freedreno/ir3: Fix up the half reg source even when src instr==NULL
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "main/menums.h"
31 #include "nir/nir.h"
32 #include "nir/nir_builder.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/u_atomic.h"
37 #include "vk_format.h"
38 #include "vk_util.h"
39
40 #include "tu_cs.h"
41
42 struct tu_pipeline_builder
43 {
44 struct tu_device *device;
45 struct tu_pipeline_cache *cache;
46 const VkAllocationCallbacks *alloc;
47 const VkGraphicsPipelineCreateInfo *create_info;
48
49 struct tu_shader *shaders[MESA_SHADER_STAGES];
50 uint32_t shader_offsets[MESA_SHADER_STAGES];
51 uint32_t binning_vs_offset;
52 uint32_t shader_total_size;
53
54 bool rasterizer_discard;
55 /* these states are affectd by rasterizer_discard */
56 VkSampleCountFlagBits samples;
57 bool use_depth_stencil_attachment;
58 bool use_color_attachments;
59 uint32_t color_attachment_count;
60 VkFormat color_attachment_formats[MAX_RTS];
61 };
62
63 static enum tu_dynamic_state_bits
64 tu_dynamic_state_bit(VkDynamicState state)
65 {
66 switch (state) {
67 case VK_DYNAMIC_STATE_VIEWPORT:
68 return TU_DYNAMIC_VIEWPORT;
69 case VK_DYNAMIC_STATE_SCISSOR:
70 return TU_DYNAMIC_SCISSOR;
71 case VK_DYNAMIC_STATE_LINE_WIDTH:
72 return TU_DYNAMIC_LINE_WIDTH;
73 case VK_DYNAMIC_STATE_DEPTH_BIAS:
74 return TU_DYNAMIC_DEPTH_BIAS;
75 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
76 return TU_DYNAMIC_BLEND_CONSTANTS;
77 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
78 return TU_DYNAMIC_DEPTH_BOUNDS;
79 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
80 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
81 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
82 return TU_DYNAMIC_STENCIL_WRITE_MASK;
83 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
84 return TU_DYNAMIC_STENCIL_REFERENCE;
85 default:
86 unreachable("invalid dynamic state");
87 return 0;
88 }
89 }
90
91 static gl_shader_stage
92 tu_shader_stage(VkShaderStageFlagBits stage)
93 {
94 switch (stage) {
95 case VK_SHADER_STAGE_VERTEX_BIT:
96 return MESA_SHADER_VERTEX;
97 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
98 return MESA_SHADER_TESS_CTRL;
99 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
100 return MESA_SHADER_TESS_EVAL;
101 case VK_SHADER_STAGE_GEOMETRY_BIT:
102 return MESA_SHADER_GEOMETRY;
103 case VK_SHADER_STAGE_FRAGMENT_BIT:
104 return MESA_SHADER_FRAGMENT;
105 case VK_SHADER_STAGE_COMPUTE_BIT:
106 return MESA_SHADER_COMPUTE;
107 default:
108 unreachable("invalid VkShaderStageFlagBits");
109 return MESA_SHADER_NONE;
110 }
111 }
112
113 static const VkVertexInputAttributeDescription *
114 tu_find_vertex_input_attribute(
115 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
116 {
117 assert(slot >= VERT_ATTRIB_GENERIC0);
118 slot -= VERT_ATTRIB_GENERIC0;
119 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
120 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
121 return &vi_info->pVertexAttributeDescriptions[i];
122 }
123 return NULL;
124 }
125
126 static const VkVertexInputBindingDescription *
127 tu_find_vertex_input_binding(
128 const VkPipelineVertexInputStateCreateInfo *vi_info,
129 const VkVertexInputAttributeDescription *vi_attr)
130 {
131 assert(vi_attr);
132 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
133 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
134 return &vi_info->pVertexBindingDescriptions[i];
135 }
136 return NULL;
137 }
138
139 static bool
140 tu_logic_op_reads_dst(VkLogicOp op)
141 {
142 switch (op) {
143 case VK_LOGIC_OP_CLEAR:
144 case VK_LOGIC_OP_COPY:
145 case VK_LOGIC_OP_COPY_INVERTED:
146 case VK_LOGIC_OP_SET:
147 return false;
148 default:
149 return true;
150 }
151 }
152
153 static VkBlendFactor
154 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
155 {
156 /* treat dst alpha as 1.0 and avoid reading it */
157 switch (factor) {
158 case VK_BLEND_FACTOR_DST_ALPHA:
159 return VK_BLEND_FACTOR_ONE;
160 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
161 return VK_BLEND_FACTOR_ZERO;
162 default:
163 return factor;
164 }
165 }
166
167 static enum pc_di_primtype
168 tu6_primtype(VkPrimitiveTopology topology)
169 {
170 switch (topology) {
171 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
172 return DI_PT_POINTLIST;
173 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
174 return DI_PT_LINELIST;
175 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
176 return DI_PT_LINESTRIP;
177 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
178 return DI_PT_TRILIST;
179 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
180 return DI_PT_TRILIST;
181 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
182 return DI_PT_TRIFAN;
183 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
184 return DI_PT_LINE_ADJ;
185 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
186 return DI_PT_LINESTRIP_ADJ;
187 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
188 return DI_PT_TRI_ADJ;
189 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
190 return DI_PT_TRISTRIP_ADJ;
191 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
192 default:
193 unreachable("invalid primitive topology");
194 return DI_PT_NONE;
195 }
196 }
197
198 static enum adreno_compare_func
199 tu6_compare_func(VkCompareOp op)
200 {
201 switch (op) {
202 case VK_COMPARE_OP_NEVER:
203 return FUNC_NEVER;
204 case VK_COMPARE_OP_LESS:
205 return FUNC_LESS;
206 case VK_COMPARE_OP_EQUAL:
207 return FUNC_EQUAL;
208 case VK_COMPARE_OP_LESS_OR_EQUAL:
209 return FUNC_LEQUAL;
210 case VK_COMPARE_OP_GREATER:
211 return FUNC_GREATER;
212 case VK_COMPARE_OP_NOT_EQUAL:
213 return FUNC_NOTEQUAL;
214 case VK_COMPARE_OP_GREATER_OR_EQUAL:
215 return FUNC_GEQUAL;
216 case VK_COMPARE_OP_ALWAYS:
217 return FUNC_ALWAYS;
218 default:
219 unreachable("invalid VkCompareOp");
220 return FUNC_NEVER;
221 }
222 }
223
224 static enum adreno_stencil_op
225 tu6_stencil_op(VkStencilOp op)
226 {
227 switch (op) {
228 case VK_STENCIL_OP_KEEP:
229 return STENCIL_KEEP;
230 case VK_STENCIL_OP_ZERO:
231 return STENCIL_ZERO;
232 case VK_STENCIL_OP_REPLACE:
233 return STENCIL_REPLACE;
234 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
235 return STENCIL_INCR_CLAMP;
236 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
237 return STENCIL_DECR_CLAMP;
238 case VK_STENCIL_OP_INVERT:
239 return STENCIL_INVERT;
240 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
241 return STENCIL_INCR_WRAP;
242 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
243 return STENCIL_DECR_WRAP;
244 default:
245 unreachable("invalid VkStencilOp");
246 return STENCIL_KEEP;
247 }
248 }
249
250 static enum a3xx_rop_code
251 tu6_rop(VkLogicOp op)
252 {
253 switch (op) {
254 case VK_LOGIC_OP_CLEAR:
255 return ROP_CLEAR;
256 case VK_LOGIC_OP_AND:
257 return ROP_AND;
258 case VK_LOGIC_OP_AND_REVERSE:
259 return ROP_AND_REVERSE;
260 case VK_LOGIC_OP_COPY:
261 return ROP_COPY;
262 case VK_LOGIC_OP_AND_INVERTED:
263 return ROP_AND_INVERTED;
264 case VK_LOGIC_OP_NO_OP:
265 return ROP_NOOP;
266 case VK_LOGIC_OP_XOR:
267 return ROP_XOR;
268 case VK_LOGIC_OP_OR:
269 return ROP_OR;
270 case VK_LOGIC_OP_NOR:
271 return ROP_NOR;
272 case VK_LOGIC_OP_EQUIVALENT:
273 return ROP_EQUIV;
274 case VK_LOGIC_OP_INVERT:
275 return ROP_INVERT;
276 case VK_LOGIC_OP_OR_REVERSE:
277 return ROP_OR_REVERSE;
278 case VK_LOGIC_OP_COPY_INVERTED:
279 return ROP_COPY_INVERTED;
280 case VK_LOGIC_OP_OR_INVERTED:
281 return ROP_OR_INVERTED;
282 case VK_LOGIC_OP_NAND:
283 return ROP_NAND;
284 case VK_LOGIC_OP_SET:
285 return ROP_SET;
286 default:
287 unreachable("invalid VkLogicOp");
288 return ROP_NOOP;
289 }
290 }
291
292 static enum adreno_rb_blend_factor
293 tu6_blend_factor(VkBlendFactor factor)
294 {
295 switch (factor) {
296 case VK_BLEND_FACTOR_ZERO:
297 return FACTOR_ZERO;
