freedreno/ir3: Merge the redundant immediate_idx/immediates_count fields
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "common/freedreno_guardband.h"
29 #include "tu_private.h"
30
31 #include "ir3/ir3_nir.h"
32 #include "main/menums.h"
33 #include "nir/nir.h"
34 #include "nir/nir_builder.h"
35 #include "spirv/nir_spirv.h"
36 #include "util/debug.h"
37 #include "util/mesa-sha1.h"
38 #include "util/u_atomic.h"
39 #include "vk_format.h"
40 #include "vk_util.h"
41
42 #include "tu_cs.h"
43
44 /* Emit IB that preloads the descriptors that the shader uses */
45
46 static void
47 emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
48 enum a6xx_state_block sb, unsigned base, unsigned offset,
49 unsigned count)
50 {
51 /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
52 * clear if emitting more packets will even help anything. Presumably the
53 * descriptor cache is relatively small, and these packets stop doing
54 * anything when there are too many descriptors.
55 */
56 tu_cs_emit_pkt7(cs, opcode, 3);
57 tu_cs_emit(cs,
58 CP_LOAD_STATE6_0_STATE_TYPE(st) |
59 CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
60 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
61 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
62 tu_cs_emit_qw(cs, offset | (base << 28));
63 }
64
65 static unsigned
66 tu6_load_state_size(struct tu_pipeline *pipeline, bool compute)
67 {
68 const unsigned load_state_size = 4;
69 unsigned size = 0;
70 for (unsigned i = 0; i < pipeline->layout->num_sets; i++) {
71 if (pipeline && !(pipeline->active_desc_sets & (1u << i)))
72 continue;
73
74 struct tu_descriptor_set_layout *set_layout = pipeline->layout->set[i].layout;
75 for (unsigned j = 0; j < set_layout->binding_count; j++) {
76 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
77 unsigned count = 0;
78 /* Note: some users, like amber for example, pass in
79 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
80 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
81 */
82 VkShaderStageFlags stages = compute ?
83 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
84 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
85 unsigned stage_count = util_bitcount(stages);
86
87 if (!binding->array_size)
88 continue;
89
90 switch (binding->type) {
91 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
92 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
93 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
94 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
95 /* IBO-backed resources only need one packet for all graphics stages */
96 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
97 count += 1;
98 if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
99 count += 1;
100 break;
101 case VK_DESCRIPTOR_TYPE_SAMPLER:
102 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
103 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
104 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
105 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
106 /* Textures and UBO's needs a packet for each stage */
107 count = stage_count;
108 break;
109 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
110 /* Because of how we pack combined images and samplers, we
111 * currently can't use one packet for the whole array.
112 */
113 count = stage_count * binding->array_size * 2;
114 break;
115 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
116 break;
117 default:
118 unreachable("bad descriptor type");
119 }
120 size += count * load_state_size;
121 }
122 }
123 return size;
124 }
125
126 static void
127 tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
128 {
129 unsigned size = tu6_load_state_size(pipeline, compute);
130 if (size == 0)
131 return;
132
133 struct tu_cs cs;
134 tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
135
136 struct tu_pipeline_layout *layout = pipeline->layout;
137 for (unsigned i = 0; i < layout->num_sets; i++) {
138 /* From 13.2.7. Descriptor Set Binding:
139 *
140 * A compatible descriptor set must be bound for all set numbers that
141 * any shaders in a pipeline access, at the time that a draw or
142 * dispatch command is recorded to execute using that pipeline.
143 * However, if none of the shaders in a pipeline statically use any
144 * bindings with a particular set number, then no descriptor set need
145 * be bound for that set number, even if the pipeline layout includes
146 * a non-trivial descriptor set layout for that set number.
147 *
148 * This means that descriptor sets unused by the pipeline may have a
149 * garbage or 0 BINDLESS_BASE register, which will cause context faults
150 * when prefetching descriptors from these sets. Skip prefetching for
151 * descriptors from them to avoid this. This is also an optimization,
152 * since these prefetches would be useless.
