turnip: fix VFD_CONTROL for binning pass
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "ir3/ir3_nir.h"
31 #include "main/menums.h"
32 #include "nir/nir.h"
33 #include "nir/nir_builder.h"
34 #include "spirv/nir_spirv.h"
35 #include "util/debug.h"
36 #include "util/mesa-sha1.h"
37 #include "util/u_atomic.h"
38 #include "vk_format.h"
39 #include "vk_util.h"
40
41 #include "tu_cs.h"
42
43 /* Emit IB that preloads the descriptors that the shader uses */
44
45 static inline uint32_t
46 tu6_vkstage2opcode(VkShaderStageFlags stage)
47 {
48 switch (stage) {
49 case VK_SHADER_STAGE_VERTEX_BIT:
50 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
51 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
52 case VK_SHADER_STAGE_GEOMETRY_BIT:
53 return CP_LOAD_STATE6_GEOM;
54 case VK_SHADER_STAGE_FRAGMENT_BIT:
55 case VK_SHADER_STAGE_COMPUTE_BIT:
56 return CP_LOAD_STATE6_FRAG;
57 default:
58 unreachable("bad shader type");
59 }
60 }
61
62 static enum a6xx_state_block
63 tu6_tex_stage2sb(VkShaderStageFlags stage)
64 {
65 switch (stage) {
66 case VK_SHADER_STAGE_VERTEX_BIT:
67 return SB6_VS_TEX;
68 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
69 return SB6_HS_TEX;
70 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
71 return SB6_DS_TEX;
72 case VK_SHADER_STAGE_GEOMETRY_BIT:
73 return SB6_GS_TEX;
74 case VK_SHADER_STAGE_FRAGMENT_BIT:
75 return SB6_FS_TEX;
76 case VK_SHADER_STAGE_COMPUTE_BIT:
77 return SB6_CS_TEX;
78 default:
79 unreachable("bad shader stage");
80 }
81 }
82
83 static enum a6xx_state_block
84 tu6_ubo_stage2sb(VkShaderStageFlags stage)
85 {
86 switch (stage) {
87 case VK_SHADER_STAGE_VERTEX_BIT:
88 return SB6_VS_SHADER;
89 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
90 return SB6_HS_SHADER;
91 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
92 return SB6_DS_SHADER;
93 case VK_SHADER_STAGE_GEOMETRY_BIT:
94 return SB6_GS_SHADER;
95 case VK_SHADER_STAGE_FRAGMENT_BIT:
96 return SB6_FS_SHADER;
97 case VK_SHADER_STAGE_COMPUTE_BIT:
98 return SB6_CS_SHADER;
99 default:
100 unreachable("bad shader stage");
101 }
102 }
103
104 static void
105 emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
106 enum a6xx_state_block sb, unsigned base, unsigned offset,
107 unsigned count)
108 {
109 /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
110 * clear if emitting more packets will even help anything. Presumably the
111 * descriptor cache is relatively small, and these packets stop doing
112 * anything when there are too many descriptors.
113 */
114 tu_cs_emit_pkt7(cs, opcode, 3);
115 tu_cs_emit(cs,
116 CP_LOAD_STATE6_0_STATE_TYPE(st) |
117 CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
118 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
119 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
120 tu_cs_emit_qw(cs, offset | (base << 28));
121 }
122
123 static unsigned
124 tu6_load_state_size(struct tu_pipeline_layout *layout, bool compute)
125 {
126 const unsigned load_state_size = 4;
127 unsigned size = 0;
128 for (unsigned i = 0; i < layout->num_sets; i++) {
129 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
130 for (unsigned j = 0; j < set_layout->binding_count; j++) {
131 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
132 unsigned count = 0;
133 /* Note: some users, like amber for example, pass in
134 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
135 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
136 */
137 VkShaderStageFlags stages = compute ?
138 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
139 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
140 unsigned stage_count = util_bitcount(stages);
141 switch (binding->type) {
142 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
143 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
144 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
145 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
146 /* IBO-backed resources only need one packet for all graphics stages */
147 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
148 count += 1;
149 if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
150 count += 1;
151 break;
152 case VK_DESCRIPTOR_TYPE_SAMPLER:
153 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
154 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
155 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
156 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
157 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
158 /* Textures and UBO's needs a packet for each stage */
159 count = stage_count;
160 break;
161 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
162 /* Because of how we pack combined images and samplers, we
163 * currently can't use one packet for the whole array.
164 */
165 count = stage_count * binding->array_size * 2;
166 break;
167 default:
168 unreachable("bad descriptor type");
169 }
170 size += count * load_state_size;
171 }
172 }
173 return size;
174 }
175
176 static void
177 tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
178 {
179 unsigned size = tu6_load_state_size(pipeline->layout, compute);
180 if (size == 0)
181 return;
182
183 struct tu_cs cs;
184 tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
185
186 struct tu_pipeline_layout *layout = pipeline->layout;
187 for (unsigned i = 0; i < layout->num_sets; i++) {
188 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
189 for (unsigned j = 0; j < set_layout->binding_count; j++) {
190 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
191 unsigned base = i;
192 unsigned offset = binding->offset / 4;
193 /* Note: some users, like amber for example, pass in
194 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
195 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
196 */
197 VkShaderStageFlags stages = compute ?
198 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
199 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
200 unsigned count = binding->array_size;
201 if (count == 0 || stages == 0)
202 continue;
203 switch (binding->type) {
204 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
205 base = MAX_SETS;
206 offset = (layout->input_attachment_count +
207 layout->set[i].dynamic_offset_start +
208 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
209 /* fallthrough */
210 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
211 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
212 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
213 /* IBO-backed resources only need one packet for all graphics stages */
214 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
215 emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
216 base, offset, count);
217 }
218 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
219 emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
220 base, offset, count);
221 }
222 break;
223 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
224 base = MAX_SETS;
225 offset = (layout->set[i].input_attachment_start +
226 binding->input_attachment_offset) * A6XX_TEX_CONST_DWORDS;
227 case VK_DESCRIPTOR_TYPE_SAMPLER:
228 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
229 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
230 unsigned stage_log2;
231 for_each_bit(stage_log2, stages) {
232 VkShaderStageFlags stage = 1 << stage_log2;
233 emit_load_state(&cs, tu6_vkstage2opcode(stage),
234 binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
235 ST6_SHADER : ST6_CONSTANTS,
236 tu6_tex_stage2sb(stage), base, offset, count);
237 }
238 break;
239 }
240 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
241 base = MAX_SETS;
242 offset = (layout->input_attachment_count +
243 layout->set[i].dynamic_offset_start +
244 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
245 /* fallthrough */
246 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
247 unsigned stage_log2;
248 for_each_bit(stage_log2, stages) {
249 VkShaderStageFlags stage = 1 << stage_log2;
250 emit_load_state(&cs, tu6_vkstage2opcode(stage), ST6_UBO,
251 tu6_ubo_stage2sb(stage), base, offset, count);
252 }
253 break;
254 }
255 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
256 unsigned stage_log2;
257 for_each_bit(stage_log2, stages) {
258 VkShaderStageFlags stage = 1 << stage_log2;
259 /* TODO: We could emit less CP_LOAD_STATE6 if we used
260 * struct-of-arrays instead of array-of-structs.
