_emit_regs(cs,
1592 A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
1593 .writemask = vs->inputs[input_idx].compmask,
1594 .regid = vs->inputs[input_idx].regid));
1595
1596 vfd_decode_idx++;
1597 }
1598
1599 tu_cs_emit_regs(cs,
1600 A6XX_VFD_CONTROL_0(
1601 .fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */
1602 .decode_cnt = vfd_decode_idx));
1603 }
1604
1605 static uint32_t
1606 tu6_guardband_adj(uint32_t v)
1607 {
1608 if (v > 256)
1609 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1610 else
1611 return 511;
1612 }
1613
1614 void
1615 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1616 {
1617 float offsets[3];
1618 float scales[3];
1619 scales[0] = viewport->width / 2.0f;
1620 scales[1] = viewport->height / 2.0f;
1621 scales[2] = viewport->maxDepth - viewport->minDepth;
1622 offsets[0] = viewport->x + scales[0];
1623 offsets[1] = viewport->y + scales[1];
1624 offsets[2] = viewport->minDepth;
1625
1626 VkOffset2D min;
1627 VkOffset2D max;
1628 min.x = (int32_t) viewport->x;
1629 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1630 if (viewport->height >= 0.0f) {
1631 min.y = (int32_t) viewport->y;
1632 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1633 } else {
1634 min.y = (int32_t)(viewport->y + viewport->height);
1635 max.y = (int32_t) ceilf(viewport->y);
1636 }
1637 /* the spec allows viewport->height to be 0.0f */
1638 if (min.y == max.y)
1639 max.y++;
1640 assert(min.x >= 0 && min.x < max.x);
1641 assert(min.y >= 0 && min.y < max.y);
1642
1643 VkExtent2D guardband_adj;
1644 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1645 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1646
1647 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1648 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1649 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1650 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1651 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1652 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1653 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1654
1655 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1656 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1657 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1658 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1659 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1660
1661 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1662 tu_cs_emit(cs,
1663 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1664 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1665
1666 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1667 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1668
1669 tu_cs_emit_regs(cs,
1670 A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
1671 A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
1672
1673 tu_cs_emit_regs(cs,
1674 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1675 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1676 }
1677
1678 void
1679 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1680 {
1681 const VkOffset2D min = scissor->offset;
1682 const VkOffset2D max = {
1683 scissor->offset.x + scissor->extent.width,
1684 scissor->offset.y + scissor->extent.height,
1685 };
1686
1687 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1688 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1689 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1690 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1691 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1692 }
1693
1694 void
1695 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
1696 {
1697 if (!samp_loc) {
1698 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
1699 tu_cs_emit(cs, 0);
1700
1701 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
1702 tu_cs_emit(cs, 0);
1703
1704 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
1705 tu_cs_emit(cs, 0);
1706 return;
1707 }
1708
1709 assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
1710 assert(samp_loc->sampleLocationGridSize.width == 1);
1711 assert(samp_loc->sampleLocationGridSize.height == 1);
1712
1713 uint32_t sample_config =
1714 A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
1715 uint32_t sample_locations = 0;
1716 for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
1717 sample_locations |=
1718 (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
1719 A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
1720 }
1721
1722 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
1723 tu_cs_emit(cs, sample_config);
1724 tu_cs_emit(cs, sample_locations);
1725
1726 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
1727 tu_cs_emit(cs, sample_config);
1728 tu_cs_emit(cs, sample_locations);
1729
1730 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
1731 tu_cs_emit(cs, sample_config);
1732 tu_cs_emit(cs, sample_locations);
1733 }
1734
1735 static void