153 */
154 if (!(pipeline->active_desc_sets & (1u << i)))
155 continue;
156
157 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
158 for (unsigned j = 0; j < set_layout->binding_count; j++) {
159 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
160 unsigned base = i;
161 unsigned offset = binding->offset / 4;
162 /* Note: some users, like amber for example, pass in
163 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
164 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
165 */
166 VkShaderStageFlags stages = compute ?
167 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
168 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
169 unsigned count = binding->array_size;
170 if (count == 0 || stages == 0)
171 continue;
172 switch (binding->type) {
173 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
174 base = MAX_SETS;
175 offset = (layout->set[i].dynamic_offset_start +
176 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
177 /* fallthrough */
178 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
179 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
180 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
181 /* IBO-backed resources only need one packet for all graphics stages */
182 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
183 emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
184 base, offset, count);
185 }
186 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
187 emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
188 base, offset, count);
189 }
190 break;
191 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
192 /* nothing - input attachment doesn't use bindless */
193 break;
194 case VK_DESCRIPTOR_TYPE_SAMPLER:
195 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
196 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
197 tu_foreach_stage(stage, stages) {
198 emit_load_state(&cs, tu6_stage2opcode(stage),
199 binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
200 ST6_SHADER : ST6_CONSTANTS,
201 tu6_stage2texsb(stage), base, offset, count);
202 }
203 break;
204 }
205 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
206 base = MAX_SETS;
207 offset = (layout->set[i].dynamic_offset_start +
208 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
209 /* fallthrough */
210 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
211 tu_foreach_stage(stage, stages) {
212 emit_load_state(&cs, tu6_stage2opcode(stage), ST6_UBO,
213 tu6_stage2shadersb(stage), base, offset, count);
214 }
215 break;
216 }
217 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
218 tu_foreach_stage(stage, stages) {
219 /* TODO: We could emit less CP_LOAD_STATE6 if we used
220 * struct-of-arrays instead of array-of-structs.
221 */
222 for (unsigned i = 0; i < count; i++) {
223 unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
224 unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
225 emit_load_state(&cs, tu6_stage2opcode(stage),
226 ST6_CONSTANTS, tu6_stage2texsb(stage),
227 base, tex_offset, 1);
228 emit_load_state(&cs, tu6_stage2opcode(stage),
229 ST6_SHADER, tu6_stage2texsb(stage),
230 base, sam_offset, 1);
231 }
232 }
233 break;
234 }
235 default:
236 unreachable("bad descriptor type");
237 }
238 }
239 }
240
241 pipeline->load_state = tu_cs_end_draw_state(&pipeline->cs, &cs);
242 }
243
244 struct tu_pipeline_builder
245 {
246 struct tu_device *device;
247 struct tu_pipeline_cache *cache;
248 struct tu_pipeline_layout *layout;
249 const VkAllocationCallbacks *alloc;
250 const VkGraphicsPipelineCreateInfo *create_info;
251
252 struct tu_shader *shaders[MESA_SHADER_STAGES];
253 struct ir3_shader_variant *variants[MESA_SHADER_STAGES];
254 struct ir3_shader_variant *binning_variant;
255 uint64_t shader_iova[MESA_SHADER_STAGES];
256 uint64_t binning_vs_iova;
257
258 bool rasterizer_discard;
259 /* these states are affectd by rasterizer_discard */
260 VkSampleCountFlagBits samples;
261 bool use_color_attachments;
262 bool use_dual_src_blend;
263 uint32_t color_attachment_count;
264 VkFormat color_attachment_formats[MAX_RTS];