298 case VK_BLEND_FACTOR_ONE:
299 return FACTOR_ONE;
300 case VK_BLEND_FACTOR_SRC_COLOR:
301 return FACTOR_SRC_COLOR;
302 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
303 return FACTOR_ONE_MINUS_SRC_COLOR;
304 case VK_BLEND_FACTOR_DST_COLOR:
305 return FACTOR_DST_COLOR;
306 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
307 return FACTOR_ONE_MINUS_DST_COLOR;
308 case VK_BLEND_FACTOR_SRC_ALPHA:
309 return FACTOR_SRC_ALPHA;
310 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
311 return FACTOR_ONE_MINUS_SRC_ALPHA;
312 case VK_BLEND_FACTOR_DST_ALPHA:
313 return FACTOR_DST_ALPHA;
314 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
315 return FACTOR_ONE_MINUS_DST_ALPHA;
316 case VK_BLEND_FACTOR_CONSTANT_COLOR:
317 return FACTOR_CONSTANT_COLOR;
318 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
319 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
320 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
321 return FACTOR_CONSTANT_ALPHA;
322 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
323 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
324 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
325 return FACTOR_SRC_ALPHA_SATURATE;
326 case VK_BLEND_FACTOR_SRC1_COLOR:
327 return FACTOR_SRC1_COLOR;
328 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
329 return FACTOR_ONE_MINUS_SRC1_COLOR;
330 case VK_BLEND_FACTOR_SRC1_ALPHA:
331 return FACTOR_SRC1_ALPHA;
332 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
333 return FACTOR_ONE_MINUS_SRC1_ALPHA;
334 default:
335 unreachable("invalid VkBlendFactor");
336 return FACTOR_ZERO;
337 }
338 }
339
340 static enum a3xx_rb_blend_opcode
341 tu6_blend_op(VkBlendOp op)
342 {
343 switch (op) {
344 case VK_BLEND_OP_ADD:
345 return BLEND_DST_PLUS_SRC;
346 case VK_BLEND_OP_SUBTRACT:
347 return BLEND_SRC_MINUS_DST;
348 case VK_BLEND_OP_REVERSE_SUBTRACT:
349 return BLEND_DST_MINUS_SRC;
350 case VK_BLEND_OP_MIN:
351 return BLEND_MIN_DST_SRC;
352 case VK_BLEND_OP_MAX:
353 return BLEND_MAX_DST_SRC;
354 default:
355 unreachable("invalid VkBlendOp");
356 return BLEND_DST_PLUS_SRC;
357 }
358 }
359
360 static void
361 tu6_emit_vs_config(struct tu_cs *cs, const struct ir3_shader_variant *vs)
362 {
363 uint32_t sp_vs_ctrl =
364 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
365 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
366 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
367 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
368 if (vs->num_samp)
369 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
370
371 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(vs->num_samp) |
372 A6XX_SP_VS_CONFIG_NSAMP(vs->num_samp);
373 if (vs->instrlen)
374 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
375
376 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
377 tu_cs_emit(cs, sp_vs_ctrl);
378
379 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
380 tu_cs_emit(cs, sp_vs_config);
381 tu_cs_emit(cs, vs->instrlen);
382
383 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
384 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) | 0x100);
385 }
386
387 static void
388 tu6_emit_hs_config(struct tu_cs *cs, const struct ir3_shader_variant *hs)
389 {
390 uint32_t sp_hs_config = 0;
391 if (hs->instrlen)
392 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
393
394 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
395 tu_cs_emit(cs, 0);
396
397 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
398 tu_cs_emit(cs, sp_hs_config);
399 tu_cs_emit(cs, hs->instrlen);
400
401 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
402 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
403 }
404
405 static void
406 tu6_emit_ds_config(struct tu_cs *cs, const struct ir3_shader_variant *ds)
407 {
408 uint32_t sp_ds_config = 0;
409 if (ds->instrlen)
410 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
411
412 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
413 tu_cs_emit(cs, sp_ds_config);
414 tu_cs_emit(cs, ds->instrlen);
415
416 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
417 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
418 }
419
420 static void
421 tu6_emit_gs_config(struct tu_cs *cs, const struct ir3_shader_variant *gs)
422 {
423 uint32_t sp_gs_config = 0;
424 if (gs->instrlen)
425 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
426
427 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
428 tu_cs_emit(cs, 0);
429
430 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
431 tu_cs_emit(cs, sp_gs_config);
432 tu_cs_emit(cs, gs->instrlen);
433
434 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
435 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
436 }
437
438 static void
439 tu6_emit_fs_config(struct tu_cs *cs, const struct ir3_shader_variant *fs)
440 {
441 uint32_t sp_fs_ctrl =
442 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
443 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
444 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
445 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
446 if (fs->total_in > 0 || fs->frag_coord)
447 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
448 if (fs->num_samp > 0)
449 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
450
451 uint32_t sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(fs->num_samp) |
452 A6XX_SP_FS_CONFIG_NSAMP(fs->num_samp);
453 if (fs->instrlen)
454 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
455
456 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A99E, 1);
457 tu_cs_emit(cs, 0x7fc0);
458
459 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1);
460 tu_cs_emit(cs, 0);
461
462 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1);
463 tu_cs_emit(cs, 0x5);
464
465 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
466 tu_cs_emit(cs, sp_fs_ctrl);
467
468 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
469 tu_cs_emit(cs, sp_fs_config);
470 tu_cs_emit(cs, fs->instrlen);
471
472 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
473 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) | 0x100);
474 }
475
476 static void
477 tu6_emit_vs_system_values(struct tu_cs *cs,
478 const struct ir3_shader_variant *vs)
479 {
480 const uint32_t vertexid_regid =
481 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
482 const uint32_t instanceid_regid =
483 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
484
485 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
486 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
487 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
488 0xfcfc0000);
489 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
490 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
491 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
492 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
493 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
494 }
495
496 static void
497 tu6_emit_vpc(struct tu_cs *cs,
498 const struct ir3_shader_variant *vs,
499 const struct ir3_shader_variant *fs,
500 bool binning_pass)
501 {
502 struct ir3_shader_linkage linkage = { 0 };
503 ir3_link_shaders(&linkage, vs, fs);
504
505 if (vs->shader->stream_output.num_outputs && !binning_pass)
506 tu_finishme("stream output");
507
508 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
509 for (uint32_t i = 0; i < linkage.cnt; i++) {
510 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
511 for (uint32_t j = 0; j < comp_count; j++)
512 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
513 }
514
515 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
516 tu_cs_emit(cs, ~vpc_var_enables[0]);
517 tu_cs_emit(cs, ~vpc_var_enables[1]);
518 tu_cs_emit(cs, ~vpc_var_enables[2]);
519 tu_cs_emit(cs, ~vpc_var_enables[3]);
520
521 /* a6xx finds position/pointsize at the end */