261 */
262 for (unsigned i = 0; i < count; i++) {
263 unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
264 unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
265 emit_load_state(&cs, tu6_vkstage2opcode(stage),
266 ST6_CONSTANTS, tu6_tex_stage2sb(stage),
267 base, tex_offset, 1);
268 emit_load_state(&cs, tu6_vkstage2opcode(stage),
269 ST6_SHADER, tu6_tex_stage2sb(stage),
270 base, sam_offset, 1);
271 }
272 }
273 break;
274 }
275 default:
276 unreachable("bad descriptor type");
277 }
278 }
279 }
280
281 pipeline->load_state.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
282 }
283
284 struct tu_pipeline_builder
285 {
286 struct tu_device *device;
287 struct tu_pipeline_cache *cache;
288 struct tu_pipeline_layout *layout;
289 const VkAllocationCallbacks *alloc;
290 const VkGraphicsPipelineCreateInfo *create_info;
291
292 struct tu_shader *shaders[MESA_SHADER_STAGES];
293 uint32_t shader_offsets[MESA_SHADER_STAGES];
294 uint32_t binning_vs_offset;
295 uint32_t shader_total_size;
296
297 bool rasterizer_discard;
298 /* these states are affectd by rasterizer_discard */
299 VkSampleCountFlagBits samples;
300 bool use_color_attachments;
301 bool use_dual_src_blend;
302 uint32_t color_attachment_count;
303 VkFormat color_attachment_formats[MAX_RTS];
304 VkFormat depth_attachment_format;
305 uint32_t render_components;
306 };
307
308 static enum tu_dynamic_state_bits
309 tu_dynamic_state_bit(VkDynamicState state)
310 {
311 switch (state) {
312 case VK_DYNAMIC_STATE_VIEWPORT:
313 return TU_DYNAMIC_VIEWPORT;
314 case VK_DYNAMIC_STATE_SCISSOR:
315 return TU_DYNAMIC_SCISSOR;
316 case VK_DYNAMIC_STATE_LINE_WIDTH:
317 return TU_DYNAMIC_LINE_WIDTH;
318 case VK_DYNAMIC_STATE_DEPTH_BIAS:
319 return TU_DYNAMIC_DEPTH_BIAS;
320 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
321 return TU_DYNAMIC_BLEND_CONSTANTS;
322 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
323 return TU_DYNAMIC_DEPTH_BOUNDS;
324 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
325 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
326 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
327 return TU_DYNAMIC_STENCIL_WRITE_MASK;
328 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
329 return TU_DYNAMIC_STENCIL_REFERENCE;
330 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
331 return TU_DYNAMIC_SAMPLE_LOCATIONS;
332 default:
333 unreachable("invalid dynamic state");
334 return 0;
335 }
336 }
337
338 static gl_shader_stage
339 tu_shader_stage(VkShaderStageFlagBits stage)
340 {
341 switch (stage) {
342 case VK_SHADER_STAGE_VERTEX_BIT:
343 return MESA_SHADER_VERTEX;
344 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
345 return MESA_SHADER_TESS_CTRL;
346 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
347 return MESA_SHADER_TESS_EVAL;
348 case VK_SHADER_STAGE_GEOMETRY_BIT:
349 return MESA_SHADER_GEOMETRY;
350 case VK_SHADER_STAGE_FRAGMENT_BIT:
351 return MESA_SHADER_FRAGMENT;
352 case VK_SHADER_STAGE_COMPUTE_BIT:
353 return MESA_SHADER_COMPUTE;
354 default:
355 unreachable("invalid VkShaderStageFlagBits");
356 return MESA_SHADER_NONE;
357 }
358 }
359
360 static bool
361 tu_logic_op_reads_dst(VkLogicOp op)
362 {
363 switch (op) {
364 case VK_LOGIC_OP_CLEAR:
365 case VK_LOGIC_OP_COPY:
366 case VK_LOGIC_OP_COPY_INVERTED:
367 case VK_LOGIC_OP_SET:
368 return false;
369 default:
370 return true;
371 }
372 }
373
374 static VkBlendFactor
375 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
376 {
377 /* treat dst alpha as 1.0 and avoid reading it */
378 switch (factor) {
379 case VK_BLEND_FACTOR_DST_ALPHA:
380 return VK_BLEND_FACTOR_ONE;
381 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
382 return VK_BLEND_FACTOR_ZERO;
383 default:
384 return factor;
385 }
386 }
387
388 static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
389 {
390 switch (factor) {
391 case VK_BLEND_FACTOR_SRC1_COLOR:
392 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
393 case VK_BLEND_FACTOR_SRC1_ALPHA:
394 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
395 return true;
396 default:
397 return false;
398 }
399 }
400
401 static bool
402 tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
403 {
404 if (!info)
405 return false;
406
407 for (unsigned i = 0; i < info->attachmentCount; i++) {
408 const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
409 if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
410 tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
411 tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
412 tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
413 return true;
414 }
415
416 return false;
417 }
418
419 static enum pc_di_primtype
420 tu6_primtype(VkPrimitiveTopology topology)
421 {
422 switch (topology) {
423 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
424 return DI_PT_POINTLIST;
425 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
426 return DI_PT_LINELIST;
427 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
428 return DI_PT_LINESTRIP;
429 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
430 return DI_PT_TRILIST;
431 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
432 return DI_PT_TRISTRIP;
433 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
434 return DI_PT_TRIFAN;
435 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
436 return DI_PT_LINE_ADJ;
437 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
438 return DI_PT_LINESTRIP_ADJ;
439 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
440 return DI_PT_TRI_ADJ;
441 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
442 return DI_PT_TRISTRIP_ADJ;
443 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
444 default:
445 unreachable("invalid primitive topology");
446 return DI_PT_NONE;
447 }
448 }
449
450 static enum adreno_compare_func
451 tu6_compare_func(VkCompareOp op)
452 {
453 switch (op) {
454 case VK_COMPARE_OP_NEVER:
455 return FUNC_NEVER;
456 case VK_COMPARE_OP_LESS:
457 return FUNC_LESS;
458 case VK_COMPARE_OP_EQUAL:
459 return FUNC_EQUAL;
460 case VK_COMPARE_OP_LESS_OR_EQUAL:
461 return FUNC_LEQUAL;
462 case VK_COMPARE_OP_GREATER:
463 return FUNC_GREATER;
464 case VK_COMPARE_OP_NOT_EQUAL:
465 return FUNC_NOTEQUAL;
466 case VK_COMPARE_OP_GREATER_OR_EQUAL:
467 return FUNC_GEQUAL;
468 case VK_COMPARE_OP_ALWAYS:
469 return FUNC_ALWAYS;
470 default:
471 unreachable("invalid VkCompareOp");
472 return FUNC_NEVER;
473 }
474 }
475
476 static enum adreno_stencil_op
477 tu6_stencil_op(VkStencilOp op)
478 {
479 switch (op) {
480 case VK_STENCIL_OP_KEEP:
481 return STENCIL_KEEP;
482 case VK_STENCIL_OP_ZERO:
483 return STENCIL_ZERO;
484 case VK_STENCIL_OP_REPLACE:
485 return STENCIL_REPLACE;
486 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
487 return STENCIL_INCR_CLAMP;
488 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
489 return STENCIL_DECR_CLAMP;
490 case VK_STENCIL_OP_INVERT:
491 return STENCIL_INVERT;
492 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
493 return STENCIL_INCR_WRAP;
494 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
495 return STENCIL_DECR_WRAP;
496 default:
497 unreachable("invalid VkStencilOp");
498 return STENCIL_KEEP;
499 }
500 }
501
502 static enum a3xx_rop_code
503 tu6_rop(VkLogicOp op)
504 {
505 switch (op) {
506 case VK_LOGIC_OP_CLEAR:
507 return ROP_CLEAR;
508 case VK_LOGIC_OP_AND:
509 return ROP_AND;
510 case VK_LOGIC_OP_AND_REVERSE:
511 return ROP_AND_REVERSE;
512 case VK_LOGIC_OP_COPY:
513 return ROP_COPY;
514 case VK_LOGIC_OP_AND_INVERTED:
515 return ROP_AND_INVERTED;
516 case VK_LOGIC_OP_NO_OP:
517 return ROP_NOOP;
518 case VK_LOGIC_OP_XOR:
519 return ROP_XOR;
520 case VK_LOGIC_OP_OR:
521 return ROP_OR;
522 case VK_LOGIC_OP_NOR:
523 return ROP_NOR;
524 case VK_LOGIC_OP_EQUIVALENT:
525 return ROP_EQUIV;
526 case VK_LOGIC_OP_INVERT:
527 return ROP_INVERT;
528 case VK_LOGIC_OP_OR_REVERSE:
529 return ROP_OR_REVERSE;
530 case VK_LOGIC_OP_COPY_INVERTED:
531 return ROP_COPY_INVERTED;
532 case VK_LOGIC_OP_OR_INVERTED:
533 return ROP_OR_INVERTED;
534 case VK_LOGIC_OP_NAND:
535 return ROP_NAND;
536 case VK_LOGIC_OP_SET:
537 return ROP_SET;
538 default:
539 unreachable("invalid VkLogicOp");
540 return ROP_NOOP;
541 }
542 }
543
544 static enum adreno_rb_blend_factor
545 tu6_blend_factor(VkBlendFactor factor)
546 {
547 switch (factor) {
548 case VK_BLEND_FACTOR_ZERO:
549 return FACTOR_ZERO;
550 case VK_BLEND_FACTOR_ONE:
551 return FACTOR_ONE;
552 case VK_BLEND_FACTOR_SRC_COLOR:
553 return FACTOR_SRC_COLOR;
554 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
555 return FACTOR_ONE_MINUS_SRC_COLOR;
556 case VK_BLEND_FACTOR_DST_COLOR:
557 return FACTOR_DST_COLOR;
558 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
559 return FACTOR_ONE_MINUS_DST_COLOR;
560 case VK_BLEND_FACTOR_SRC_ALPHA:
561 return FACTOR_SRC_ALPHA;
562 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
563 return FACTOR_ONE_MINUS_SRC_ALPHA;
564 case VK_BLEND_FACTOR_DST_ALPHA:
565 return FACTOR_DST_ALPHA;
566 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
567 return FACTOR_ONE_MINUS_DST_ALPHA;
568 case VK_BLEND_FACTOR_CONSTANT_COLOR:
569 return FACTOR_CONSTANT_COLOR;
570 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
571 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
572 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
573 return FACTOR_CONSTANT_ALPHA;
574 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
575 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
576 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
577 return FACTOR_SRC_ALPHA_SATURATE;
578 case VK_BLEND_FACTOR_SRC1_COLOR:
579 return FACTOR_SRC1_COLOR;
580 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
581 return FACTOR_ONE_MINUS_SRC1_COLOR;
582 case VK_BLEND_FACTOR_SRC1_ALPHA:
583 return FACTOR_SRC1_ALPHA;
584 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
585 return FACTOR_ONE_MINUS_SRC1_ALPHA;
586 default:
587 unreachable("invalid VkBlendFactor");
588 return FACTOR_ZERO;
589 }
590 }
591
592 static enum a3xx_rb_blend_opcode
593 tu6_blend_op(VkBlendOp op)
594 {
595 switch (op) {
596 case VK_BLEND_OP_ADD:
597 return BLEND_DST_PLUS_SRC;
598 case VK_BLEND_OP_SUBTRACT:
599 return BLEND_SRC_MINUS_DST;
600 case VK_BLEND_OP_REVERSE_SUBTRACT:
601 return BLEND_DST_MINUS_SRC;
602 case VK_BLEND_OP_MIN:
603 return BLEND_MIN_DST_SRC;
604 case VK_BLEND_OP_MAX:
605 return BLEND_MAX_DST_SRC;
606 default:
607 unreachable("invalid VkBlendOp");
608 return BLEND_DST_PLUS_SRC;
609 }
610 }
611
612 static uint32_t
613 emit_xs_cntl(const struct ir3_shader_variant *xs)
614 {
615 bool is_fs = xs->type == MESA_SHADER_FRAGMENT;
616 enum a3xx_threadsize threadsize = FOUR_QUADS;
617
618 /* TODO:
619 * the "threadsize" field may have nothing to do with threadsize,
620 * use a value that matches the blob until it is figured out
621 */
622 if (xs->type == MESA_SHADER_GEOMETRY)
623 threadsize = TWO_QUADS;
624
625 return A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) |
626 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) |
627 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
628 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) |
629 COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) |
630 COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) |
631 /* only fragment shader sets VARYING bit */
632 COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) |
633 /* unknown bit, seems unnecessary */
634 COND(is_fs, 0x1000000);
635 }
636
637 static uint32_t
638 emit_xs_config(const struct ir3_shader_variant *sh)
639 {
640 if (sh->instrlen) {
641 return A6XX_SP_VS_CONFIG_ENABLED |
642 COND(sh->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
643 COND(sh->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
644 COND(sh->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
645 COND(sh->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO);
646 } else {
647 return 0;
648 }
649 }
650
651 static void
652 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
653 const struct ir3_shader_variant *vs)
654 {
655 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
656 tu_cs_emit(cs, emit_xs_cntl(vs));
657
658 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
659 tu_cs_emit(cs, emit_xs_config(vs));
660 tu_cs_emit(cs, vs->instrlen);
661
662 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
663 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
664 A6XX_HLSQ_VS_CNTL_ENABLED);
665 }
666
667 static void
668 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
669 const struct ir3_shader_variant *hs)
670 {
671 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
672 tu_cs_emit(cs, 0);
673
674 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
675 tu_cs_emit(cs, emit_xs_config(hs));
676 tu_cs_emit(cs, hs->instrlen);
677
678 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
679 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
680 }
681
682 static void
683 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
684 const struct ir3_shader_variant *ds)
685 {
686 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
687 tu_cs_emit(cs, emit_xs_config(ds));
688 tu_cs_emit(cs, ds->instrlen);
689
690 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
691 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
692 }
693
694 static void
695 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
696 const struct ir3_shader_variant *gs)
697 {
698 bool has_gs = gs->type != MESA_SHADER_NONE;
699 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
700 tu_cs_emit(cs, 0);
701
702 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
703 tu_cs_emit(cs, emit_xs_config(gs));
704 tu_cs_emit(cs, gs->instrlen);
705
706 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
707 tu_cs_emit(cs, COND(has_gs, A6XX_HLSQ_GS_CNTL_ENABLED) |
708 A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
709 }
710
711 static void
712 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
713 const struct ir3_shader_variant *fs)
714 {
715 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
716 tu_cs_emit(cs, emit_xs_cntl(fs));
717
718 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
719 tu_cs_emit(cs, emit_xs_config(fs));
720 tu_cs_emit(cs, fs->instrlen);
721
722 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
723 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
724 A6XX_HLSQ_FS_CNTL_ENABLED);
725 }
726
727 static void
728 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
729 const struct ir3_shader_variant *v)
730 {
731 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
732 tu_cs_emit(cs, 0xff);
733
734 unsigned constlen = align(v->constlen, 4);
735 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
736 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
737 A6XX_HLSQ_CS_CNTL_ENABLED);
738
739 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
740 tu_cs_emit(cs, emit_xs_config(v));
741 tu_cs_emit(cs, v->instrlen);
742
743 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
744 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
745 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
746 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
747 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
748 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE) |
749 COND(v->need_fine_derivatives, A6XX_SP_CS_CTRL_REG0_DIFF_FINE));
750
751 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
752 tu_cs_emit(cs, 0x41);
753
754 uint32_t local_invocation_id =
755 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
756 uint32_t work_group_id =
757 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
758
759 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
760 tu_cs_emit(cs,
761 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
762 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
763 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
764 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
765 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
766 }
767
768 static void
769 tu6_emit_vs_system_values(struct tu_cs *cs,
770 const struct ir3_shader_variant *vs,
771 const struct ir3_shader_variant *gs,
772 bool primid_passthru)
773 {
774 const uint32_t vertexid_regid =
775 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
776 const uint32_t instanceid_regid =
777 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
778 const uint32_t primitiveid_regid = gs->type != MESA_SHADER_NONE ?