265 VkFormat depth_attachment_format;
266 uint32_t render_components;
267 };
268
269 static bool
270 tu_logic_op_reads_dst(VkLogicOp op)
271 {
272 switch (op) {
273 case VK_LOGIC_OP_CLEAR:
274 case VK_LOGIC_OP_COPY:
275 case VK_LOGIC_OP_COPY_INVERTED:
276 case VK_LOGIC_OP_SET:
277 return false;
278 default:
279 return true;
280 }
281 }
282
283 static VkBlendFactor
284 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
285 {
286 /* treat dst alpha as 1.0 and avoid reading it */
287 switch (factor) {
288 case VK_BLEND_FACTOR_DST_ALPHA:
289 return VK_BLEND_FACTOR_ONE;
290 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
291 return VK_BLEND_FACTOR_ZERO;
292 default:
293 return factor;
294 }
295 }
296
297 static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
298 {
299 switch (factor) {
300 case VK_BLEND_FACTOR_SRC1_COLOR:
301 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
302 case VK_BLEND_FACTOR_SRC1_ALPHA:
303 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
304 return true;
305 default:
306 return false;
307 }
308 }
309
310 static bool
311 tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
312 {
313 if (!info)
314 return false;
315
316 for (unsigned i = 0; i < info->attachmentCount; i++) {
317 const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
318 if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
319 tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
320 tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
321 tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
322 return true;
323 }
324
325 return false;
326 }
327
328 void
329 tu6_emit_xs_config(struct tu_cs *cs,
330 gl_shader_stage stage, /* xs->type, but xs may be NULL */
331 const struct ir3_shader_variant *xs,
332 uint64_t binary_iova)
333 {
334 static const struct xs_config {
335 uint16_t reg_sp_xs_ctrl;
336 uint16_t reg_sp_xs_config;
337 uint16_t reg_hlsq_xs_ctrl;
338 uint16_t reg_sp_vs_obj_start;
339 } xs_config[] = {
340 [MESA_SHADER_VERTEX] = {
341 REG_A6XX_SP_VS_CTRL_REG0,
342 REG_A6XX_SP_VS_CONFIG,
343 REG_A6XX_HLSQ_VS_CNTL,
344 REG_A6XX_SP_VS_OBJ_START_LO,
345 },
346 [MESA_SHADER_TESS_CTRL] = {
347 REG_A6XX_SP_HS_CTRL_REG0,
348 REG_A6XX_SP_HS_CONFIG,
349 REG_A6XX_HLSQ_HS_CNTL,
350 REG_A6XX_SP_HS_OBJ_START_LO,
351 },
352 [MESA_SHADER_TESS_EVAL] = {
353 REG_A6XX_SP_DS_CTRL_REG0,
354 REG_A6XX_SP_DS_CONFIG,
355 REG_A6XX_HLSQ_DS_CNTL,
356 REG_A6XX_SP_DS_OBJ_START_LO,
357 },
358 [MESA_SHADER_GEOMETRY] = {
359 REG_A6XX_SP_GS_CTRL_REG0,
360 REG_A6XX_SP_GS_CONFIG,
361 REG_A6XX_HLSQ_GS_CNTL,
362 REG_A6XX_SP_GS_OBJ_START_LO,
363 },
364 [MESA_SHADER_FRAGMENT] = {
365 REG_A6XX_SP_FS_CTRL_REG0,
366 REG_A6XX_SP_FS_CONFIG,
367 REG_A6XX_HLSQ_FS_CNTL,
368 REG_A6XX_SP_FS_OBJ_START_LO,
369 },
370 [MESA_SHADER_COMPUTE] = {
371 REG_A6XX_SP_CS_CTRL_REG0,
372 REG_A6XX_SP_CS_CONFIG,
373 REG_A6XX_HLSQ_CS_CNTL,
374 REG_A6XX_SP_CS_OBJ_START_LO,
375 },
376 };
377 const struct xs_config *cfg = &xs_config[stage];
378
379 if (!xs) {
380 /* shader stage disabled */
381 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 1);
382 tu_cs_emit(cs, 0);
383
384 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
385 tu_cs_emit(cs, 0);
386 return;
387 }
388
389 bool is_fs = xs->type == MESA_SHADER_FRAGMENT;
390 enum a3xx_threadsize threadsize = FOUR_QUADS;
391
392 /* TODO:
393 * the "threadsize" field may have nothing to do with threadsize,
394 * use a value that matches the blob until it is figured out
395 */
396 if (xs->type == MESA_SHADER_GEOMETRY)
397 threadsize = TWO_QUADS;
398
399 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_ctrl, 1);
400 tu_cs_emit(cs,
401 A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) |
402 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) |
403 A6XX_SP_VS_CTRL_REG0_HALFREGFOOTPRINT(xs->info.max_half_reg + 1) |
404 COND(xs->mergedregs, A6XX_SP_VS_CTRL_REG0_MERGEDREGS) |
405 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) |
406 COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) |
407 COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) |