522 const uint32_t position_regid =
523 ir3_find_output_regid(vs, VARYING_SLOT_POS);
524 const uint32_t pointsize_regid =
525 ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
526 uint32_t pointsize_loc = 0xff;
527 if (position_regid != regid(63, 0))
528 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
529 if (pointsize_regid != regid(63, 0)) {
530 pointsize_loc = linkage.max_loc;
531 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
532 }
533
534 /* map vs outputs to VPC */
535 assert(linkage.cnt <= 32);
536 const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
537 const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
538 uint32_t sp_vs_out[16];
539 uint32_t sp_vs_vpc_dst[8];
540 sp_vs_out[sp_vs_out_count - 1] = 0;
541 sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
542 for (uint32_t i = 0; i < linkage.cnt; i++) {
543 ((uint16_t *) sp_vs_out)[i] =
544 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
545 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
546 ((uint8_t *) sp_vs_vpc_dst)[i] =
547 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
548 }
549
550 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
551 tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
552
553 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
554 tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
555
556 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
557 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
558 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
559 0xff00ff00);
560
561 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
562 tu_cs_emit(cs, A6XX_VPC_PACK_NUMNONPOSVAR(fs->total_in) |
563 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
564 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
565
566 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1);
567 tu_cs_emit(cs, 0x0000ffff); /* XXX */
568
569 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
570 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
571
572 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
573 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
574 (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
575 }
576
577 static int
578 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
579 uint32_t index,
580 uint8_t *interp_mode,
581 uint8_t *ps_repl_mode)
582 {
583 enum
584 {
585 INTERP_SMOOTH = 0,
586 INTERP_FLAT = 1,
587 INTERP_ZERO = 2,
588 INTERP_ONE = 3,
589 };
590 enum
591 {
592 PS_REPL_NONE = 0,
593 PS_REPL_S = 1,
594 PS_REPL_T = 2,
595 PS_REPL_ONE_MINUS_T = 3,
596 };
597
598 const uint32_t compmask = fs->inputs[index].compmask;
599
600 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
601 * fourth component occupy three consecutive varying slots
602 */
603 int shift = 0;
604 *interp_mode = 0;
605 *ps_repl_mode = 0;
606 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
607 if (compmask & 0x1) {
608 *ps_repl_mode |= PS_REPL_S << shift;
609 shift += 2;
610 }
611 if (compmask & 0x2) {
612 *ps_repl_mode |= PS_REPL_T << shift;
613 shift += 2;
614 }
615 if (compmask & 0x4) {
616 *interp_mode |= INTERP_ZERO << shift;
617 shift += 2;
618 }
619 if (compmask & 0x8) {
620 *interp_mode |= INTERP_ONE << 6;
621 shift += 2;
622 }
623 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
624 fs->inputs[index].rasterflat) {
625 for (int i = 0; i < 4; i++) {
626 if (compmask & (1 << i)) {
627 *interp_mode |= INTERP_FLAT << shift;
628 shift += 2;
629 }
630 }
631 }
632
633 return shift;
634 }
635
636 static void
637 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
638 const struct ir3_shader_variant *fs,
639 bool binning_pass)
640 {
641 uint32_t interp_modes[8] = { 0 };
642 uint32_t ps_repl_modes[8] = { 0 };
643
644 if (!binning_pass) {
645 for (int i = -1;
646 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
647
648 /* get the mode for input i */
649 uint8_t interp_mode;
650 uint8_t ps_repl_mode;
651 const int bits =
652 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
653
654 /* OR the mode into the array */
655 const uint32_t inloc = fs->inputs[i].inloc * 2;
656 uint32_t n = inloc / 32;
657 uint32_t shift = inloc % 32;
658 interp_modes[n] |= interp_mode << shift;
659 ps_repl_modes[n] |= ps_repl_mode << shift;
660 if (shift + bits > 32) {
661 n++;
662 shift = 32 - shift;
663
664 interp_modes[n] |= interp_mode >> shift;
665 ps_repl_modes[n] |= ps_repl_mode >> shift;
666 }
667 }
668 }
669
670 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
671 tu_cs_emit_array(cs, interp_modes, 8);
672
673 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
674 tu_cs_emit_array(cs, ps_repl_modes, 8);
675 }
676
677 static void
678 tu6_emit_fs_system_values(struct tu_cs *cs,
679 const struct ir3_shader_variant *fs)
680 {
681 const uint32_t frontfacing_regid =
682 ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
683 const uint32_t sampleid_regid =
684 ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
685 const uint32_t samplemaskin_regid =
686 ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
687 const uint32_t fragcoord_xy_regid =
688 ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
689 const uint32_t fragcoord_zw_regid = (fragcoord_xy_regid != regid(63, 0))
690 ? (fragcoord_xy_regid + 2)
691 : fragcoord_xy_regid;
692 const uint32_t varyingcoord_regid =
693 ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PIXEL);
694
695 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
696 tu_cs_emit(cs, 0x7);
697 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(frontfacing_regid) |
698 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(sampleid_regid) |
699 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(samplemaskin_regid) |
700 A6XX_HLSQ_CONTROL_2_REG_SIZE(regid(63, 0)));
701 tu_cs_emit(cs,
702 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(varyingcoord_regid) |
703 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(regid(63, 0)) |
704 0xfc00fc00);
705 tu_cs_emit(cs,
706 A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(fragcoord_xy_regid) |
707 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(fragcoord_zw_regid) |
708 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(regid(63, 0)) |
709 0x0000fc00);
710 tu_cs_emit(cs, 0xfc);
711 }
712
713 static void
714 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
715 {
716 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
717 tu_cs_emit(cs, fs->total_in > 0 ? 3 : 1);
718
719 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1);
720 tu_cs_emit(cs, 0); /* XXX */
721
722 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
723 tu_cs_emit(cs, 0xff); /* XXX */
724
725 uint32_t gras_cntl = 0;
726 if (fs->total_in > 0)
727 gras_cntl |= A6XX_GRAS_CNTL_VARYING;
728 if (fs->frag_coord) {
729 gras_cntl |= A6XX_GRAS_CNTL_SIZE | A6XX_GRAS_CNTL_XCOORD |
730 A6XX_GRAS_CNTL_YCOORD | A6XX_GRAS_CNTL_ZCOORD |
731 A6XX_GRAS_CNTL_WCOORD;
732 }
733
734 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
735 tu_cs_emit(cs, gras_cntl);
736
737 uint32_t rb_render_control = 0;
738 if (fs->total_in > 0) {
739 rb_render_control =
740 A6XX_RB_RENDER_CONTROL0_VARYING | A6XX_RB_RENDER_CONTROL0_UNK10;
741 }
742 if (fs->frag_coord) {
743 rb_render_control |=
744 A6XX_RB_RENDER_CONTROL0_SIZE | A6XX_RB_RENDER_CONTROL0_XCOORD |
745 A6XX_RB_RENDER_CONTROL0_YCOORD | A6XX_RB_RENDER_CONTROL0_ZCOORD |
746 A6XX_RB_RENDER_CONTROL0_WCOORD;
747 }
748
749 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
750 tu_cs_emit(cs, rb_render_control);
751 tu_cs_emit(cs, (fs->frag_face ? A6XX_RB_RENDER_CONTROL1_FACENESS : 0));
752 }
753
754 static void
755 tu6_emit_fs_outputs(struct tu_cs *cs,
756 const struct ir3_shader_variant *fs,
757 uint32_t mrt_count)
758 {
759 const uint32_t fragdepth_regid =