1736 tu6_emit_gras_unknowns(struct tu_cs *cs)
1737 {
1738 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1739 tu_cs_emit(cs, 0x0);
1740 }
1741
1742 static void
1743 tu6_emit_point_size(struct tu_cs *cs)
1744 {
1745 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1746 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1747 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1748 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1749 }
1750
1751 static uint32_t
1752 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1753 VkSampleCountFlagBits samples)
1754 {
1755 uint32_t gras_su_cntl = 0;
1756
1757 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1758 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1759 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1760 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1761
1762 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1763 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1764
1765 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1766
1767 if (rast_info->depthBiasEnable)
1768 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1769
1770 if (samples > VK_SAMPLE_COUNT_1_BIT)
1771 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1772
1773 return gras_su_cntl;
1774 }
1775
1776 void
1777 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1778 uint32_t gras_su_cntl,
1779 float line_width)
1780 {
1781 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1782 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1783
1784 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1785 tu_cs_emit(cs, gras_su_cntl);
1786 }
1787
1788 void
1789 tu6_emit_depth_bias(struct tu_cs *cs,
1790 float constant_factor,
1791 float clamp,
1792 float slope_factor)
1793 {
1794 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1795 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1796 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1797 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1798 }
1799
1800 static void
1801 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1802 {
1803 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1804 tu_cs_emit(cs, 0);
1805 }
1806
1807 static void
1808 tu6_emit_depth_control(struct tu_cs *cs,
1809 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1810 const VkPipelineRasterizationStateCreateInfo *rast_info)
1811 {
1812 assert(!ds_info->depthBoundsTestEnable);
1813
1814 uint32_t rb_depth_cntl = 0;
1815 if (ds_info->depthTestEnable) {
1816 rb_depth_cntl |=
1817 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1818 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1819 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1820
1821 if (rast_info->depthClampEnable)
1822 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1823
1824 if (ds_info->depthWriteEnable)
1825 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1826 }
1827
1828 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1829 tu_cs_emit(cs, rb_depth_cntl);
1830 }
1831
1832 static void
1833 tu6_emit_stencil_control(struct tu_cs *cs,
1834 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1835 {
1836 uint32_t rb_stencil_control = 0;
1837 if (ds_info->stencilTestEnable) {
1838 const VkStencilOpState *front = &ds_info->front;
1839 const VkStencilOpState *back = &ds_info->back;
1840 rb_stencil_control |=
1841 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1842 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1843 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1844 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1845 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1846 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1847 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1848 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1849 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1850 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1851 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1852 }
1853
1854 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1855 tu_cs_emit(cs, rb_stencil_control);
1856 }
1857
1858 void
1859 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1860 {
1861 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1862 tu_cs_emit(
1863 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1864 }
1865
1866 void
1867 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1868 {
1869 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1870 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1871 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1872 }
1873
1874 void
1875 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1876 {
1877 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1878 tu_cs_emit(cs,
1879 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1880 }
1881
1882 static uint32_t
1883 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1884 bool has_alpha)