408 /* only fragment shader sets VARYING bit */
409 COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) |
410 /* unknown bit, seems unnecessary */
411 COND(is_fs, 0x1000000));
412
413 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 2);
414 tu_cs_emit(cs, A6XX_SP_VS_CONFIG_ENABLED |
415 COND(xs->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
416 COND(xs->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
417 COND(xs->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
418 COND(xs->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO) |
419 A6XX_SP_VS_CONFIG_NTEX(xs->num_samp) |
420 A6XX_SP_VS_CONFIG_NSAMP(xs->num_samp));
421 tu_cs_emit(cs, xs->instrlen);
422
423 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
424 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(xs->constlen) |
425 A6XX_HLSQ_VS_CNTL_ENABLED);
426
427 /* emit program binary
428 * binary_iova should be aligned to 1 instrlen unit (128 bytes)
429 */
430
431 assert((binary_iova & 0x7f) == 0);
432
433 tu_cs_emit_pkt4(cs, cfg->reg_sp_vs_obj_start, 2);
434 tu_cs_emit_qw(cs, binary_iova);
435
436 tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3);
437 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
438 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
439 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
440 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
441 CP_LOAD_STATE6_0_NUM_UNIT(xs->instrlen));
442 tu_cs_emit_qw(cs, binary_iova);
443
444 /* emit immediates */
445
446 const struct ir3_const_state *const_state = ir3_const_state(xs);
447 uint32_t base = const_state->offsets.immediate;
448 int size = DIV_ROUND_UP(const_state->immediates_count, 4);
449
450 /* truncate size to avoid writing constants that shader
451 * does not use:
452 */
453 size = MIN2(size + base, xs->constlen) - base;
454
455 if (size <= 0)
456 return;
457
458 tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3 + size * 4);
459 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
460 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
461 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
462 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
463 CP_LOAD_STATE6_0_NUM_UNIT(size));
464 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
465 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
466
467 for (unsigned i = 0; i < size; i++) {
468 tu_cs_emit(cs, const_state->immediates[i].val[0]);
469 tu_cs_emit(cs, const_state->immediates[i].val[1]);
470 tu_cs_emit(cs, const_state->immediates[i].val[2]);
471 tu_cs_emit(cs, const_state->immediates[i].val[3]);
472 }
473 }
474
475 static void
476 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
477 const struct ir3_shader_variant *v,
478 uint32_t binary_iova)
479 {
480 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
481 .cs_state = true,
482 .cs_ibo = true));
483
484 tu6_emit_xs_config(cs, MESA_SHADER_COMPUTE, v, binary_iova);
485
486 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
487 tu_cs_emit(cs, 0x41);
488
489 uint32_t local_invocation_id =
490 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
491 uint32_t work_group_id =
492 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
493
494 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
495 tu_cs_emit(cs,
496 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
497 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
498 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
499 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
500 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
501 }
502
503 static void
504 tu6_emit_vs_system_values(struct tu_cs *cs,
505 const struct ir3_shader_variant *vs,
506 const struct ir3_shader_variant *hs,
507 const struct ir3_shader_variant *ds,
508 const struct ir3_shader_variant *gs,
509 bool primid_passthru)
510 {
511 const uint32_t vertexid_regid =
512 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
513 const uint32_t instanceid_regid =
514 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
515 const uint32_t tess_coord_x_regid = hs ?