760 ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
761 uint32_t fragdata_regid[8];
762 if (fs->color0_mrt) {
763 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
764 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
765 fragdata_regid[i] = fragdata_regid[0];
766 } else {
767 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
768 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
769 }
770
771 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
772 tu_cs_emit(
773 cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(fragdepth_regid) | 0xfcfc0000);
774 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
775
776 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
777 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
778 // TODO we could have a mix of half and full precision outputs,
779 // we really need to figure out half-precision from IR3_REG_HALF
780 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
781 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
782 }
783
784 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
785 tu_cs_emit(cs, fs->writes_pos ? A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z : 0);
786 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
787
788 uint32_t gras_su_depth_plane_cntl = 0;
789 uint32_t rb_depth_plane_cntl = 0;
790 if (fs->no_earlyz | fs->writes_pos) {
791 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
792 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
793 }
794
795 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
796 tu_cs_emit(cs, gras_su_depth_plane_cntl);
797
798 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
799 tu_cs_emit(cs, rb_depth_plane_cntl);
800 }
801
802 static void
803 tu6_emit_shader_object(struct tu_cs *cs,
804 gl_shader_stage stage,
805 const struct ir3_shader_variant *variant,
806 const struct tu_bo *binary_bo,
807 uint32_t binary_offset)
808 {
809 uint16_t reg;
810 uint8_t opcode;
811 enum a6xx_state_block sb;
812 switch (stage) {
813 case MESA_SHADER_VERTEX:
814 reg = REG_A6XX_SP_VS_OBJ_START_LO;
815 opcode = CP_LOAD_STATE6_GEOM;
816 sb = SB6_VS_SHADER;
817 break;
818 case MESA_SHADER_TESS_CTRL:
819 reg = REG_A6XX_SP_HS_OBJ_START_LO;
820 opcode = CP_LOAD_STATE6_GEOM;
821 sb = SB6_HS_SHADER;
822 break;
823 case MESA_SHADER_TESS_EVAL:
824 reg = REG_A6XX_SP_DS_OBJ_START_LO;
825 opcode = CP_LOAD_STATE6_GEOM;
826 sb = SB6_DS_SHADER;
827 break;
828 case MESA_SHADER_GEOMETRY:
829 reg = REG_A6XX_SP_GS_OBJ_START_LO;
830 opcode = CP_LOAD_STATE6_GEOM;
831 sb = SB6_GS_SHADER;
832 break;
833 case MESA_SHADER_FRAGMENT:
834 reg = REG_A6XX_SP_FS_OBJ_START_LO;
835 opcode = CP_LOAD_STATE6_FRAG;
836 sb = SB6_FS_SHADER;
837 break;
838 case MESA_SHADER_COMPUTE:
839 reg = REG_A6XX_SP_CS_OBJ_START_LO;
840 opcode = CP_LOAD_STATE6_FRAG;
841 sb = SB6_CS_SHADER;
842 break;
843 default:
844 unreachable("invalid gl_shader_stage");
845 opcode = CP_LOAD_STATE6_GEOM;
846 sb = SB6_VS_SHADER;
847 break;
848 }
849
850 if (!variant->instrlen) {
851 tu_cs_emit_pkt4(cs, reg, 2);
852 tu_cs_emit_qw(cs, 0);
853 return;
854 }
855
856 assert(variant->type == stage);
857
858 const uint64_t binary_iova = binary_bo->iova + binary_offset;
859 assert((binary_iova & 0x3) == 0);
860
861 tu_cs_emit_pkt4(cs, reg, 2);
862 tu_cs_emit_qw(cs, binary_iova);
863
864 /* always indirect */
865 const bool indirect = true;
866 if (indirect) {
867 tu_cs_emit_pkt7(cs, opcode, 3);
868 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
869 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
870 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
871 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
872 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
873 tu_cs_emit_qw(cs, binary_iova);
874 } else {
875 const void *binary = binary_bo->map + binary_offset;
876
877 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
878 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
879 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
880 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
881 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
882 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
883 tu_cs_emit_qw(cs, 0);
884 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
885 }
886 }
887
888 static void
889 tu6_emit_program(struct tu_cs *cs,
890 const struct tu_pipeline_builder *builder,
891 const struct tu_bo *binary_bo,
892 bool binning_pass)
893 {
894 static const struct ir3_shader_variant dummy_variant = {
895 .type = MESA_SHADER_NONE
896 };
897 assert(builder->shaders[MESA_SHADER_VERTEX]);
898 const struct ir3_shader_variant *vs =
899 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
900 const struct ir3_shader_variant *hs =
901 builder->shaders[MESA_SHADER_TESS_CTRL]
902 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
903 : &dummy_variant;
904 const struct ir3_shader_variant *ds =
905 builder->shaders[MESA_SHADER_TESS_EVAL]
906 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
907 : &dummy_variant;
908 const struct ir3_shader_variant *gs =
909 builder->shaders[MESA_SHADER_GEOMETRY]
910 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
911 : &dummy_variant;
912 const struct ir3_shader_variant *fs =
913 builder->shaders[MESA_SHADER_FRAGMENT]
914 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
915 : &dummy_variant;
916
917 if (binning_pass) {
918 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
919 fs = &dummy_variant;
920 }
921
922 tu6_emit_vs_config(cs, vs);
923 tu6_emit_hs_config(cs, hs);
924 tu6_emit_ds_config(cs, ds);
925 tu6_emit_gs_config(cs, gs);
926 tu6_emit_fs_config(cs, fs);
927
928 tu6_emit_vs_system_values(cs, vs);
929 tu6_emit_vpc(cs, vs, fs, binning_pass);
930 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
931 tu6_emit_fs_system_values(cs, fs);
932 tu6_emit_fs_inputs(cs, fs);
933 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
934
935 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
936 builder->shader_offsets[MESA_SHADER_VERTEX]);
937
938 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
939 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
940 }
941
942 static void
943 tu6_emit_vertex_input(struct tu_cs *cs,
944 const struct ir3_shader_variant *vs,
945 const VkPipelineVertexInputStateCreateInfo *vi_info,
946 uint8_t bindings[MAX_VERTEX_ATTRIBS],
947 uint16_t strides[MAX_VERTEX_ATTRIBS],
948 uint16_t offsets[MAX_VERTEX_ATTRIBS],
949 uint32_t *count)
950 {
951 uint32_t vfd_decode_idx = 0;
952
953 /* why do we go beyond inputs_count? */
954 assert(vs->inputs_count + 1 <= MAX_VERTEX_ATTRIBS);
955 for (uint32_t i = 0; i <= vs->inputs_count; i++) {
956 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
957 continue;
958
959 const VkVertexInputAttributeDescription *vi_attr =
960 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
961 const VkVertexInputBindingDescription *vi_binding =
962 tu_find_vertex_input_binding(vi_info, vi_attr);
963 assert(vi_attr && vi_binding);
964
965 const struct tu_native_format *format =
966 tu6_get_native_format(vi_attr->format);
967 assert(format && format->vtx >= 0);
968
969 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
970 A6XX_VFD_DECODE_INSTR_FORMAT(format->vtx) |
971 A6XX_VFD_DECODE_INSTR_SWAP(format->swap) |
972 A6XX_VFD_DECODE_INSTR_UNK30;
973 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
974 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
975 if (!vk_format_is_int(vi_attr->format))
976 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
977
978 const uint32_t vfd_decode_step_rate = 1;
979
980 const uint32_t vfd_dest_cntl =
981 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
982 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
983
984 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
985 tu_cs_emit(cs, vfd_decode);