1885 {
1886 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1887 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1888 has_alpha ? att->srcColorBlendFactor
1889 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1890 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1891 has_alpha ? att->dstColorBlendFactor
1892 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1893 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1894 const enum adreno_rb_blend_factor src_alpha_factor =
1895 tu6_blend_factor(att->srcAlphaBlendFactor);
1896 const enum adreno_rb_blend_factor dst_alpha_factor =
1897 tu6_blend_factor(att->dstAlphaBlendFactor);
1898
1899 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1900 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1901 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1902 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1903 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1904 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1905 }
1906
1907 static uint32_t
1908 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1909 uint32_t rb_mrt_control_rop,
1910 bool is_int,
1911 bool has_alpha)
1912 {
1913 uint32_t rb_mrt_control =
1914 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1915
1916 /* ignore blending and logic op for integer attachments */
1917 if (is_int) {
1918 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1919 return rb_mrt_control;
1920 }
1921
1922 rb_mrt_control |= rb_mrt_control_rop;
1923
1924 if (att->blendEnable) {
1925 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1926
1927 if (has_alpha)
1928 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1929 }
1930
1931 return rb_mrt_control;
1932 }
1933
1934 static void
1935 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1936 const VkPipelineColorBlendStateCreateInfo *blend_info,
1937 const VkFormat attachment_formats[MAX_RTS],
1938 uint32_t *blend_enable_mask)
1939 {
1940 *blend_enable_mask = 0;
1941
1942 bool rop_reads_dst = false;
1943 uint32_t rb_mrt_control_rop = 0;
1944 if (blend_info->logicOpEnable) {
1945 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1946 rb_mrt_control_rop =
1947 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1948 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1949 }
1950
1951 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1952 const VkPipelineColorBlendAttachmentState *att =
1953 &blend_info->pAttachments[i];
1954 const VkFormat format = attachment_formats[i];
1955
1956 uint32_t rb_mrt_control = 0;
1957 uint32_t rb_mrt_blend_control = 0;
1958 if (format != VK_FORMAT_UNDEFINED) {
1959 const bool is_int = vk_format_is_int(format);
1960 const bool has_alpha = vk_format_has_alpha(format);
1961
1962 rb_mrt_control =
1963 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1964 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1965
1966 if (att->blendEnable || rop_reads_dst)
1967 *blend_enable_mask |= 1 << i;
1968 }
1969
1970 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1971 tu_cs_emit(cs, rb_mrt_control);
1972 tu_cs_emit(cs, rb_mrt_blend_control);
1973 }
1974 }
1975
1976 static void
1977 tu6_emit_blend_control(struct tu_cs *cs,
1978 uint32_t blend_enable_mask,
1979 bool dual_src_blend,
1980 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1981 {
1982 const uint32_t sample_mask =
1983 msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff)
1984 : ((1 << msaa_info->rasterizationSamples) - 1);
1985
1986 tu_cs_emit_regs(cs,
1987 A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask,
1988 .dual_color_in_enable = dual_src_blend,
1989 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1990 .unk8 = true));
1991
1992 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1993 tu_cs_emit_regs(cs,
1994 A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask,
1995 .independent_blend = true,
1996 .sample_mask = sample_mask,
1997 .dual_color_in_enable = dual_src_blend,
1998 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1999 .alpha_to_one = msaa_info->alphaToOneEnable));
2000 }
2001
2002 void
2003 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
2004 {
2005 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2006 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
2007 }
2008
2009 static VkResult
2010 tu_pipeline_create(struct tu_device *dev,
2011 struct tu_pipeline_layout *layout,
2012 bool compute,
2013 const VkAllocationCallbacks *pAllocator,
2014 struct tu_pipeline **out_pipeline)
2015 {
2016 struct tu_pipeline *pipeline =
2017 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
2018 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2019 if (!pipeline)
2020 return VK_ERROR_OUT_OF_HOST_MEMORY;
2021
2022 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
2023
2024 /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
2025 * that LOAD_STATE can potentially take up a large amount of space so we