779 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
780 regid(63, 0);
781 const uint32_t gsheader_regid = gs->type != MESA_SHADER_NONE ?
782 ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
783 regid(63, 0);
784
785 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
786 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
787 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
788 A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
789 0xfc000000);
790 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
791 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
792 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
793 tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
794 0xfc00); /* VFD_CONTROL_5 */
795 tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
796 }
797
798 /* Add any missing varyings needed for stream-out. Otherwise varyings not
799 * used by fragment shader will be stripped out.
800 */
801 static void
802 tu6_link_streamout(struct ir3_shader_linkage *l,
803 const struct ir3_shader_variant *v)
804 {
805 const struct ir3_stream_output_info *info = &v->shader->stream_output;
806
807 /*
808 * First, any stream-out varyings not already in linkage map (ie. also
809 * consumed by frag shader) need to be added:
810 */
811 for (unsigned i = 0; i < info->num_outputs; i++) {
812 const struct ir3_stream_output *out = &info->output[i];
813 unsigned compmask =
814 (1 << (out->num_components + out->start_component)) - 1;
815 unsigned k = out->register_index;
816 unsigned idx, nextloc = 0;
817
818 /* psize/pos need to be the last entries in linkage map, and will
819 * get added link_stream_out, so skip over them:
820 */
821 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
822 v->outputs[k].slot == VARYING_SLOT_POS)
823 continue;
824
825 for (idx = 0; idx < l->cnt; idx++) {
826 if (l->var[idx].regid == v->outputs[k].regid)
827 break;
828 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
829 }
830
831 /* add if not already in linkage map: */
832 if (idx == l->cnt)
833 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
834
835 /* expand component-mask if needed, ie streaming out all components
836 * but frag shader doesn't consume all components:
837 */
838 if (compmask & ~l->var[idx].compmask) {
839 l->var[idx].compmask |= compmask;
840 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
841 util_last_bit(l->var[idx].compmask));
842 }
843 }
844 }
845
846 static void
847 tu6_setup_streamout(const struct ir3_shader_variant *v,
848 struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
849 {
850 const struct ir3_stream_output_info *info = &v->shader->stream_output;
851
852 memset(tf, 0, sizeof(*tf));
853
854 tf->prog_count = align(l->max_loc, 2) / 2;
855
856 debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
857
858 /* set stride info to the streamout state */
859 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
860 tf->stride[i] = info->stride[i];
861
862 for (unsigned i = 0; i < info->num_outputs; i++) {
863 const struct ir3_stream_output *out = &info->output[i];
864 unsigned k = out->register_index;
865 unsigned idx;
866
867 /* Skip it, if there's an unused reg in the middle of outputs. */
868 if (v->outputs[k].regid == INVALID_REG)
869 continue;
870
871 tf->ncomp[out->output_buffer] += out->num_components;
872
873 /* linkage map sorted by order frag shader wants things, so
874 * a bit less ideal here..
875 */
876 for (idx = 0; idx < l->cnt; idx++)
877 if (l->var[idx].regid == v->outputs[k].regid)
878 break;
879
880 debug_assert(idx < l->cnt);
881
882 for (unsigned j = 0; j < out->num_components; j++) {
883 unsigned c = j + out->start_component;
884 unsigned loc = l->var[idx].loc + c;
885 unsigned off = j + out->dst_offset; /* in dwords */
886
887 if (loc & 1) {
888 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
889 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
890 A6XX_VPC_SO_PROG_B_OFF(off * 4);
891 } else {
892 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
893 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
894 A6XX_VPC_SO_PROG_A_OFF(off * 4);
895 }
896 }
897 }
898
899 tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
900 COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
901 COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
902 COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
903 COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
904 }
905
906 static void
907 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
908 enum a6xx_state_block block, uint32_t offset,
909 uint32_t size, uint32_t *dwords) {
910 assert(size % 4 == 0);
911
912 tu_cs_emit_pkt7(cs, opcode, 3 + size);
913 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
914 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
915 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
916 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
917 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
918
919 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
920 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
921 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
922
923 tu_cs_emit_array(cs, dwords, size);
924 }
925
926 static void
927 tu6_emit_link_map(struct tu_cs *cs,
928 const struct ir3_shader_variant *producer,
929 const struct ir3_shader_variant *consumer) {
930 const struct ir3_const_state *const_state = &consumer->shader->const_state;
931 uint32_t base = const_state->offsets.primitive_map;
932 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
933 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
934 int size = DIV_ROUND_UP(num_loc, 4);
935
936 size = (MIN2(size + base, consumer->constlen) - base) * 4;
937 if (size <= 0)
938 return;
939
940 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, SB6_GS_SHADER, 0, size,
941 patch_locs);
942 }
943
944 static uint16_t
945 gl_primitive_to_tess(uint16_t primitive) {
946 switch (primitive) {
947 case GL_POINTS:
948 return TESS_POINTS;
949 case GL_LINE_STRIP:
950 return TESS_LINES;
951 case GL_TRIANGLE_STRIP:
952 return TESS_CW_TRIS;
953 default:
954 unreachable("");
955 }
956 }
957
958 static void
959 tu6_emit_vpc(struct tu_cs *cs,
960 const struct ir3_shader_variant *vs,
961 const struct ir3_shader_variant *gs,
962 const struct ir3_shader_variant *fs,
963 bool binning_pass,
964 struct tu_streamout_state *tf)
965 {
966 bool has_gs = gs->type != MESA_SHADER_NONE;
967 const struct ir3_shader_variant *last_shader = has_gs ? gs : vs;
968 struct ir3_shader_linkage linkage = { 0 };
969 ir3_link_shaders(&linkage, last_shader, fs, true);
970
971 if (last_shader->shader->stream_output.num_outputs)
972 tu6_link_streamout(&linkage, last_shader);
973
974 /* We do this after linking shaders in order to know whether PrimID
975 * passthrough needs to be enabled.
976 */
977 bool primid_passthru = linkage.primid_loc != 0xff;
978 tu6_emit_vs_system_values(cs, vs, gs, primid_passthru);
979
980 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
981 tu_cs_emit(cs, ~linkage.varmask[0]);
982 tu_cs_emit(cs, ~linkage.varmask[1]);
983 tu_cs_emit(cs, ~linkage.varmask[2]);
984 tu_cs_emit(cs, ~linkage.varmask[3]);
985
986 /* a6xx finds position/pointsize at the end */
987 const uint32_t position_regid =
988 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
989 const uint32_t pointsize_regid =
990 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
991 const uint32_t layer_regid = has_gs ?