516 ir3_find_sysval_regid(ds, SYSTEM_VALUE_TESS_COORD) :
517 regid(63, 0);
518 const uint32_t tess_coord_y_regid = VALIDREG(tess_coord_x_regid) ?
519 tess_coord_x_regid + 1 :
520 regid(63, 0);
521 const uint32_t hs_patch_regid = hs ?
522 ir3_find_sysval_regid(hs, SYSTEM_VALUE_PRIMITIVE_ID) :
523 regid(63, 0);
524 const uint32_t ds_patch_regid = hs ?
525 ir3_find_sysval_regid(ds, SYSTEM_VALUE_PRIMITIVE_ID) :
526 regid(63, 0);
527 const uint32_t hs_invocation_regid = hs ?
528 ir3_find_sysval_regid(hs, SYSTEM_VALUE_TCS_HEADER_IR3) :
529 regid(63, 0);
530 const uint32_t primitiveid_regid = gs ?
531 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
532 regid(63, 0);
533 const uint32_t gsheader_regid = gs ?
534 ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
535 regid(63, 0);
536
537 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
538 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
539 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
540 A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
541 0xfc000000);
542 tu_cs_emit(cs, A6XX_VFD_CONTROL_2_REGID_HSPATCHID(hs_patch_regid) |
543 A6XX_VFD_CONTROL_2_REGID_INVOCATIONID(hs_invocation_regid));
544 tu_cs_emit(cs, A6XX_VFD_CONTROL_3_REGID_DSPATCHID(ds_patch_regid) |
545 A6XX_VFD_CONTROL_3_REGID_TESSX(tess_coord_x_regid) |
546 A6XX_VFD_CONTROL_3_REGID_TESSY(tess_coord_y_regid) |
547 0xfc);
548 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
549 tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
550 0xfc00); /* VFD_CONTROL_5 */
551 tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
552 }
553
554 /* Add any missing varyings needed for stream-out. Otherwise varyings not
555 * used by fragment shader will be stripped out.
556 */
557 static void
558 tu6_link_streamout(struct ir3_shader_linkage *l,
559 const struct ir3_shader_variant *v)
560 {
561 const struct ir3_stream_output_info *info = &v->shader->stream_output;
562
563 /*
564 * First, any stream-out varyings not already in linkage map (ie. also
565 * consumed by frag shader) need to be added:
566 */
567 for (unsigned i = 0; i < info->num_outputs; i++) {
568 const struct ir3_stream_output *out = &info->output[i];
569 unsigned compmask =
570 (1 << (out->num_components + out->start_component)) - 1;
571 unsigned k = out->register_index;
572 unsigned idx, nextloc = 0;
573
574 /* psize/pos need to be the last entries in linkage map, and will
575 * get added link_stream_out, so skip over them:
576 */
577 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
578 v->outputs[k].slot == VARYING_SLOT_POS)
579 continue;
580
581 for (idx = 0; idx < l->cnt; idx++) {
582 if (l->var[idx].regid == v->outputs[k].regid)
583 break;
584 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
585 }
586
587 /* add if not already in linkage map: */
588 if (idx == l->cnt)
589 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
590
591 /* expand component-mask if needed, ie streaming out all components
592 * but frag shader doesn't consume all components:
593 */
594 if (compmask & ~l->var[idx].compmask) {
595 l->var[idx].compmask |= compmask;
596 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
597 util_last_bit(l->var[idx].compmask));
598 }
599 }
600 }
601
602 static void
603 tu6_setup_streamout(struct tu_cs *cs,
604 const struct ir3_shader_variant *v,
605 struct ir3_shader_linkage *l)
606 {
607 const struct ir3_stream_output_info *info = &v->shader->stream_output;
608 uint32_t prog[IR3_MAX_SO_OUTPUTS * 2] = {};
609 uint32_t ncomp[IR3_MAX_SO_BUFFERS] = {};
610 uint32_t prog_count = align(l->max_loc, 2) / 2;
611
612 /* TODO: streamout state should be in a non-GMEM draw state */
613
614 /* no streamout: */
615 if (info->num_outputs == 0) {
616 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
617 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
618 tu_cs_emit(cs, 0);
619 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
620 tu_cs_emit(cs, 0);
621 return;
622 }
623
624 /* is there something to do with info->stride[i]? */
625
626 for (unsigned i = 0; i < info->num_outputs; i++) {
627 const struct ir3_stream_output *out = &info->output[i];
628 unsigned k = out->register_index;
629 unsigned idx;
630
631 /* Skip it, if there's an unused reg in the middle of outputs. */
632 if (v->outputs[k].regid == INVALID_REG)
633 continue;
634
635 ncomp[out->output_buffer] += out->num_components;
636
637 /* linkage map sorted by order frag shader wants things, so
638 * a bit less ideal here..