986 tu_cs_emit(cs, vfd_decode_step_rate);
987
988 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
989 tu_cs_emit(cs, vfd_dest_cntl);
990
991 bindings[vfd_decode_idx] = vi_binding->binding;
992 strides[vfd_decode_idx] = vi_binding->stride;
993 offsets[vfd_decode_idx] = vi_attr->offset;
994
995 vfd_decode_idx++;
996 }
997
998 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
999 tu_cs_emit(
1000 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1001
1002 *count = vfd_decode_idx;
1003 }
1004
1005 static uint32_t
1006 tu6_guardband_adj(uint32_t v)
1007 {
1008 if (v > 256)
1009 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1010 else
1011 return 511;
1012 }
1013
1014 void
1015 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1016 {
1017 float offsets[3];
1018 float scales[3];
1019 scales[0] = viewport->width / 2.0f;
1020 scales[1] = viewport->height / 2.0f;
1021 scales[2] = viewport->maxDepth - viewport->minDepth;
1022 offsets[0] = viewport->x + scales[0];
1023 offsets[1] = viewport->y + scales[1];
1024 offsets[2] = viewport->minDepth;
1025
1026 VkOffset2D min;
1027 VkOffset2D max;
1028 min.x = (int32_t) viewport->x;
1029 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1030 if (viewport->height >= 0.0f) {
1031 min.y = (int32_t) viewport->y;
1032 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1033 } else {
1034 min.y = (int32_t)(viewport->y + viewport->height);
1035 max.y = (int32_t) ceilf(viewport->y);
1036 }
1037 /* the spec allows viewport->height to be 0.0f */
1038 if (min.y == max.y)
1039 max.y++;
1040 assert(min.x >= 0 && min.x < max.x);
1041 assert(min.y >= 0 && min.y < max.y);
1042
1043 VkExtent2D guardband_adj;
1044 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1045 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1046
1047 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1048 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]));
1049 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]));
1050 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]));
1051 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]));
1052 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]));
1053 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]));
1054
1055 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1056 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1057 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1058 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1059 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1060
1061 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1062 tu_cs_emit(cs,
1063 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1064 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1065 }
1066
1067 void
1068 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1069 {
1070 const VkOffset2D min = scissor->offset;
1071 const VkOffset2D max = {
1072 scissor->offset.x + scissor->extent.width,
1073 scissor->offset.y + scissor->extent.height,
1074 };
1075
1076 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1077 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1078 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1079 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1080 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1081 }
1082
1083 static void
1084 tu6_emit_gras_unknowns(struct tu_cs *cs)
1085 {
1086 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8000, 1);
1087 tu_cs_emit(cs, 0x80);
1088 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1089 tu_cs_emit(cs, 0x0);
1090 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8004, 1);
1091 tu_cs_emit(cs, 0x0);
1092 }
1093
1094 static void
1095 tu6_emit_point_size(struct tu_cs *cs)
1096 {
1097 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1098 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1099 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1100 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f));
1101 }
1102
1103 static uint32_t
1104 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1105 VkSampleCountFlagBits samples)
1106 {
1107 uint32_t gras_su_cntl = 0;
1108
1109 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1110 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1111 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1112 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1113
1114 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1115 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1116
1117 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1118
1119 if (rast_info->depthBiasEnable)
1120 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1121
1122 if (samples > VK_SAMPLE_COUNT_1_BIT)
1123 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1124
1125 return gras_su_cntl;
1126 }
1127
1128 void
1129 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1130 uint32_t gras_su_cntl,
1131 float line_width)
1132 {
1133 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1134 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1135
1136 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1137 tu_cs_emit(cs, gras_su_cntl);
1138 }
1139
1140 void
1141 tu6_emit_depth_bias(struct tu_cs *cs,
1142 float constant_factor,
1143 float clamp,
1144 float slope_factor)
1145 {
1146 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1147 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor));
1148 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor));
1149 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp));
1150 }
1151
1152 static void
1153 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1154 {
1155 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1156 tu_cs_emit(cs, 0);
1157 }
1158
1159 static void
1160 tu6_emit_depth_control(struct tu_cs *cs,
1161 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1162 {
1163 assert(!ds_info->depthBoundsTestEnable);
1164
1165 uint32_t rb_depth_cntl = 0;
1166 if (ds_info->depthTestEnable) {
1167 rb_depth_cntl |=
1168 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1169 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1170 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1171
1172 if (ds_info->depthWriteEnable)
1173 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1174 }
1175
1176 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1177 tu_cs_emit(cs, rb_depth_cntl);
1178 }
1179
1180 static void
1181 tu6_emit_stencil_control(struct tu_cs *cs,
1182 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1183 {
1184 uint32_t rb_stencil_control = 0;
1185 if (ds_info->stencilTestEnable) {
1186 const VkStencilOpState *front = &ds_info->front;
1187 const VkStencilOpState *back = &ds_info->back;
1188 rb_stencil_control |=
1189 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1190 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1191 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1192 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1193 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1194 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1195 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1196 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1197 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1198 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1199 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1200 }
1201
1202 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1203 tu_cs_emit(cs, rb_stencil_control);
1204 }
1205
1206 void
1207 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1208 {
1209 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1210 tu_cs_emit(
1211 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1212 }
1213
1214 void
1215 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1216 {