992 ir3_find_output_regid(gs, VARYING_SLOT_LAYER) : regid(63, 0);
993
994 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
995 if (layer_regid != regid(63, 0)) {
996 layer_loc = linkage.max_loc;
997 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
998 }
999 if (position_regid != regid(63, 0)) {
1000 position_loc = linkage.max_loc;
1001 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
1002 }
1003 if (pointsize_regid != regid(63, 0)) {
1004 pointsize_loc = linkage.max_loc;
1005 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
1006 }
1007
1008 if (last_shader->shader->stream_output.num_outputs)
1009 tu6_setup_streamout(last_shader, &linkage, tf);
1010
1011 /* map outputs of the last shader to VPC */
1012 assert(linkage.cnt <= 32);
1013 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
1014 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
1015 uint32_t sp_out[16];
1016 uint32_t sp_vpc_dst[8];
1017 for (uint32_t i = 0; i < linkage.cnt; i++) {
1018 ((uint16_t *) sp_out)[i] =
1019 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
1020 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
1021 ((uint8_t *) sp_vpc_dst)[i] =
1022 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
1023 }
1024
1025 if (has_gs)
1026 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_OUT_REG(0), sp_out_count);
1027 else
1028 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_out_count);
1029 tu_cs_emit_array(cs, sp_out, sp_out_count);
1030
1031 if (has_gs)
1032 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_VPC_DST_REG(0), sp_vpc_dst_count);
1033 else
1034 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vpc_dst_count);
1035 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
1036
1037 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1);
1038 tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU));
1039
1040 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
1041 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
1042 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
1043 A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
1044 A6XX_VPC_CNTL_0_UNKLOC(0xff));
1045
1046 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
1047 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
1048 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
1049 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
1050
1051 if (has_gs) {
1052 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CTRL_REG0, 1);
1053 tu_cs_emit(cs, emit_xs_cntl(gs));
1054
1055 tu6_emit_link_map(cs, vs, gs);
1056
1057 uint32_t primitive_regid =
1058 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID);
1059 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK_GS, 1);
1060 tu_cs_emit(cs, A6XX_VPC_PACK_GS_POSITIONLOC(position_loc) |
1061 A6XX_VPC_PACK_GS_PSIZELOC(pointsize_loc) |
1062 A6XX_VPC_PACK_GS_STRIDE_IN_VPC(linkage.max_loc));
1063
1064 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9105, 1);
1065 tu_cs_emit(cs, A6XX_VPC_UNKNOWN_9105_LAYERLOC(layer_loc) | 0xff00);
1066
1067 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_809C, 1);
1068 tu_cs_emit(cs, CONDREG(layer_regid,
1069 A6XX_GRAS_UNKNOWN_809C_GS_WRITES_LAYER));
1070
1071 uint32_t flags_regid = ir3_find_output_regid(gs,
1072 VARYING_SLOT_GS_VERTEX_FLAGS_IR3);
1073
1074 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL_GS, 1);
1075 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_GS_GSOUT(linkage.cnt) |
1076 A6XX_SP_PRIMITIVE_CNTL_GS_FLAGS_REGID(flags_regid));
1077
1078 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_2, 1);
1079 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_2_STRIDE_IN_VPC(linkage.max_loc) |
1080 CONDREG(pointsize_regid, A6XX_PC_PRIMITIVE_CNTL_2_PSIZE) |
1081 CONDREG(layer_regid, A6XX_PC_PRIMITIVE_CNTL_2_LAYER) |
1082 CONDREG(primitive_regid, A6XX_PC_PRIMITIVE_CNTL_2_PRIMITIVE_ID));
1083
1084 uint32_t vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
1085 uint16_t output =
1086 gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
1087 uint32_t invocations = gs->shader->nir->info.gs.invocations - 1;
1088 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
1089 tu_cs_emit(cs,
1090 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
1091 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
1092 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
1093
1094 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
1095 tu_cs_emit(cs, 0);
1096
1097 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8003, 1);
1098 tu_cs_emit(cs, 0);
1099
1100 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
1101 tu_cs_emit(cs, 0xff);
1102
1103 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9102, 1);
1104 tu_cs_emit(cs, 0xffff00);
1105
1106 /* Size of per-primitive alloction in ldlw memory in vec4s. */
1107 uint32_t vec4_size =
1108 gs->shader->nir->info.gs.vertices_in *
1109 DIV_ROUND_UP(vs->shader->output_size, 4);
1110 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
1111 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
1112
1113 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
1114 tu_cs_emit(cs, 0);
1115
1116 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
1117 tu_cs_emit(cs, vs->shader->output_size);
1118 }
1119
1120 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
1121 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
1122
1123 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
1124 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
1125 (last_shader->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
1126 }
1127
1128 static int
1129 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
1130 uint32_t index,
1131 uint8_t *interp_mode,
1132 uint8_t *ps_repl_mode)
1133 {
1134 enum
1135 {
1136 INTERP_SMOOTH = 0,
1137 INTERP_FLAT = 1,
1138 INTERP_ZERO = 2,
1139 INTERP_ONE = 3,
1140 };
1141 enum
1142 {
1143 PS_REPL_NONE = 0,
1144 PS_REPL_S = 1,
1145 PS_REPL_T = 2,
1146 PS_REPL_ONE_MINUS_T = 3,
1147 };
1148
1149 const uint32_t compmask = fs->inputs[index].compmask;
1150
1151 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
1152 * fourth component occupy three consecutive varying slots
1153 */
1154 int shift = 0;
1155 *interp_mode = 0;
1156 *ps_repl_mode = 0;
1157 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
1158 if (compmask & 0x1) {
1159 *ps_repl_mode |= PS_REPL_S << shift;
1160 shift += 2;
1161 }
1162 if (compmask & 0x2) {
1163 *ps_repl_mode |= PS_REPL_T << shift;
1164 shift += 2;
1165 }
1166 if (compmask & 0x4) {
1167 *interp_mode |= INTERP_ZERO << shift;
1168 shift += 2;
1169 }
1170 if (compmask & 0x8) {
1171 *interp_mode |= INTERP_ONE << 6;
1172 shift += 2;
1173 }
1174 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
1175 fs->inputs[index].rasterflat) {
1176 for (int i = 0; i < 4; i++) {
1177 if (compmask & (1 << i)) {
1178 *interp_mode |= INTERP_FLAT << shift;
1179 shift += 2;
1180 }
1181 }
1182 }
1183
1184 return shift;
1185 }
1186
1187 static void
1188 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
1189 const struct ir3_shader_variant *fs,
1190 bool binning_pass)
1191 {
1192 uint32_t interp_modes[8] = { 0 };
1193 uint32_t ps_repl_modes[8] = { 0 };
1194
1195 if (!binning_pass) {
1196 for (int i = -1;
1197 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
1198
1199 /* get the mode for input i */
1200 uint8_t interp_mode;
1201 uint8_t ps_repl_mode;
1202 const int bits =
1203 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
1204
1205 /* OR the mode into the array */
1206 const uint32_t inloc = fs->inputs[i].inloc * 2;
1207 uint32_t n = inloc / 32;
1208 uint32_t shift = inloc % 32;
1209 interp_modes[n] |= interp_mode << shift;
1210 ps_repl_modes[n] |= ps_repl_mode << shift;
1211 if (shift + bits > 32) {
1212 n++;
1213 shift = 32 - shift;
1214
1215 interp_modes[n] |= interp_mode >> shift;
1216 ps_repl_modes[n] |= ps_repl_mode >> shift;
1217 }
1218 }
1219 }
1220
1221 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
1222 tu_cs_emit_array(cs, interp_modes, 8);
1223
1224 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
1225 tu_cs_emit_array(cs, ps_repl_modes, 8);
1226 }
1227
1228 static void
1229 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
1230 {
1231 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
1232 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
1233 uint32_t smask_in_regid;
1234
1235 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
1236 bool enable_varyings = fs->total_in > 0;
1237
1238 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1239 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1240 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1241 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1242 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1243 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1244 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1245 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1246 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1247
1248 if (fs->num_sampler_prefetch > 0) {
1249 assert(VALIDREG(ij_pix_regid));
1250 /* also, it seems like ij_pix is *required* to be r0.x */
1251 assert(ij_pix_regid == regid(0, 0));
1252 }
1253
1254 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1255 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1256 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1257 0x7000); // XXX);
1258 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1259 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1260 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1261 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1262 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1263 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1264 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1265 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1266 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1267 }
1268
1269 if (fs->num_sampler_prefetch > 0) {
1270 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
1271 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1272 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1273 tu_cs_emit(cs,
1274 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
1275 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
1276 }
1277 }
1278
1279 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1280 tu_cs_emit(cs, 0x7);
1281 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1282 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1283 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1284 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
1285 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
1286 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
1287 0xfc00fc00);
1288 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1289 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1290 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
1291 0x0000fc00);
1292 tu_cs_emit(cs, 0xfc);
1293
1294 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1295 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1296
1297 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1298 tu_cs_emit(cs,
1299 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
1300 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
1301 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
1302 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
1303 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1304 COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_SIZE |
1305 A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)) |
1306 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
1307
1308 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1309 tu_cs_emit(cs,
1310 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
1311 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
1312 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
1313 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1314 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
1315 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1316 COND(fs->fragcoord_compmask != 0, A6XX_RB_RENDER_CONTROL0_SIZE |
1317 A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)) |
1318 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
1319 tu_cs_emit(cs,
1320 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1321 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1322 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
1323 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1324
1325 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1326 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1327
1328 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1329 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1330
1331 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1332 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1333 }
1334
1335 static void
1336 tu6_emit_fs_outputs(struct tu_cs *cs,
1337 const struct ir3_shader_variant *fs,
1338 uint32_t mrt_count, bool dual_src_blend,
1339 uint32_t render_components)
1340 {
1341 uint32_t smask_regid, posz_regid;
1342
1343 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1344 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1345