2026 * calculate its size explicitly.
2027 */
2028 unsigned load_state_size = tu6_load_state_size(layout, compute);
2029 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048 + load_state_size);
2030 if (result != VK_SUCCESS) {
2031 vk_free2(&dev->alloc, pAllocator, pipeline);
2032 return result;
2033 }
2034
2035 *out_pipeline = pipeline;
2036
2037 return VK_SUCCESS;
2038 }
2039
2040 static VkResult
2041 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
2042 {
2043 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
2044 NULL
2045 };
2046 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
2047 gl_shader_stage stage =
2048 tu_shader_stage(builder->create_info->pStages[i].stage);
2049 stage_infos[stage] = &builder->create_info->pStages[i];
2050 }
2051
2052 struct tu_shader_compile_options options;
2053 tu_shader_compile_options_init(&options, builder->create_info);
2054
2055 /* compile shaders in reverse order */
2056 struct tu_shader *next_stage_shader = NULL;
2057 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
2058 stage > MESA_SHADER_NONE; stage--) {
2059 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
2060 if (!stage_info && stage != MESA_SHADER_FRAGMENT)
2061 continue;
2062
2063 struct tu_shader *shader =
2064 tu_shader_create(builder->device, stage, stage_info, builder->layout,
2065 builder->alloc);
2066 if (!shader)
2067 return VK_ERROR_OUT_OF_HOST_MEMORY;
2068
2069 VkResult result =
2070 tu_shader_compile(builder->device, shader, next_stage_shader,
2071 &options, builder->alloc);
2072 if (result != VK_SUCCESS)
2073 return result;
2074
2075 builder->shaders[stage] = shader;
2076 builder->shader_offsets[stage] = builder->shader_total_size;
2077 builder->shader_total_size +=
2078 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
2079
2080 next_stage_shader = shader;
2081 }
2082
2083 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2084 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2085 const struct ir3_shader_variant *variant;
2086
2087 if (vs->ir3_shader.stream_output.num_outputs)
2088 variant = &vs->variants[0];
2089 else
2090 variant = &vs->variants[1];
2091
2092 builder->binning_vs_offset = builder->shader_total_size;
2093 builder->shader_total_size +=
2094 sizeof(uint32_t) * variant->info.sizedwords;
2095 }
2096
2097 return VK_SUCCESS;
2098 }
2099
2100 static VkResult
2101 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
2102 struct tu_pipeline *pipeline)
2103 {
2104 struct tu_bo *bo = &pipeline->program.binary_bo;
2105
2106 VkResult result =
2107 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
2108 if (result != VK_SUCCESS)
2109 return result;
2110
2111 result = tu_bo_map(builder->device, bo);
2112 if (result != VK_SUCCESS)
2113 return result;
2114
2115 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2116 const struct tu_shader *shader = builder->shaders[i];
2117 if (!shader)
2118 continue;
2119
2120 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
2121 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
2122 }
2123
2124 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2125 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2126 const struct ir3_shader_variant *variant;
2127 void *bin;
2128
2129 if (vs->ir3_shader.stream_output.num_outputs) {
2130 variant = &vs->variants[0];
2131 bin = vs->binary;
2132 } else {
2133 variant = &vs->variants[1];
2134 bin = vs->binning_binary;
2135 }
2136
2137 memcpy(bo->map + builder->binning_vs_offset, bin,
2138 sizeof(uint32_t) * variant->info.sizedwords);
2139 }
2140
2141 return VK_SUCCESS;
2142 }
2143
2144 static void
2145 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
2146 struct tu_pipeline *pipeline)
2147 {
2148 const VkPipelineDynamicStateCreateInfo *dynamic_info =
2149 builder->create_info->pDynamicState;
2150
2151 if (!dynamic_info)
2152 return;
2153
2154 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
2155 pipeline->dynamic_state.mask |=
2156 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
2157 }
2158 }
2159
2160 static void
2161 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
2162 struct tu_shader *shader,
2163 struct ir3_shader_variant *v)
2164 {
2165 link->ubo_state = v->shader->ubo_state;
2166 link->const_state = v->shader->const_state;
2167 link->constlen = v->constlen;
2168 link->push_consts = shader->push_consts;
2169 }
2170
2171 static void
2172 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
2173 struct tu_pipeline *pipeline)
2174 {
2175 struct tu_cs prog_cs;
2176 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2177 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
2178 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2179
2180 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2181 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
2182 pipeline->program.binning_state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2183