639 */
640 for (idx = 0; idx < l->cnt; idx++)
641 if (l->var[idx].regid == v->outputs[k].regid)
642 break;
643
644 debug_assert(idx < l->cnt);
645
646 for (unsigned j = 0; j < out->num_components; j++) {
647 unsigned c = j + out->start_component;
648 unsigned loc = l->var[idx].loc + c;
649 unsigned off = j + out->dst_offset; /* in dwords */
650
651 if (loc & 1) {
652 prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
653 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
654 A6XX_VPC_SO_PROG_B_OFF(off * 4);
655 } else {
656 prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
657 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
658 A6XX_VPC_SO_PROG_A_OFF(off * 4);
659 }
660 }
661 }
662
663 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + 2 * prog_count);
664 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
665 tu_cs_emit(cs, A6XX_VPC_SO_BUF_CNTL_ENABLE |
666 COND(ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
667 COND(ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
668 COND(ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
669 COND(ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3));
670 for (uint32_t i = 0; i < 4; i++) {
671 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(i));
672 tu_cs_emit(cs, ncomp[i]);
673 }
674 /* note: "VPC_SO_CNTL" write seems to be responsible for resetting the SO_PROG */
675 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
676 tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
677 for (uint32_t i = 0; i < prog_count; i++) {
678 tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
679 tu_cs_emit(cs, prog[i]);
680 }
681 }
682
683 static void
684 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
685 enum a6xx_state_block block, uint32_t offset,
686 uint32_t size, uint32_t *dwords) {
687 assert(size % 4 == 0);
688
689 tu_cs_emit_pkt7(cs, opcode, 3 + size);
690 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
691 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
692 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
693 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
694 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
695
696 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
697 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
698 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
699
700 tu_cs_emit_array(cs, dwords, size);
701 }
702
703 static void
704 tu6_emit_link_map(struct tu_cs *cs,
705 const struct ir3_shader_variant *producer,
706 const struct ir3_shader_variant *consumer,
707 enum a6xx_state_block sb)
708 {
709 const struct ir3_const_state *const_state = ir3_const_state(consumer);
710 uint32_t base = const_state->offsets.primitive_map;
711 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
712 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
713 int size = DIV_ROUND_UP(num_loc, 4);