1346 uint32_t fragdata_regid[8];
1347 if (fs->color0_mrt) {
1348 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1349 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1350 fragdata_regid[i] = fragdata_regid[0];
1351 } else {
1352 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1353 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1354 }
1355
1356 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1357 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1358 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1359 COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) |
1360 0xfc000000);
1361 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1362
1363 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1364 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1365 // TODO we could have a mix of half and full precision outputs,
1366 // we really need to figure out half-precision from IR3_REG_HALF
1367 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1368 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1369 }
1370
1371 tu_cs_emit_regs(cs,
1372 A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
1373
1374 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1375 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1376 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
1377 COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
1378 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1379
1380 tu_cs_emit_regs(cs,
1381 A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
1382
1383 enum a6xx_ztest_mode zmode;
1384
1385 if (fs->no_earlyz || fs->has_kill || fs->writes_pos) {
1386 zmode = A6XX_LATE_Z;
1387 } else {
1388 zmode = A6XX_EARLY_Z;
1389 }
1390
1391 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1392 tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1393
1394 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1395 tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1396 }
1397
1398 static void
1399 tu6_emit_shader_object(struct tu_cs *cs,
1400 gl_shader_stage stage,
1401 const struct ir3_shader_variant *variant,
1402 const struct tu_bo *binary_bo,
1403 uint32_t binary_offset)
1404 {
1405 uint16_t reg;
1406 uint8_t opcode;
1407 enum a6xx_state_block sb;
1408 switch (stage) {
1409 case MESA_SHADER_VERTEX:
1410 reg = REG_A6XX_SP_VS_OBJ_START_LO;
1411 opcode = CP_LOAD_STATE6_GEOM;
1412 sb = SB6_VS_SHADER;
1413 break;
1414 case MESA_SHADER_TESS_CTRL:
1415 reg = REG_A6XX_SP_HS_OBJ_START_LO;
1416 opcode = CP_LOAD_STATE6_GEOM;
1417 sb = SB6_HS_SHADER;
1418 break;
1419 case MESA_SHADER_TESS_EVAL:
1420 reg = REG_A6XX_SP_DS_OBJ_START_LO;
1421 opcode = CP_LOAD_STATE6_GEOM;
1422 sb = SB6_DS_SHADER;
1423 break;
1424 case MESA_SHADER_GEOMETRY:
1425 reg = REG_A6XX_SP_GS_OBJ_START_LO;
1426 opcode = CP_LOAD_STATE6_GEOM;
1427 sb = SB6_GS_SHADER;
1428 break;
1429 case MESA_SHADER_FRAGMENT:
1430 reg = REG_A6XX_SP_FS_OBJ_START_LO;
1431 opcode = CP_LOAD_STATE6_FRAG;
1432 sb = SB6_FS_SHADER;
1433 break;
1434 case MESA_SHADER_COMPUTE:
1435 reg = REG_A6XX_SP_CS_OBJ_START_LO;
1436 opcode = CP_LOAD_STATE6_FRAG;
1437 sb = SB6_CS_SHADER;
1438 break;
1439 default:
1440 unreachable("invalid gl_shader_stage");
1441 opcode = CP_LOAD_STATE6_GEOM;
1442 sb = SB6_VS_SHADER;
1443 break;
1444 }
1445
1446 if (!variant->instrlen) {
1447 tu_cs_emit_pkt4(cs, reg, 2);
1448 tu_cs_emit_qw(cs, 0);
1449 return;
1450 }
1451
1452 assert(variant->type == stage);
1453
1454 const uint64_t binary_iova = binary_bo->iova + binary_offset;
1455 assert((binary_iova & 0xf) == 0);
1456 /* note: it looks like HW might try to read a few instructions beyond the instrlen size
1457 * of the shader. this could be a potential source of problems at some point
1458 * possibly this doesn't happen if shader iova is aligned enough (to 4k for example)
1459 */
1460
1461 tu_cs_emit_pkt4(cs, reg, 2);
1462 tu_cs_emit_qw(cs, binary_iova);
1463
1464 /* always indirect */
1465 const bool indirect = true;
1466 if (indirect) {
1467 tu_cs_emit_pkt7(cs, opcode, 3);
1468 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1469 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1470 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1471 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1472 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1473 tu_cs_emit_qw(cs, binary_iova);
1474 } else {
1475 const void *binary = binary_bo->map + binary_offset;
1476
1477 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
1478 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1479 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1480 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1481 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1482 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1483 tu_cs_emit_qw(cs, 0);
1484 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
1485 }
1486 }
1487
1488 static void
1489 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
1490 uint32_t opcode, enum a6xx_state_block block)
1491 {
1492 /* dummy variant */
1493 if (!v->shader)
1494 return;
1495
1496 const struct ir3_const_state *const_state = &v->shader->const_state;
1497 uint32_t base = const_state->offsets.immediate;
1498 int size = const_state->immediates_count;
1499
1500 /* truncate size to avoid writing constants that shader
1501 * does not use:
1502 */
1503 size = MIN2(size + base, v->constlen) - base;
1504
1505 if (size <= 0)
1506 return;
1507
1508 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
1509 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
1510 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1511 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1512 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1513 CP_LOAD_STATE6_0_NUM_UNIT(size));
1514 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1515 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1516
1517 for (unsigned i = 0; i < size; i++) {
1518 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1519 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1520 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1521 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1522 }
1523 }
1524
1525 static void
1526 tu6_emit_geometry_consts(struct tu_cs *cs,
1527 const struct ir3_shader_variant *vs,
1528 const struct ir3_shader_variant *gs) {
1529 unsigned num_vertices = gs->shader->nir->info.gs.vertices_in;
1530
1531 uint32_t params[4] = {
1532 vs->shader->output_size * num_vertices * 4, /* primitive stride */
1533 vs->shader->output_size * 4, /* vertex stride */
1534 0,
1535 0,
1536 };
1537 uint32_t vs_base = vs->shader->const_state.offsets.primitive_param;
1538 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1539 ARRAY_SIZE(params), params);
1540
1541 uint32_t gs_base = gs->shader->const_state.offsets.primitive_param;
1542 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1543 ARRAY_SIZE(params), params);
1544 }
1545
1546 static void
1547 tu6_emit_program(struct tu_cs *cs,
1548 const struct tu_pipeline_builder *builder,
1549 const struct tu_bo *binary_bo,
1550 bool binning_pass,
1551 struct tu_streamout_state *tf)
1552 {
1553 static const struct ir3_shader_variant dummy_variant = {
1554 .type = MESA_SHADER_NONE
1555 };
1556 assert(builder->shaders[MESA_SHADER_VERTEX]);
1557 const struct ir3_shader_variant *vs =
1558 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1559 const struct ir3_shader_variant *hs =
1560 builder->shaders[MESA_SHADER_TESS_CTRL]
1561 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1562 : &dummy_variant;
1563 const struct ir3_shader_variant *ds =
1564 builder->shaders[MESA_SHADER_TESS_EVAL]
1565 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1566 : &dummy_variant;
1567 const struct ir3_shader_variant *gs =
1568 builder->shaders[MESA_SHADER_GEOMETRY]
1569 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1570 : &dummy_variant;
1571 const struct ir3_shader_variant *fs =
1572 builder->shaders[MESA_SHADER_FRAGMENT]
1573 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1574 : &dummy_variant;
1575 uint32_t vs_offset = builder->shader_offsets[MESA_SHADER_VERTEX];
1576 bool has_gs = gs->type != MESA_SHADER_NONE;
1577
1578 if (binning_pass) {
1579 /* if we have streamout, use full VS in binning pass, as the
1580 * binning pass VS will have outputs on other than position/psize
1581 * stripped out
1582 *
1583 * GS also can have streamout, but we completely disable the
1584 * the binning pass variant when GS is present because we don't
1585 * support compiling correct binning pass variants with GS
1586 */
1587 if (vs->shader->stream_output.num_outputs == 0 && !has_gs) {
1588 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1589 vs_offset = builder->binning_vs_offset;
1590 }
1591 fs = &dummy_variant;
1592 }
1593
1594 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
1595 tu_cs_emit(cs, 0xff); /* XXX */
1596
1597 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1598 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1599 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1600 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1601 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1602
1603 tu6_emit_vpc(cs, vs, gs, fs, binning_pass, tf);
1604 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1605 tu6_emit_fs_inputs(cs, fs);
1606 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
1607 builder->use_dual_src_blend,
1608 builder->render_components);
1609
1610 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo, vs_offset);
1611 if (has_gs)
1612 tu6_emit_shader_object(cs, MESA_SHADER_GEOMETRY, gs, binary_bo,
1613 builder->shader_offsets[MESA_SHADER_GEOMETRY]);
1614 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1615 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1616
1617 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1618 if (has_gs) {
1619 tu6_emit_immediates(cs, gs, CP_LOAD_STATE6_GEOM, SB6_GS_SHADER);
1620 tu6_emit_geometry_consts(cs, vs, gs);
1621 }
1622 if (!binning_pass)
1623 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1624 }
1625
1626 static void
1627 tu6_emit_vertex_input(struct tu_cs *cs,
1628 const struct ir3_shader_variant *vs,
1629 const VkPipelineVertexInputStateCreateInfo *info,
1630 uint32_t *bindings_used)
1631 {
1632 uint32_t vfd_decode_idx = 0;
1633 uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
1634
1635 for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
1636 const VkVertexInputBindingDescription *binding =
1637 &info->pVertexBindingDescriptions[i];
1638
1639 tu_cs_emit_regs(cs,
1640 A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride));
1641
1642 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1643 binding_instanced |= 1 << binding->binding;
1644
1645 *bindings_used |= 1 << binding->binding;
1646 }
1647
1648 /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
1649
1650 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
1651 const VkVertexInputAttributeDescription *attr =
1652 &info->pVertexAttributeDescriptions[i];
1653 uint32_t input_idx;
1654
1655 for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
1656 if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
1657 break;
1658 }
1659
1660 /* attribute not used, skip it */
1661 if (input_idx == vs->inputs_count)
1662 continue;
1663
1664 const struct tu_native_format format = tu6_format_vtx(attr->format);
1665 tu_cs_emit_regs(cs,
1666 A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
1667 .idx = attr->binding,
1668 .offset = attr->offset,
1669 .instanced = binding_instanced & (1 << attr->binding),
1670 .format = format.fmt,
1671 .swap = format.swap,
1672 .unk30 = 1,
1673 ._float = !vk_format_is_int(attr->format)),
1674 A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, 1));
1675
1676 tu_cs_emit_regs(cs,
1677 A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
1678 .writemask = vs->inputs[input_idx].compmask,
1679 .regid = vs->inputs[input_idx].regid));
1680
1681 vfd_decode_idx++;
1682 }
1683
1684 tu_cs_emit_regs(cs,
1685 A6XX_VFD_CONTROL_0(
1686 .fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */
1687 .decode_cnt = vfd_decode_idx));
1688 }
1689
1690 static uint32_t
1691 tu6_guardband_adj(uint32_t v)
1692 {
1693 if (v > 256)
1694 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1695 else
1696 return 511;
1697 }
1698
1699 void
1700 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1701 {
1702 float offsets[3];
1703 float scales[3];
1704 scales[0] = viewport->width / 2.0f;
1705 scales[1] = viewport->height / 2.0f;
1706 scales[2] = viewport->maxDepth - viewport->minDepth;
1707 offsets[0] = viewport->x + scales[0];
1708 offsets[1] = viewport->y + scales[1];
1709 offsets[2] = viewport->minDepth;
1710
1711 VkOffset2D min;
1712 VkOffset2D max;
1713 min.x = (int32_t) viewport->x;
1714 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1715 if (viewport->height >= 0.0f) {
1716 min.y = (int32_t) viewport->y;
1717 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1718 } else {
1719 min.y = (int32_t)(viewport->y + viewport->height);
1720 max.y = (int32_t) ceilf(viewport->y);
1721 }
1722 /* the spec allows viewport->height to be 0.0f */
1723 if (min.y == max.y)
1724 max.y++;
1725 assert(min.x >= 0 && min.x < max.x);
1726 assert(min.y >= 0 && min.y < max.y);