1217 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1218 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1219 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1220 }
1221
1222 void
1223 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1224 {
1225 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1226 tu_cs_emit(cs,
1227 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1228 }
1229
1230 static uint32_t
1231 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1232 bool has_alpha)
1233 {
1234 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1235 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1236 has_alpha ? att->srcColorBlendFactor
1237 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1238 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1239 has_alpha ? att->dstColorBlendFactor
1240 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1241 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1242 const enum adreno_rb_blend_factor src_alpha_factor =
1243 tu6_blend_factor(att->srcAlphaBlendFactor);
1244 const enum adreno_rb_blend_factor dst_alpha_factor =
1245 tu6_blend_factor(att->dstAlphaBlendFactor);
1246
1247 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1248 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1249 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1250 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1251 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1252 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1253 }
1254
1255 static uint32_t
1256 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1257 uint32_t rb_mrt_control_rop,
1258 bool is_int,
1259 bool has_alpha)
1260 {
1261 uint32_t rb_mrt_control =
1262 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1263
1264 /* ignore blending and logic op for integer attachments */
1265 if (is_int) {
1266 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1267 return rb_mrt_control;
1268 }
1269
1270 rb_mrt_control |= rb_mrt_control_rop;
1271
1272 if (att->blendEnable) {
1273 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1274
1275 if (has_alpha)
1276 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1277 }
1278
1279 return rb_mrt_control;
1280 }
1281
1282 static void
1283 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1284 const VkPipelineColorBlendStateCreateInfo *blend_info,
1285 const VkFormat attachment_formats[MAX_RTS],
1286 uint32_t *blend_enable_mask)
1287 {
1288 *blend_enable_mask = 0;
1289
1290 bool rop_reads_dst = false;
1291 uint32_t rb_mrt_control_rop = 0;
1292 if (blend_info->logicOpEnable) {
1293 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1294 rb_mrt_control_rop =
1295 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1296 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1297 }
1298
1299 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1300 const VkPipelineColorBlendAttachmentState *att =
1301 &blend_info->pAttachments[i];
1302 const VkFormat format = attachment_formats[i];
1303
1304 uint32_t rb_mrt_control = 0;
1305 uint32_t rb_mrt_blend_control = 0;
1306 if (format != VK_FORMAT_UNDEFINED) {
1307 const bool is_int = vk_format_is_int(format);
1308 const bool has_alpha = vk_format_has_alpha(format);
1309
1310 rb_mrt_control =
1311 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1312 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1313
1314 if (att->blendEnable || rop_reads_dst)
1315 *blend_enable_mask |= 1 << i;
1316 }
1317
1318 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1319 tu_cs_emit(cs, rb_mrt_control);
1320 tu_cs_emit(cs, rb_mrt_blend_control);
1321 }
1322
1323 for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) {
1324 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1325 tu_cs_emit(cs, 0);
1326 tu_cs_emit(cs, 0);
1327 }
1328 }
1329
1330 static void
1331 tu6_emit_blend_control(struct tu_cs *cs,
1332 uint32_t blend_enable_mask,
1333 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1334 {
1335 assert(!msaa_info->sampleShadingEnable);
1336 assert(!msaa_info->alphaToOneEnable);
1337
1338 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1339 if (blend_enable_mask)
1340 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1341 if (msaa_info->alphaToCoverageEnable)
1342 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1343
1344 const uint32_t sample_mask =
1345 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1346 : ((1 << msaa_info->rasterizationSamples) - 1);
1347
1348 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1349 uint32_t rb_blend_cntl =
1350 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1351 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1352 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1353 if (msaa_info->alphaToCoverageEnable)
1354 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1355
1356 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1357 tu_cs_emit(cs, sp_blend_cntl);
1358
1359 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1360 tu_cs_emit(cs, rb_blend_cntl);
1361 }
1362
1363 void
1364 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1365 {
1366 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1367 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1368 }
1369
1370 static VkResult
1371 tu_pipeline_builder_create_pipeline(struct tu_pipeline_builder *builder,
1372 struct tu_pipeline **out_pipeline)
1373 {
1374 struct tu_device *dev = builder->device;
1375
1376 struct tu_pipeline *pipeline =
1377 vk_zalloc2(&dev->alloc, builder->alloc, sizeof(*pipeline), 8,
1378 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1379 if (!pipeline)
1380 return VK_ERROR_OUT_OF_HOST_MEMORY;
1381
1382 tu_cs_init(&pipeline->cs, TU_CS_MODE_SUB_STREAM, 2048);
1383
1384 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1385 VkResult result = tu_cs_reserve_space(dev, &pipeline->cs, 2048);
1386 if (result != VK_SUCCESS) {
1387 vk_free2(&dev->alloc, builder->alloc, pipeline);
1388 return result;
1389 }
1390
1391 *out_pipeline = pipeline;
1392
1393 return VK_SUCCESS;
1394 }
1395
1396 static VkResult
1397 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1398 {
1399 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1400 NULL
1401 };
1402 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1403 gl_shader_stage stage =
1404 tu_shader_stage(builder->create_info->pStages[i].stage);
1405 stage_infos[stage] = &builder->create_info->pStages[i];
1406 }
1407
1408 struct tu_shader_compile_options options;
1409 tu_shader_compile_options_init(&options, builder->create_info);
1410
1411 /* compile shaders in reverse order */
1412 struct tu_shader *next_stage_shader = NULL;
1413 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1414 stage > MESA_SHADER_NONE; stage--) {
1415 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1416 if (!stage_info)
1417 continue;
1418
1419 struct tu_shader *shader =
1420 tu_shader_create(builder->device, stage, stage_info, builder->alloc);
1421 if (!shader)
1422 return VK_ERROR_OUT_OF_HOST_MEMORY;
1423
1424 VkResult result =
1425 tu_shader_compile(builder->device, shader, next_stage_shader,
1426 &options, builder->alloc);
1427 if (result != VK_SUCCESS)
1428 return result;
1429
1430 builder->shaders[stage] = shader;
1431 builder->shader_offsets[stage] = builder->shader_total_size;
1432 builder->shader_total_size +=
1433 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1434
1435 next_stage_shader = shader;
1436 }
1437
1438 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1439 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1440 builder->binning_vs_offset = builder->shader_total_size;
1441 builder->shader_total_size +=
1442 sizeof(uint32_t) * vs->variants[1].info.sizedwords;
1443 }
1444
1445 return VK_SUCCESS;
1446 }
1447
1448 static VkResult