2184 VkShaderStageFlags stages = 0;
2185 for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
2186 stages |= builder->create_info->pStages[i].stage;
2187 }
2188 pipeline->active_stages = stages;
2189
2190 uint32_t desc_sets = 0;
2191 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2192 if (!builder->shaders[i])
2193 continue;
2194
2195 tu_pipeline_set_linkage(&pipeline->program.link[i],
2196 builder->shaders[i],
2197 &builder->shaders[i]->variants[0]);
2198 desc_sets |= builder->shaders[i]->active_desc_sets;
2199 }
2200 pipeline->active_desc_sets = desc_sets;
2201
2202 if (builder->shaders[MESA_SHADER_FRAGMENT]) {
2203 memcpy(pipeline->program.input_attachment_idx,
2204 builder->shaders[MESA_SHADER_FRAGMENT]->attachment_idx,
2205 sizeof(pipeline->program.input_attachment_idx));
2206 }
2207 }
2208
2209 static void
2210 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
2211 struct tu_pipeline *pipeline)
2212 {
2213 const VkPipelineVertexInputStateCreateInfo *vi_info =
2214 builder->create_info->pVertexInputState;
2215 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2216
2217 struct tu_cs vi_cs;
2218 tu_cs_begin_sub_stream(&pipeline->cs,
2219 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2220 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
2221 &pipeline->vi.bindings_used);
2222 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2223
2224 if (vs->has_binning_pass) {
2225 tu_cs_begin_sub_stream(&pipeline->cs,
2226 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2227 tu6_emit_vertex_input(
2228 &vi_cs, &vs->variants[1], vi_info, &pipeline->vi.bindings_used);
2229 pipeline->vi.binning_state_ib =
2230 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2231 }
2232 }
2233
2234 static void
2235 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2236 struct tu_pipeline *pipeline)
2237 {
2238 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2239 builder->create_info->pInputAssemblyState;
2240
2241 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2242 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2243 }
2244
2245 static void
2246 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2247 struct tu_pipeline *pipeline)
2248 {
2249 /* The spec says:
2250 *
2251 * pViewportState is a pointer to an instance of the
2252 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2253 * pipeline has rasterization disabled."
2254 *
2255 * We leave the relevant registers stale in that case.
2256 */
2257 if (builder->rasterizer_discard)
2258 return;
2259
2260 const VkPipelineViewportStateCreateInfo *vp_info =
2261 builder->create_info->pViewportState;
2262
2263 struct tu_cs vp_cs;
2264 tu_cs_begin_sub_stream(&pipeline->cs, 21, &vp_cs);
2265
2266 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
2267 assert(vp_info->viewportCount == 1);
2268 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
2269 }
2270
2271 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
2272 assert(vp_info->scissorCount == 1);
2273 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
2274 }
2275
2276 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
2277 }
2278
2279 static void
2280 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2281 struct tu_pipeline *pipeline)
2282 {
2283 const VkPipelineRasterizationStateCreateInfo *rast_info =
2284 builder->create_info->pRasterizationState;
2285
2286 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
2287
2288 struct tu_cs rast_cs;
2289 tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
2290
2291
2292 tu_cs_emit_regs(&rast_cs,
2293 A6XX_GRAS_CL_CNTL(
2294 .znear_clip_disable = rast_info->depthClampEnable,
2295 .zfar_clip_disable = rast_info->depthClampEnable,
2296 .unk5 = rast_info->depthClampEnable,
2297 .zero_gb_scale_z = 1,
2298 .vp_clip_code_ignore = 1));
2299 /* move to hw ctx init? */
2300 tu6_emit_gras_unknowns(&rast_cs);
2301 tu6_emit_point_size(&rast_cs);
2302
2303 const uint32_t gras_su_cntl =
2304 tu6_gras_su_cntl(rast_info, builder->samples);
2305
2306 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
2307 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
2308
2309 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
2310 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
2311 rast_info->depthBiasClamp,
2312 rast_info->depthBiasSlopeFactor);
2313 }
2314
2315 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
2316
2317 pipeline->rast.gras_su_cntl = gras_su_cntl;
2318 }
2319
2320 static void
2321 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2322 struct tu_pipeline *pipeline)
2323 {
2324 /* The spec says:
2325 *
2326 * pDepthStencilState is a pointer to an instance of the
2327 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2328 * the pipeline has rasterization disabled or if the subpass of the
2329 * render pass the pipeline is created against does not use a
2330 * depth/stencil attachment.