1727
1728 VkExtent2D guardband_adj;
1729 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1730 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1731
1732 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1733 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1734 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1735 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1736 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1737 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1738 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1739
1740 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1741 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1742 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1743 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1744 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1745
1746 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1747 tu_cs_emit(cs,
1748 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1749 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1750
1751 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1752 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1753
1754 tu_cs_emit_regs(cs,
1755 A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
1756 A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
1757
1758 tu_cs_emit_regs(cs,
1759 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1760 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1761 }
1762
1763 void
1764 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1765 {
1766 const VkOffset2D min = scissor->offset;
1767 const VkOffset2D max = {
1768 scissor->offset.x + scissor->extent.width,
1769 scissor->offset.y + scissor->extent.height,
1770 };
1771
1772 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1773 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1774 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1775 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1776 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1777 }
1778
1779 void
1780 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
1781 {
1782 if (!samp_loc) {
1783 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
1784 tu_cs_emit(cs, 0);
1785
1786 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
1787 tu_cs_emit(cs, 0);
1788
1789 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
1790 tu_cs_emit(cs, 0);
1791 return;
1792 }
1793
1794 assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
1795 assert(samp_loc->sampleLocationGridSize.width == 1);
1796 assert(samp_loc->sampleLocationGridSize.height == 1);
1797
1798 uint32_t sample_config =
1799 A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
1800 uint32_t sample_locations = 0;
1801 for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
1802 sample_locations |=
1803 (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
1804 A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
1805 }
1806
1807 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
1808 tu_cs_emit(cs, sample_config);
1809 tu_cs_emit(cs, sample_locations);
1810
1811 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
1812 tu_cs_emit(cs, sample_config);
1813 tu_cs_emit(cs, sample_locations);
1814
1815 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
1816 tu_cs_emit(cs, sample_config);
1817 tu_cs_emit(cs, sample_locations);
1818 }
1819
1820 static void
1821 tu6_emit_gras_unknowns(struct tu_cs *cs)
1822 {
1823 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1824 tu_cs_emit(cs, 0x0);
1825 }
1826
1827 static void
1828 tu6_emit_point_size(struct tu_cs *cs)
1829 {
1830 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1831 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1832 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1833 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1834 }
1835
1836 static uint32_t
1837 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1838 VkSampleCountFlagBits samples)
1839 {
1840 uint32_t gras_su_cntl = 0;
1841
1842 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1843 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1844 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1845 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1846
1847 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1848 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1849
1850 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1851
1852 if (rast_info->depthBiasEnable)
1853 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1854
1855 if (samples > VK_SAMPLE_COUNT_1_BIT)
1856 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1857
1858 return gras_su_cntl;
1859 }
1860
1861 void
1862 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1863 uint32_t gras_su_cntl,
1864 float line_width)
1865 {
1866 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1867 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1868
1869 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1870 tu_cs_emit(cs, gras_su_cntl);
1871 }
1872
1873 void
1874 tu6_emit_depth_bias(struct tu_cs *cs,
1875 float constant_factor,
1876 float clamp,
1877 float slope_factor)
1878 {
1879 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1880 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1881 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1882 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1883 }
1884
1885 static void
1886 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1887 {
1888 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1889 tu_cs_emit(cs, 0);
1890 }
1891
1892 static void
1893 tu6_emit_depth_control(struct tu_cs *cs,
1894 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1895 const VkPipelineRasterizationStateCreateInfo *rast_info)
1896 {
1897 assert(!ds_info->depthBoundsTestEnable);
1898
1899 uint32_t rb_depth_cntl = 0;
1900 if (ds_info->depthTestEnable) {
1901 rb_depth_cntl |=
1902 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1903 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1904 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1905
1906 if (rast_info->depthClampEnable)
1907 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1908
1909 if (ds_info->depthWriteEnable)
1910 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1911 }
1912
1913 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1914 tu_cs_emit(cs, rb_depth_cntl);
1915 }
1916
1917 static void
1918 tu6_emit_stencil_control(struct tu_cs *cs,
1919 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1920 {
1921 uint32_t rb_stencil_control = 0;
1922 if (ds_info->stencilTestEnable) {
1923 const VkStencilOpState *front = &ds_info->front;
1924 const VkStencilOpState *back = &ds_info->back;
1925 rb_stencil_control |=
1926 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1927 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1928 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1929 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1930 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1931 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1932 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1933 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1934 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1935 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1936 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1937 }
1938
1939 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1940 tu_cs_emit(cs, rb_stencil_control);
1941 }
1942
1943 void
1944 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1945 {
1946 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1947 tu_cs_emit(
1948 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1949 }
1950
1951 void
1952 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1953 {
1954 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1955 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1956 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1957 }
1958
1959 void
1960 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1961 {
1962 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1963 tu_cs_emit(cs,
1964 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1965 }
1966
1967 static uint32_t
1968 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1969 bool has_alpha)
1970 {
1971 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1972 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1973 has_alpha ? att->srcColorBlendFactor
1974 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1975 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1976 has_alpha ? att->dstColorBlendFactor
1977 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1978 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1979 const enum adreno_rb_blend_factor src_alpha_factor =
1980 tu6_blend_factor(att->srcAlphaBlendFactor);
1981 const enum adreno_rb_blend_factor dst_alpha_factor =
1982 tu6_blend_factor(att->dstAlphaBlendFactor);
1983
1984 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1985 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1986 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1987 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1988 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1989 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1990 }
1991
1992 static uint32_t
1993 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1994 uint32_t rb_mrt_control_rop,
1995 bool is_int,
1996 bool has_alpha)
1997 {
1998 uint32_t rb_mrt_control =
1999 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
2000
2001 /* ignore blending and logic op for integer attachments */
2002 if (is_int) {
2003 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
2004 return rb_mrt_control;
2005 }
2006
2007 rb_mrt_control |= rb_mrt_control_rop;
2008
2009 if (att->blendEnable) {
2010 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
2011
2012 if (has_alpha)
2013 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
2014 }
2015
2016 return rb_mrt_control;
2017 }
2018
2019 static void
2020 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
2021 const VkPipelineColorBlendStateCreateInfo *blend_info,
2022 const VkFormat attachment_formats[MAX_RTS],
2023 uint32_t *blend_enable_mask)
2024 {
2025 *blend_enable_mask = 0;
2026
2027 bool rop_reads_dst = false;
2028 uint32_t rb_mrt_control_rop = 0;
2029 if (blend_info->logicOpEnable) {
2030 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
2031 rb_mrt_control_rop =
2032 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
2033 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
2034 }
2035
2036 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
2037 const VkPipelineColorBlendAttachmentState *att =
2038 &blend_info->pAttachments[i];
2039 const VkFormat format = attachment_formats[i];
2040
2041 uint32_t rb_mrt_control = 0;
2042 uint32_t rb_mrt_blend_control = 0;
2043 if (format != VK_FORMAT_UNDEFINED) {
2044 const bool is_int = vk_format_is_int(format);
2045 const bool has_alpha = vk_format_has_alpha(format);
2046
2047 rb_mrt_control =
2048 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
2049 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
2050
2051 if (att->blendEnable || rop_reads_dst)
2052 *blend_enable_mask |= 1 << i;
2053 }
2054
2055 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
2056 tu_cs_emit(cs, rb_mrt_control);
2057 tu_cs_emit(cs, rb_mrt_blend_control);
2058 }
2059 }
2060
2061 static void
2062 tu6_emit_blend_control(struct tu_cs *cs,
2063 uint32_t blend_enable_mask,
2064 bool dual_src_blend,
2065 const VkPipelineMultisampleStateCreateInfo *msaa_info)
2066 {
2067 const uint32_t sample_mask =
2068 msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff)
2069 : ((1 << msaa_info->rasterizationSamples) - 1);
2070
2071 tu_cs_emit_regs(cs,
2072 A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask,
2073 .dual_color_in_enable = dual_src_blend,
2074 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
2075 .unk8 = true));
2076
2077 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
2078 tu_cs_emit_regs(cs,
2079 A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask,
2080 .independent_blend = true,
2081 .sample_mask = sample_mask,
2082 .dual_color_in_enable = dual_src_blend,
2083 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
2084 .alpha_to_one = msaa_info->alphaToOneEnable));
2085 }
2086
2087 void
2088 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
2089 {
2090 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2091 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
2092 }
2093
2094 static VkResult
2095 tu_pipeline_create(struct tu_device *dev,
2096 struct tu_pipeline_layout *layout,
2097 bool compute,
2098 const VkAllocationCallbacks *pAllocator,
2099 struct tu_pipeline **out_pipeline)
2100 {
2101 struct tu_pipeline *pipeline =
2102 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
2103 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2104 if (!pipeline)
2105 return VK_ERROR_OUT_OF_HOST_MEMORY;
2106
2107 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
2108
2109 /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
2110 * that LOAD_STATE can potentially take up a large amount of space so we
2111 * calculate its size explicitly.