1449 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1450 struct tu_pipeline *pipeline)
1451 {
1452 struct tu_bo *bo = &pipeline->program.binary_bo;
1453
1454 VkResult result =
1455 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1456 if (result != VK_SUCCESS)
1457 return result;
1458
1459 result = tu_bo_map(builder->device, bo);
1460 if (result != VK_SUCCESS)
1461 return result;
1462
1463 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1464 const struct tu_shader *shader = builder->shaders[i];
1465 if (!shader)
1466 continue;
1467
1468 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1469 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1470 }
1471
1472 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1473 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1474 memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary,
1475 sizeof(uint32_t) * vs->variants[1].info.sizedwords);
1476 }
1477
1478 return VK_SUCCESS;
1479 }
1480
1481 static void
1482 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1483 struct tu_pipeline *pipeline)
1484 {
1485 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1486 builder->create_info->pDynamicState;
1487
1488 if (!dynamic_info)
1489 return;
1490
1491 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1492 pipeline->dynamic_state.mask |=
1493 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1494 }
1495 }
1496
1497 static void
1498 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1499 struct tu_pipeline *pipeline)
1500 {
1501 struct tu_cs prog_cs;
1502 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1503 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false);
1504 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1505
1506 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1507 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true);
1508 pipeline->program.binning_state_ib =
1509 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1510 }
1511
1512 static void
1513 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1514 struct tu_pipeline *pipeline)
1515 {
1516 const VkPipelineVertexInputStateCreateInfo *vi_info =
1517 builder->create_info->pVertexInputState;
1518 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1519
1520 struct tu_cs vi_cs;
1521 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1522 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1523 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1524 pipeline->vi.bindings, pipeline->vi.strides,
1525 pipeline->vi.offsets, &pipeline->vi.count);
1526 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1527
1528 if (vs->has_binning_pass) {
1529 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1530 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1531 tu6_emit_vertex_input(
1532 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
1533 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
1534 &pipeline->vi.binning_count);
1535 pipeline->vi.binning_state_ib =
1536 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1537 }
1538 }
1539
1540 static void
1541 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
1542 struct tu_pipeline *pipeline)
1543 {
1544 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1545 builder->create_info->pInputAssemblyState;
1546
1547 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
1548 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
1549 }
1550
1551 static void
1552 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
1553 struct tu_pipeline *pipeline)
1554 {
1555 /* The spec says:
1556 *
1557 * pViewportState is a pointer to an instance of the
1558 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
1559 * pipeline has rasterization disabled."
1560 *
1561 * We leave the relevant registers stale in that case.
1562 */
1563 if (builder->rasterizer_discard)
1564 return;
1565
1566 const VkPipelineViewportStateCreateInfo *vp_info =
1567 builder->create_info->pViewportState;
1568
1569 struct tu_cs vp_cs;
1570 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 15, &vp_cs);
1571
1572 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
1573 assert(vp_info->viewportCount == 1);
1574 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
1575 }
1576
1577 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
1578 assert(vp_info->scissorCount == 1);
1579 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
1580 }
1581
1582 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
1583 }
1584
1585 static void
1586 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
1587 struct tu_pipeline *pipeline)
1588 {
1589 const VkPipelineRasterizationStateCreateInfo *rast_info =
1590 builder->create_info->pRasterizationState;
1591
1592 assert(!rast_info->depthClampEnable);
1593 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
1594
1595 struct tu_cs rast_cs;
1596 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 20, &rast_cs);
1597
1598 /* move to hw ctx init? */
1599 tu6_emit_gras_unknowns(&rast_cs);
1600 tu6_emit_point_size(&rast_cs);
1601
1602 const uint32_t gras_su_cntl =
1603 tu6_gras_su_cntl(rast_info, builder->samples);
1604
1605 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
1606 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
1607
1608 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
1609 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
1610 rast_info->depthBiasClamp,
1611 rast_info->depthBiasSlopeFactor);
1612 }
1613
1614 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
1615
1616 pipeline->rast.gras_su_cntl = gras_su_cntl;
1617 }
1618
1619 static void
1620 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
1621 struct tu_pipeline *pipeline)
1622 {
1623 /* The spec says:
1624 *
1625 * pDepthStencilState is a pointer to an instance of the
1626 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
1627 * the pipeline has rasterization disabled or if the subpass of the
1628 * render pass the pipeline is created against does not use a
1629 * depth/stencil attachment.
1630 *
1631 * We disable both depth and stenil tests in those cases.
1632 */
1633 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
1634 const VkPipelineDepthStencilStateCreateInfo *ds_info =
1635 builder->use_depth_stencil_attachment
1636 ? builder->create_info->pDepthStencilState
1637 : &dummy_ds_info;
1638
1639 struct tu_cs ds_cs;
1640 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 12, &ds_cs);
1641
1642 /* move to hw ctx init? */
1643 tu6_emit_alpha_control_disable(&ds_cs);
1644
1645 tu6_emit_depth_control(&ds_cs, ds_info);
1646 tu6_emit_stencil_control(&ds_cs, ds_info);
1647
1648 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
1649 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
1650 ds_info->back.compareMask);
1651 }
1652 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
1653 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
1654 ds_info->back.writeMask);
1655 }
1656 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
1657 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
1658 ds_info->back.reference);
1659 }
1660
1661 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
1662 }
1663
1664 static void
1665 tu_pipeline_builder_parse_multisample_and_color_blend(
1666 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
1667 {
1668 /* The spec says:
1669 *
1670 * pMultisampleState is a pointer to an instance of the
1671 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
1672 * has rasterization disabled.
1673 *
1674 * Also,
1675 *
1676 * pColorBlendState is a pointer to an instance of the
1677 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
1678 * pipeline has rasterization disabled or if the subpass of the render
1679 * pass the pipeline is created against does not use any color
1680 * attachments.