2331 *
2332 * Disable both depth and stencil tests if there is no ds attachment,
2333 * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
2334 * only the separate stencil attachment
2335 */
2336 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2337 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2338 builder->depth_attachment_format != VK_FORMAT_UNDEFINED
2339 ? builder->create_info->pDepthStencilState
2340 : &dummy_ds_info;
2341 const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
2342 builder->depth_attachment_format != VK_FORMAT_S8_UINT
2343 ? ds_info : &dummy_ds_info;
2344
2345 struct tu_cs ds_cs;
2346 tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
2347
2348 /* move to hw ctx init? */
2349 tu6_emit_alpha_control_disable(&ds_cs);
2350
2351 tu6_emit_depth_control(&ds_cs, ds_info_depth,
2352 builder->create_info->pRasterizationState);
2353 tu6_emit_stencil_control(&ds_cs, ds_info);
2354
2355 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
2356 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
2357 ds_info->back.compareMask);
2358 }
2359 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
2360 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
2361 ds_info->back.writeMask);
2362 }
2363 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
2364 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
2365 ds_info->back.reference);
2366 }
2367
2368 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
2369 }
2370
2371 static void
2372 tu_pipeline_builder_parse_multisample_and_color_blend(
2373 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2374 {
2375 /* The spec says:
2376 *
2377 * pMultisampleState is a pointer to an instance of the
2378 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2379 * has rasterization disabled.
2380 *
2381 * Also,
2382 *
2383 * pColorBlendState is a pointer to an instance of the
2384 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2385 * pipeline has rasterization disabled or if the subpass of the render
2386 * pass the pipeline is created against does not use any color
2387 * attachments.
2388 *
2389 * We leave the relevant registers stale when rasterization is disabled.
2390 */
2391 if (builder->rasterizer_discard)
2392 return;
2393
2394 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2395 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2396 builder->create_info->pMultisampleState;
2397 const VkPipelineColorBlendStateCreateInfo *blend_info =
2398 builder->use_color_attachments ? builder->create_info->pColorBlendState
2399 : &dummy_blend_info;
2400
2401 struct tu_cs blend_cs;
2402 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 18, &blend_cs);
2403
2404 uint32_t blend_enable_mask;
2405 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
2406 builder->color_attachment_formats,
2407 &blend_enable_mask);
2408
2409 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
2410 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
2411
2412 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SAMPLE_LOCATIONS)) {
2413 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
2414 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
2415 const VkSampleLocationsInfoEXT *samp_loc = NULL;
2416
2417 if (sample_locations && sample_locations->sampleLocationsEnable)
2418 samp_loc = &sample_locations->sampleLocationsInfo;
2419
2420 tu6_emit_sample_locations(&blend_cs, samp_loc);
2421 }
2422
2423 tu6_emit_blend_control(&blend_cs, blend_enable_mask,
2424 builder->use_dual_src_blend, msaa_info);
2425
2426 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
2427 }
2428
2429 static void
2430 tu_pipeline_finish(struct tu_pipeline *pipeline,
2431 struct tu_device *dev,
2432 const VkAllocationCallbacks *alloc)
2433 {
2434 tu_cs_finish(&pipeline->cs);
2435
2436 if (pipeline->program.binary_bo.gem_handle)
2437 tu_bo_finish(dev, &pipeline->program.binary_bo);
2438 }
2439
2440 static VkResult
2441 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2442 struct tu_pipeline **pipeline)
2443 {
2444 VkResult result = tu_pipeline_create(builder->device, builder->layout,
2445 false, builder->alloc, pipeline);
2446 if (result != VK_SUCCESS)
2447 return result;
2448
2449 (*pipeline)->layout = builder->layout;