2112 */
2113 unsigned load_state_size = tu6_load_state_size(layout, compute);
2114 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048 + load_state_size);
2115 if (result != VK_SUCCESS) {
2116 vk_free2(&dev->alloc, pAllocator, pipeline);
2117 return result;
2118 }
2119
2120 *out_pipeline = pipeline;
2121
2122 return VK_SUCCESS;
2123 }
2124
2125 static VkResult
2126 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
2127 {
2128 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
2129 NULL
2130 };
2131 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
2132 gl_shader_stage stage =
2133 tu_shader_stage(builder->create_info->pStages[i].stage);
2134 stage_infos[stage] = &builder->create_info->pStages[i];
2135 }
2136
2137 struct tu_shader_compile_options options;
2138 tu_shader_compile_options_init(&options, builder->create_info);
2139
2140 /* compile shaders in reverse order */
2141 struct tu_shader *next_stage_shader = NULL;
2142 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
2143 stage > MESA_SHADER_NONE; stage--) {
2144 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
2145 if (!stage_info && stage != MESA_SHADER_FRAGMENT)
2146 continue;
2147
2148 struct tu_shader *shader =
2149 tu_shader_create(builder->device, stage, stage_info, builder->layout,
2150 builder->alloc);
2151 if (!shader)
2152 return VK_ERROR_OUT_OF_HOST_MEMORY;
2153
2154 VkResult result =
2155 tu_shader_compile(builder->device, shader, next_stage_shader,
2156 &options, builder->alloc);
2157 if (result != VK_SUCCESS)
2158 return result;
2159
2160 builder->shaders[stage] = shader;
2161 builder->shader_offsets[stage] = builder->shader_total_size;
2162 builder->shader_total_size +=
2163 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
2164
2165 next_stage_shader = shader;
2166 }
2167
2168 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2169 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2170 const struct ir3_shader_variant *variant;
2171
2172 if (vs->ir3_shader.stream_output.num_outputs)
2173 variant = &vs->variants[0];
2174 else
2175 variant = &vs->variants[1];
2176
2177 builder->binning_vs_offset = builder->shader_total_size;
2178 builder->shader_total_size +=
2179 sizeof(uint32_t) * variant->info.sizedwords;
2180 }
2181
2182 return VK_SUCCESS;
2183 }
2184
2185 static VkResult
2186 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
2187 struct tu_pipeline *pipeline)
2188 {
2189 struct tu_bo *bo = &pipeline->program.binary_bo;
2190
2191 VkResult result =
2192 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
2193 if (result != VK_SUCCESS)
2194 return result;
2195
2196 result = tu_bo_map(builder->device, bo);
2197 if (result != VK_SUCCESS)
2198 return result;
2199
2200 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2201 const struct tu_shader *shader = builder->shaders[i];
2202 if (!shader)
2203 continue;
2204
2205 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
2206 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
2207 }
2208
2209 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
2210 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2211 const struct ir3_shader_variant *variant;
2212 void *bin;
2213
2214 if (vs->ir3_shader.stream_output.num_outputs) {
2215 variant = &vs->variants[0];
2216 bin = vs->binary;
2217 } else {
2218 variant = &vs->variants[1];
2219 bin = vs->binning_binary;
2220 }
2221
2222 memcpy(bo->map + builder->binning_vs_offset, bin,
2223 sizeof(uint32_t) * variant->info.sizedwords);
2224 }
2225
2226 return VK_SUCCESS;
2227 }
2228
2229 static void
2230 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
2231 struct tu_pipeline *pipeline)
2232 {
2233 const VkPipelineDynamicStateCreateInfo *dynamic_info =
2234 builder->create_info->pDynamicState;
2235
2236 if (!dynamic_info)
2237 return;
2238
2239 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
2240 pipeline->dynamic_state.mask |=
2241 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
2242 }
2243 }
2244
2245 static void
2246 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
2247 struct tu_shader *shader,
2248 struct ir3_shader_variant *v)
2249 {
2250 link->ubo_state = v->shader->ubo_state;
2251 link->const_state = v->shader->const_state;
2252 link->constlen = v->constlen;
2253 link->push_consts = shader->push_consts;
2254 }
2255
2256 static void
2257 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
2258 struct tu_pipeline *pipeline)
2259 {
2260 struct tu_cs prog_cs;
2261 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2262 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
2263 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2264
2265 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2266 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
2267 pipeline->program.binning_state_ib =
2268 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2269
2270 VkShaderStageFlags stages = 0;
2271 for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
2272 stages |= builder->create_info->pStages[i].stage;
2273 }
2274 pipeline->active_stages = stages;
2275
2276 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2277 if (!builder->shaders[i])
2278 continue;
2279
2280 tu_pipeline_set_linkage(&pipeline->program.link[i],
2281 builder->shaders[i],
2282 &builder->shaders[i]->variants[0]);
2283 }
2284
2285 if (builder->shaders[MESA_SHADER_FRAGMENT]) {
2286 memcpy(pipeline->program.input_attachment_idx,
2287 builder->shaders[MESA_SHADER_FRAGMENT]->attachment_idx,
2288 sizeof(pipeline->program.input_attachment_idx));
2289 }
2290 }
2291
2292 static void
2293 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
2294 struct tu_pipeline *pipeline)
2295 {
2296 const VkPipelineVertexInputStateCreateInfo *vi_info =
2297 builder->create_info->pVertexInputState;
2298 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2299
2300 struct tu_cs vi_cs;
2301 tu_cs_begin_sub_stream(&pipeline->cs,
2302 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2303 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
2304 &pipeline->vi.bindings_used);
2305 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2306
2307 if (vs->has_binning_pass) {
2308 tu_cs_begin_sub_stream(&pipeline->cs,
2309 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2310 tu6_emit_vertex_input(
2311 &vi_cs, &vs->variants[1], vi_info, &pipeline->vi.bindings_used);
2312 pipeline->vi.binning_state_ib =
2313 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2314 }
2315 }
2316
2317 static void
2318 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2319 struct tu_pipeline *pipeline)
2320 {
2321 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2322 builder->create_info->pInputAssemblyState;
2323
2324 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2325 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2326 }
2327
2328 static void
2329 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2330 struct tu_pipeline *pipeline)
2331 {
2332 /* The spec says:
2333 *
2334 * pViewportState is a pointer to an instance of the
2335 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2336 * pipeline has rasterization disabled."
2337 *
2338 * We leave the relevant registers stale in that case.
2339 */
2340 if (builder->rasterizer_discard)
2341 return;
2342
2343 const VkPipelineViewportStateCreateInfo *vp_info =
2344 builder->create_info->pViewportState;
2345
2346 struct tu_cs vp_cs;
2347 tu_cs_begin_sub_stream(&pipeline->cs, 21, &vp_cs);
2348
2349 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
2350 assert(vp_info->viewportCount == 1);
2351 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
2352 }
2353
2354 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
2355 assert(vp_info->scissorCount == 1);
2356 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
2357 }
2358
2359 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
2360 }
2361
2362 static void
2363 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2364 struct tu_pipeline *pipeline)
2365 {
2366 const VkPipelineRasterizationStateCreateInfo *rast_info =
2367 builder->create_info->pRasterizationState;
2368
2369 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
2370
2371 struct tu_cs rast_cs;
2372 tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
2373
2374
2375 tu_cs_emit_regs(&rast_cs,
2376 A6XX_GRAS_CL_CNTL(
2377 .znear_clip_disable = rast_info->depthClampEnable,
2378 .zfar_clip_disable = rast_info->depthClampEnable,
2379 .unk5 = rast_info->depthClampEnable,
2380 .zero_gb_scale_z = 1,
2381 .vp_clip_code_ignore = 1));
2382 /* move to hw ctx init? */
2383 tu6_emit_gras_unknowns(&rast_cs);
2384 tu6_emit_point_size(&rast_cs);
2385
2386 const uint32_t gras_su_cntl =
2387 tu6_gras_su_cntl(rast_info, builder->samples);
2388
2389 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
2390 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
2391
2392 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
2393 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
2394 rast_info->depthBiasClamp,
2395 rast_info->depthBiasSlopeFactor);
2396 }
2397
2398 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
2399
2400 pipeline->rast.gras_su_cntl = gras_su_cntl;
2401 }
2402
2403 static void
2404 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2405 struct tu_pipeline *pipeline)
2406 {
2407 /* The spec says:
2408 *
2409 * pDepthStencilState is a pointer to an instance of the
2410 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2411 * the pipeline has rasterization disabled or if the subpass of the
2412 * render pass the pipeline is created against does not use a
2413 * depth/stencil attachment.
2414 *
2415 * Disable both depth and stencil tests if there is no ds attachment,
2416 * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
2417 * only the separate stencil attachment
2418 */
2419 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2420 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2421 builder->depth_attachment_format != VK_FORMAT_UNDEFINED
2422 ? builder->create_info->pDepthStencilState
2423 : &dummy_ds_info;
2424 const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
2425 builder->depth_attachment_format != VK_FORMAT_S8_UINT
2426 ? ds_info : &dummy_ds_info;
2427
2428 struct tu_cs ds_cs;
2429 tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
2430
2431 /* move to hw ctx init? */
2432 tu6_emit_alpha_control_disable(&ds_cs);
2433
2434 tu6_emit_depth_control(&ds_cs, ds_info_depth,
2435 builder->create_info->pRasterizationState);
2436 tu6_emit_stencil_control(&ds_cs, ds_info);
2437
2438 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
2439 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
2440 ds_info->back.compareMask);
2441 }
2442 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
2443 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
2444 ds_info->back.writeMask);
2445 }
2446 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
2447 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
2448 ds_info->back.reference);
2449 }
2450
2451 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
2452 }
2453
2454 static void
2455 tu_pipeline_builder_parse_multisample_and_color_blend(
2456 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2457 {
2458 /* The spec says:
2459 *
2460 * pMultisampleState is a pointer to an instance of the
2461 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2462 * has rasterization disabled.
2463 *
2464 * Also,
2465 *
2466 * pColorBlendState is a pointer to an instance of the
2467 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2468 * pipeline has rasterization disabled or if the subpass of the render
2469 * pass the pipeline is created against does not use any color
2470 * attachments.
2471 *
2472 * We leave the relevant registers stale when rasterization is disabled.