1681 *
1682 * We leave the relevant registers stale when rasterization is disabled.
1683 */
1684 if (builder->rasterizer_discard)
1685 return;
1686
1687 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
1688 const VkPipelineMultisampleStateCreateInfo *msaa_info =
1689 builder->create_info->pMultisampleState;
1690 const VkPipelineColorBlendStateCreateInfo *blend_info =
1691 builder->use_color_attachments ? builder->create_info->pColorBlendState
1692 : &dummy_blend_info;
1693
1694 struct tu_cs blend_cs;
1695 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_RTS * 3 + 9,
1696 &blend_cs);
1697
1698 uint32_t blend_enable_mask;
1699 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
1700 builder->color_attachment_formats,
1701 &blend_enable_mask);
1702
1703 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
1704 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
1705
1706 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
1707
1708 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
1709 }
1710
1711 static void
1712 tu_pipeline_finish(struct tu_pipeline *pipeline,
1713 struct tu_device *dev,
1714 const VkAllocationCallbacks *alloc)
1715 {
1716 tu_cs_finish(dev, &pipeline->cs);
1717
1718 if (pipeline->program.binary_bo.gem_handle)
1719 tu_bo_finish(dev, &pipeline->program.binary_bo);
1720 }
1721
1722 static VkResult
1723 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
1724 struct tu_pipeline **pipeline)
1725 {
1726 VkResult result = tu_pipeline_builder_create_pipeline(builder, pipeline);
1727 if (result != VK_SUCCESS)
1728 return result;
1729
1730 /* compile and upload shaders */
1731 result = tu_pipeline_builder_compile_shaders(builder);
1732 if (result == VK_SUCCESS)
1733 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
1734 if (result != VK_SUCCESS) {
1735 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
1736 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
1737 *pipeline = VK_NULL_HANDLE;
1738
1739 return result;
1740 }
1741
1742 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
1743 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
1744 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
1745 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
1746 tu_pipeline_builder_parse_viewport(builder, *pipeline);
1747 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
1748 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
1749 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
1750
1751 /* we should have reserved enough space upfront such that the CS never
1752 * grows
1753 */
1754 assert((*pipeline)->cs.bo_count == 1);
1755
1756 return VK_SUCCESS;
1757 }
1758
1759 static void
1760 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
1761 {
1762 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1763 if (!builder->shaders[i])
1764 continue;
1765 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
1766 }
1767 }
1768
1769 static void
1770 tu_pipeline_builder_init_graphics(
1771 struct tu_pipeline_builder *builder,
1772 struct tu_device *dev,
1773 struct tu_pipeline_cache *cache,
1774 const VkGraphicsPipelineCreateInfo *create_info,
1775 const VkAllocationCallbacks *alloc)
1776 {
1777 *builder = (struct tu_pipeline_builder) {
1778 .device = dev,
1779 .cache = cache,
1780 .create_info = create_info,
1781 .alloc = alloc,
1782 };
1783
1784 builder->rasterizer_discard =
1785 create_info->pRasterizationState->rasterizerDiscardEnable;
1786
1787 if (builder->rasterizer_discard) {
1788 builder->samples = VK_SAMPLE_COUNT_1_BIT;
1789 } else {
1790 builder->samples = create_info->pMultisampleState->rasterizationSamples;
1791
1792 const struct tu_render_pass *pass =
1793 tu_render_pass_from_handle(create_info->renderPass);
1794 const struct tu_subpass *subpass =
1795 &pass->subpasses[create_info->subpass];
1796
1797 builder->use_depth_stencil_attachment =
1798 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
1799
1800 assert(subpass->color_count ==
1801 create_info->pColorBlendState->attachmentCount);
1802 builder->color_attachment_count = subpass->color_count;
1803 for (uint32_t i = 0; i < subpass->color_count; i++) {
1804 const uint32_t a = subpass->color_attachments[i].attachment;
1805 if (a == VK_ATTACHMENT_UNUSED)
1806 continue;
1807
1808 builder->color_attachment_formats[i] = pass->attachments[a].format;
1809 builder->use_color_attachments = true;
1810 }
1811 }
1812 }
1813
1814 VkResult
1815 tu_CreateGraphicsPipelines(VkDevice device,
1816 VkPipelineCache pipelineCache,
1817 uint32_t count,
1818 const VkGraphicsPipelineCreateInfo *pCreateInfos,
1819 const VkAllocationCallbacks *pAllocator,
1820 VkPipeline *pPipelines)
1821 {
1822 TU_FROM_HANDLE(tu_device, dev, device);
1823 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
1824
1825 for (uint32_t i = 0; i < count; i++) {
1826 struct tu_pipeline_builder builder;
1827 tu_pipeline_builder_init_graphics(&builder, dev, cache,
1828 &pCreateInfos[i], pAllocator);
1829
1830 struct tu_pipeline *pipeline;
1831 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
1832 tu_pipeline_builder_finish(&builder);
1833
1834 if (result != VK_SUCCESS) {
1835 for (uint32_t j = 0; j < i; j++) {
1836 tu_DestroyPipeline(device, pPipelines[j], pAllocator);
1837 pPipelines[j] = VK_NULL_HANDLE;
1838 }
1839
1840 return result;
1841 }
1842
1843 pPipelines[i] = tu_pipeline_to_handle(pipeline);
1844 }
1845
1846 return VK_SUCCESS;
1847 }
1848
1849 static VkResult
1850 tu_compute_pipeline_create(VkDevice _device,
1851 VkPipelineCache _cache,
1852 const VkComputePipelineCreateInfo *pCreateInfo,
1853 const VkAllocationCallbacks *pAllocator,
1854 VkPipeline *pPipeline)
1855 {
1856 return VK_SUCCESS;
1857 }
1858
1859 VkResult
1860 tu_CreateComputePipelines(VkDevice _device,
1861 VkPipelineCache pipelineCache,
1862 uint32_t count,
1863 const VkComputePipelineCreateInfo *pCreateInfos,
1864 const VkAllocationCallbacks *pAllocator,
1865 VkPipeline *pPipelines)
1866 {
1867 VkResult result = VK_SUCCESS;
1868
1869 unsigned i = 0;
1870 for (; i < count; i++) {
1871 VkResult r;
1872 r = tu_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i],
1873 pAllocator, &pPipelines[i]);
1874 if (r != VK_SUCCESS) {
1875 result = r;
1876 pPipelines[i] = VK_NULL_HANDLE;
1877 }
1878 }
1879
1880 return result;
1881 }
1882
1883 void
1884 tu_DestroyPipeline(VkDevice _device,
1885 VkPipeline _pipeline,
1886 const VkAllocationCallbacks *pAllocator)
1887 {
1888 TU_FROM_HANDLE(tu_device, dev, _device);
1889 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
1890
1891 if (!_pipeline)
1892 return;
1893
1894 tu_pipeline_finish(pipeline, dev, pAllocator);
1895 vk_free2(&dev->alloc, pAllocator, pipeline);
1896 }