2450
2451 /* compile and upload shaders */
2452 result = tu_pipeline_builder_compile_shaders(builder);
2453 if (result == VK_SUCCESS)
2454 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
2455 if (result != VK_SUCCESS) {
2456 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
2457 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
2458 *pipeline = VK_NULL_HANDLE;
2459
2460 return result;
2461 }
2462
2463 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2464 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2465 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2466 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2467 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2468 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2469 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2470 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2471 tu6_emit_load_state(*pipeline, false);
2472
2473 /* we should have reserved enough space upfront such that the CS never
2474 * grows
2475 */
2476 assert((*pipeline)->cs.bo_count == 1);
2477
2478 return VK_SUCCESS;
2479 }
2480
2481 static void
2482 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2483 {
2484 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2485 if (!builder->shaders[i])
2486 continue;
2487 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2488 }
2489 }
2490
2491 static void
2492 tu_pipeline_builder_init_graphics(
2493 struct tu_pipeline_builder *builder,
2494 struct tu_device *dev,
2495 struct tu_pipeline_cache *cache,
2496 const VkGraphicsPipelineCreateInfo *create_info,
2497 const VkAllocationCallbacks *alloc)
2498 {
2499 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2500
2501 *builder = (struct tu_pipeline_builder) {
2502 .device = dev,
2503 .cache = cache,
2504 .create_info = create_info,
2505 .alloc = alloc,
2506 .layout = layout,
2507 };
2508
2509 builder->rasterizer_discard =
2510 create_info->pRasterizationState->rasterizerDiscardEnable;
2511
2512 if (builder->rasterizer_discard) {
2513 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2514 } else {
2515 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2516
2517 const struct tu_render_pass *pass =
2518 tu_render_pass_from_handle(create_info->renderPass);
2519 const struct tu_subpass *subpass =
2520 &pass->subpasses[create_info->subpass];
2521
2522 const uint32_t a = subpass->depth_stencil_attachment.attachment;
2523 builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
2524 pass->attachments[a].format : VK_FORMAT_UNDEFINED;
2525
2526 assert(subpass->color_count == 0 ||
2527 !create_info->pColorBlendState ||
2528 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2529 builder->color_attachment_count = subpass->color_count;
2530 for (uint32_t i = 0; i < subpass->color_count; i++) {
2531 const uint32_t a = subpass->color_attachments[i].attachment;
2532 if (a == VK_ATTACHMENT_UNUSED)
2533 continue;
2534
2535 builder->color_attachment_formats[i] = pass->attachments[a].format;
2536 builder->use_color_attachments = true;
2537 builder->render_components |= 0xf << (i * 4);
2538 }
2539
2540 if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
2541 builder->color_attachment_count++;
2542 builder->use_dual_src_blend = true;
2543 /* dual source blending has an extra fs output in the 2nd slot */
2544 if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
2545 builder->render_components |= 0xf << 4;
2546 }
2547 }
2548 }
2549
2550 static VkResult
2551 tu_graphics_pipeline_create(VkDevice device,
2552 VkPipelineCache pipelineCache,
2553 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2554 const VkAllocationCallbacks *pAllocator,
2555 VkPipeline *pPipeline)
2556 {
2557 TU_FROM_HANDLE(tu_device, dev, device);
2558 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2559
2560 struct tu_pipeline_builder builder;
2561 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2562 pCreateInfo, pAllocator);
2563
2564 struct tu_pipeline *pipeline = NULL;
2565 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2566 tu_pipeline_builder_finish(&builder);
2567
2568 if (result == VK_SUCCESS)
2569 *pPipeline = tu_pipeline_to_handle(pipeline);
2570 else
2571 *pPipeline = VK_NULL_HANDLE;
2572
2573 return result;