2473 */
2474 if (builder->rasterizer_discard)
2475 return;
2476
2477 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2478 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2479 builder->create_info->pMultisampleState;
2480 const VkPipelineColorBlendStateCreateInfo *blend_info =
2481 builder->use_color_attachments ? builder->create_info->pColorBlendState
2482 : &dummy_blend_info;
2483
2484 struct tu_cs blend_cs;
2485 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 18, &blend_cs);
2486
2487 uint32_t blend_enable_mask;
2488 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
2489 builder->color_attachment_formats,
2490 &blend_enable_mask);
2491
2492 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
2493 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
2494
2495 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SAMPLE_LOCATIONS)) {
2496 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
2497 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
2498 const VkSampleLocationsInfoEXT *samp_loc = NULL;
2499
2500 if (sample_locations && sample_locations->sampleLocationsEnable)
2501 samp_loc = &sample_locations->sampleLocationsInfo;
2502
2503 tu6_emit_sample_locations(&blend_cs, samp_loc);
2504 }
2505
2506 tu6_emit_blend_control(&blend_cs, blend_enable_mask,
2507 builder->use_dual_src_blend, msaa_info);
2508
2509 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
2510 }
2511
2512 static void
2513 tu_pipeline_finish(struct tu_pipeline *pipeline,
2514 struct tu_device *dev,
2515 const VkAllocationCallbacks *alloc)
2516 {
2517 tu_cs_finish(&pipeline->cs);
2518
2519 if (pipeline->program.binary_bo.gem_handle)
2520 tu_bo_finish(dev, &pipeline->program.binary_bo);
2521 }
2522
2523 static VkResult
2524 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2525 struct tu_pipeline **pipeline)
2526 {
2527 VkResult result = tu_pipeline_create(builder->device, builder->layout,
2528 false, builder->alloc, pipeline);
2529 if (result != VK_SUCCESS)
2530 return result;
2531
2532 (*pipeline)->layout = builder->layout;
2533
2534 /* compile and upload shaders */
2535 result = tu_pipeline_builder_compile_shaders(builder);
2536 if (result == VK_SUCCESS)
2537 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
2538 if (result != VK_SUCCESS) {
2539 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
2540 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
2541 *pipeline = VK_NULL_HANDLE;
2542
2543 return result;
2544 }
2545
2546 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2547 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2548 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2549 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2550 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2551 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2552 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2553 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2554 tu6_emit_load_state(*pipeline, false);
2555
2556 /* we should have reserved enough space upfront such that the CS never
2557 * grows
2558 */
2559 assert((*pipeline)->cs.bo_count == 1);
2560
2561 return VK_SUCCESS;
2562 }
2563
2564 static void
2565 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2566 {
2567 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2568 if (!builder->shaders[i])
2569 continue;
2570 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2571 }
2572 }
2573
2574 static void
2575 tu_pipeline_builder_init_graphics(
2576 struct tu_pipeline_builder *builder,
2577 struct tu_device *dev,
2578 struct tu_pipeline_cache *cache,
2579 const VkGraphicsPipelineCreateInfo *create_info,
2580 const VkAllocationCallbacks *alloc)
2581 {
2582 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2583
2584 *builder = (struct tu_pipeline_builder) {
2585 .device = dev,
2586 .cache = cache,
2587 .create_info = create_info,
2588 .alloc = alloc,
2589 .layout = layout,
2590 };
2591
2592 builder->rasterizer_discard =
2593 create_info->pRasterizationState->rasterizerDiscardEnable;
2594
2595 if (builder->rasterizer_discard) {
2596 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2597 } else {
2598 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2599
2600 const struct tu_render_pass *pass =
2601 tu_render_pass_from_handle(create_info->renderPass);
2602 const struct tu_subpass *subpass =
2603 &pass->subpasses[create_info->subpass];
2604
2605 const uint32_t a = subpass->depth_stencil_attachment.attachment;
2606 builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
2607 pass->attachments[a].format : VK_FORMAT_UNDEFINED;
2608
2609 assert(subpass->color_count == 0 ||
2610 !create_info->pColorBlendState ||
2611 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2612 builder->color_attachment_count = subpass->color_count;
2613 for (uint32_t i = 0; i < subpass->color_count; i++) {
2614 const uint32_t a = subpass->color_attachments[i].attachment;
2615 if (a == VK_ATTACHMENT_UNUSED)
2616 continue;
2617
2618 builder->color_attachment_formats[i] = pass->attachments[a].format;
2619 builder->use_color_attachments = true;
2620 builder->render_components |= 0xf << (i * 4);
2621 }
2622
2623 if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
2624 builder->color_attachment_count++;
2625 builder->use_dual_src_blend = true;
2626 /* dual source blending has an extra fs output in the 2nd slot */
2627 if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
2628 builder->render_components |= 0xf << 4;
2629 }
2630 }
2631 }
2632
2633 static VkResult
2634 tu_graphics_pipeline_create(VkDevice device,
2635 VkPipelineCache pipelineCache,
2636 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2637 const VkAllocationCallbacks *pAllocator,
2638 VkPipeline *pPipeline)
2639 {
2640 TU_FROM_HANDLE(tu_device, dev, device);
2641 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2642
2643 struct tu_pipeline_builder builder;
2644 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2645 pCreateInfo, pAllocator);
2646
2647 struct tu_pipeline *pipeline = NULL;
2648 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2649 tu_pipeline_builder_finish(&builder);
2650
2651 if (result == VK_SUCCESS)
2652 *pPipeline = tu_pipeline_to_handle(pipeline);
2653 else
2654 *pPipeline = VK_NULL_HANDLE;
2655
2656 return result;
2657 }
2658
2659 VkResult
2660 tu_CreateGraphicsPipelines(VkDevice device,
2661 VkPipelineCache pipelineCache,
2662 uint32_t count,
2663 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2664 const VkAllocationCallbacks *pAllocator,
2665 VkPipeline *pPipelines)
2666 {
2667 VkResult final_result = VK_SUCCESS;
2668
2669 for (uint32_t i = 0; i < count; i++) {
2670 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2671 &pCreateInfos[i], pAllocator,
2672 &pPipelines[i]);
2673
2674 if (result != VK_SUCCESS)
2675 final_result = result;
2676 }
2677
2678 return final_result;
2679 }
2680
2681 static void
2682 tu6_emit_compute_program(struct tu_cs *cs,
2683 struct tu_shader *shader,
2684 const struct tu_bo *binary_bo)
2685 {
2686 const struct ir3_shader_variant *v = &shader->variants[0];
2687
2688 tu6_emit_cs_config(cs, shader, v);
2689
2690 /* The compute program is the only one in the pipeline, so 0 offset. */
2691 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2692
2693 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2694 }
2695
2696 static VkResult
2697 tu_compute_upload_shader(VkDevice device,
2698 struct tu_pipeline *pipeline,
2699 struct tu_shader *shader)
2700 {
2701 TU_FROM_HANDLE(tu_device, dev, device);
2702 struct tu_bo *bo = &pipeline->program.binary_bo;
2703 struct ir3_shader_variant *v = &shader->variants[0];
2704
2705 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2706 VkResult result =
2707 tu_bo_init_new(dev, bo, shader_size);
2708 if (result != VK_SUCCESS)
2709 return result;
2710
2711 result = tu_bo_map(dev, bo);
2712 if (result != VK_SUCCESS)
2713 return result;
2714
2715 memcpy(bo->map, shader->binary, shader_size);
2716
2717 return VK_SUCCESS;
2718 }
2719
2720
2721 static VkResult
2722 tu_compute_pipeline_create(VkDevice device,
2723 VkPipelineCache _cache,
2724 const VkComputePipelineCreateInfo *pCreateInfo,
2725 const VkAllocationCallbacks *pAllocator,
2726 VkPipeline *pPipeline)
2727 {
2728 TU_FROM_HANDLE(tu_device, dev, device);
2729 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2730 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2731 VkResult result;
2732
2733 struct tu_pipeline *pipeline;
2734
2735 *pPipeline = VK_NULL_HANDLE;
2736
2737 result = tu_pipeline_create(dev, layout, true, pAllocator, &pipeline);
2738 if (result != VK_SUCCESS)
2739 return result;
2740
2741 pipeline->layout = layout;
2742
2743 struct tu_shader_compile_options options;
2744 tu_shader_compile_options_init(&options, NULL);
2745
2746 struct tu_shader *shader =
2747 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2748 if (!shader) {
2749 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2750 goto fail;
2751 }
2752
2753 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2754 if (result != VK_SUCCESS)
2755 goto fail;
2756
2757 struct ir3_shader_variant *v = &shader->variants[0];
2758
2759 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2760 shader, v);
2761
2762 result = tu_compute_upload_shader(device, pipeline, shader);
2763 if (result != VK_SUCCESS)
2764 goto fail;
2765
2766 for (int i = 0; i < 3; i++)
2767 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2768
2769 struct tu_cs prog_cs;
2770 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2771 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2772 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2773
2774 tu6_emit_load_state(pipeline, true);
2775
2776 *pPipeline = tu_pipeline_to_handle(pipeline);
2777 return VK_SUCCESS;
2778
2779 fail:
2780 if (shader)
2781 tu_shader_destroy(dev, shader, pAllocator);
2782
2783 tu_pipeline_finish(pipeline, dev, pAllocator);
2784 vk_free2(&dev->alloc, pAllocator, pipeline);
2785
2786 return result;
2787 }
2788
2789 VkResult
2790 tu_CreateComputePipelines(VkDevice device,
2791 VkPipelineCache pipelineCache,
2792 uint32_t count,
2793 const VkComputePipelineCreateInfo *pCreateInfos,
2794 const VkAllocationCallbacks *pAllocator,
2795 VkPipeline *pPipelines)
2796 {
2797 VkResult final_result = VK_SUCCESS;
2798
2799 for (uint32_t i = 0; i < count; i++) {
2800 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2801 &pCreateInfos[i],
2802 pAllocator, &pPipelines[i]);
2803 if (result != VK_SUCCESS)
2804 final_result = result;
2805 }
2806
2807 return final_result;
2808 }
2809
2810 void
2811 tu_DestroyPipeline(VkDevice _device,
2812 VkPipeline _pipeline,
2813 const VkAllocationCallbacks *pAllocator)
2814 {
2815 TU_FROM_HANDLE(tu_device, dev, _device);
2816 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2817
2818 if (!_pipeline)
2819 return;
2820
2821 tu_pipeline_finish(pipeline, dev, pAllocator);
2822 vk_free2(&dev->alloc, pAllocator, pipeline);
2823 }