2574 }
2575
2576 VkResult
2577 tu_CreateGraphicsPipelines(VkDevice device,
2578 VkPipelineCache pipelineCache,
2579 uint32_t count,
2580 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2581 const VkAllocationCallbacks *pAllocator,
2582 VkPipeline *pPipelines)
2583 {
2584 VkResult final_result = VK_SUCCESS;
2585
2586 for (uint32_t i = 0; i < count; i++) {
2587 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2588 &pCreateInfos[i], pAllocator,
2589 &pPipelines[i]);
2590
2591 if (result != VK_SUCCESS)
2592 final_result = result;
2593 }
2594
2595 return final_result;
2596 }
2597
2598 static VkResult
2599 tu_compute_upload_shader(VkDevice device,
2600 struct tu_pipeline *pipeline,
2601 struct tu_shader *shader)
2602 {
2603 TU_FROM_HANDLE(tu_device, dev, device);
2604 struct tu_bo *bo = &pipeline->program.binary_bo;
2605 struct ir3_shader_variant *v = &shader->variants[0];
2606
2607 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2608 VkResult result =
2609 tu_bo_init_new(dev, bo, shader_size);
2610 if (result != VK_SUCCESS)
2611 return result;
2612
2613 result = tu_bo_map(dev, bo);
2614 if (result != VK_SUCCESS)
2615 return result;
2616
2617 memcpy(bo->map, shader->binary, shader_size);
2618
2619 return VK_SUCCESS;
2620 }
2621
2622
2623 static VkResult
2624 tu_compute_pipeline_create(VkDevice device,
2625 VkPipelineCache _cache,
2626 const VkComputePipelineCreateInfo *pCreateInfo,
2627 const VkAllocationCallbacks *pAllocator,
2628 VkPipeline *pPipeline)
2629 {
2630 TU_FROM_HANDLE(tu_device, dev, device);
2631 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2632 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2633 VkResult result;
2634
2635 struct tu_pipeline *pipeline;
2636
2637 *pPipeline = VK_NULL_HANDLE;
2638
2639 result = tu_pipeline_create(dev, layout, true, pAllocator, &pipeline);
2640 if (result != VK_SUCCESS)
2641 return result;
2642
2643 pipeline->layout = layout;
2644
2645 struct tu_shader_compile_options options;
2646 tu_shader_compile_options_init(&options, NULL);
2647
2648 struct tu_shader *shader =
2649 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2650 if (!shader) {
2651 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2652 goto fail;
2653 }
2654
2655 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2656 if (result != VK_SUCCESS)
2657 goto fail;
2658
2659 struct ir3_shader_variant *v = &shader->variants[0];
2660
2661 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2662 shader, v);
2663
2664 result = tu_compute_upload_shader(device, pipeline, shader);
2665 if (result != VK_SUCCESS)
2666 goto fail;
2667
2668 for (int i = 0; i < 3; i++)
2669 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2670
2671 struct tu_cs prog_cs;
2672 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2673 tu6_emit_cs_config(&prog_cs, shader, v, pipeline->program.binary_bo.iova);
2674 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2675
2676 tu6_emit_load_state(pipeline, true);
2677
2678 *pPipeline = tu_pipeline_to_handle(pipeline);
2679 return VK_SUCCESS;
2680
2681 fail:
2682 if (shader)
2683 tu_shader_destroy(dev, shader, pAllocator);
2684
2685 tu_pipeline_finish(pipeline, dev, pAllocator);
2686 vk_free2(&dev->alloc, pAllocator, pipeline);
2687
2688 return result;
2689 }
2690
2691 VkResult
2692 tu_CreateComputePipelines(VkDevice device,
2693 VkPipelineCache pipelineCache,
2694 uint32_t count,
2695 const VkComputePipelineCreateInfo *pCreateInfos,
2696 const VkAllocationCallbacks *pAllocator,
2697 VkPipeline *pPipelines)
2698 {
2699 VkResult final_result = VK_SUCCESS;
2700
2701 for (uint32_t i = 0; i < count; i++) {
2702 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2703 &pCreateInfos[i],
2704 pAllocator, &pPipelines[i]);
2705 if (result != VK_SUCCESS)
2706 final_result = result;
2707 }
2708
2709 return final_result;
2710 }
2711
2712 void
2713 tu_DestroyPipeline(VkDevice _device,
2714 VkPipeline _pipeline,
2715 const VkAllocationCallbacks *pAllocator)
2716 {
2717 TU_FROM_HANDLE(tu_device, dev, _device);
2718 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2719
2720 if (!_pipeline)
2721 return;
2722
2723 tu_pipeline_finish(pipeline, dev, pAllocator);
2724 vk_free2(&dev->alloc, pAllocator, pipeline);
2725 }