714
715 size = (MIN2(size + base, consumer->constlen) - base) * 4;
716 if (size <= 0)
717 return;
718
719 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, sb, 0, size,
720 patch_locs);
721 }
722
723 static uint16_t
724 gl_primitive_to_tess(uint16_t primitive) {
725 switch (primitive) {
726 case GL_POINTS:
727 return TESS_POINTS;
728 case GL_LINE_STRIP:
729 return TESS_LINES;
730 case GL_TRIANGLE_STRIP:
731 return TESS_CW_TRIS;
732 default:
733 unreachable("");
734 }
735 }
736
737 void
738 tu6_emit_vpc(struct tu_cs *cs,
739 const struct ir3_shader_variant *vs,
740 const struct ir3_shader_variant *hs,
741 const struct ir3_shader_variant *ds,
742 const struct ir3_shader_variant *gs,
743 const struct ir3_shader_variant *fs,
744 uint32_t patch_control_points,
745 bool vshs_workgroup)
746 {
747 /* note: doesn't compile as static because of the array regs.. */
748 const struct reg_config {
749 uint16_t reg_sp_xs_out_reg;
750 uint16_t reg_sp_xs_vpc_dst_reg;
751 uint16_t reg_vpc_xs_pack;
752 uint16_t reg_vpc_xs_clip_cntl;
753 uint16_t reg_gras_xs_cl_cntl;
754 uint16_t reg_pc_xs_out_cntl;
755 uint16_t reg_sp_xs_primitive_cntl;
756 uint16_t reg_vpc_xs_layer_cntl;
757 uint16_t reg_gras_xs_layer_cntl;
758 } reg_config[] = {
759 [MESA_SHADER_VERTEX] = {
760 REG_A6XX_SP_VS_OUT_REG(0),
761 REG_A6XX_SP_VS_VPC_DST_REG(0),
762 REG_A6XX_VPC_VS_PACK,
763 REG_A6XX_VPC_VS_CLIP_CNTL,
764 REG_A6XX_GRAS_VS_CL_CNTL,
765 REG_A6XX_PC_VS_OUT_CNTL,
766 REG_A6XX_SP_VS_PRIMITIVE_CNTL,
767 REG_A6XX_VPC_VS_LAYER_CNTL,
768 REG_A6XX_GRAS_VS_LAYER_CNTL
769 },
770 [MESA_SHADER_TESS_EVAL] = {
771 REG_A6XX_SP_DS_OUT_REG(0),
772 REG_A6XX_SP_DS_VPC_DST_REG(0),
773 REG_A6XX_VPC_DS_PACK,
774 REG_A6XX_VPC_DS_CLIP_CNTL,
775 REG_A6XX_GRAS_DS_CL_CNTL,
776 REG_A6XX_PC_DS_OUT_CNTL,
777 REG_A6XX_SP_DS_PRIMITIVE_CNTL,
778 REG_A6XX_VPC_DS_LAYER_CNTL,
779 REG_A6XX_GRAS_DS_LAYER_CNTL
780 },
781 [MESA_SHADER_GEOMETRY] = {
782 REG_A6XX_SP_GS_OUT_REG(0),
783 REG_A6XX_SP_GS_VPC_DST_REG(0),
784 REG_A6XX_VPC_GS_PACK,
785 REG_A6XX_VPC_GS_CLIP_CNTL,
786 REG_A6XX_GRAS_GS_CL_CNTL,
787 REG_A6XX_PC_GS_OUT_CNTL,
788 REG_A6XX_SP_GS_PRIMITIVE_CNTL,
789 REG_A6XX_VPC_GS_LAYER_CNTL,
790 REG_A6XX_GRAS_GS_LAYER_CNTL
791 },
792 };
793
794 const struct ir3_shader_variant *last_shader;
795 if (gs) {
796 last_shader = gs;
797 } else if (hs) {
798 last_shader = ds;
799 } else {
800 last_shader = vs;
801 }
802
803 const struct reg_config *cfg = &reg_config[last_shader->type];
804
805 struct ir3_shader_linkage linkage = { .primid_loc = 0xff };
806 if (fs)
807 ir3_link_shaders(&linkage, last_shader, fs, true);
808
809 if (last_shader->shader->stream_output.num_outputs)
810 tu6_link_streamout(&linkage, last_shader);
811
812 /* We do this after linking shaders in order to know whether PrimID
813 * passthrough needs to be enabled.
814 */
815 bool primid_passthru = linkage.primid_loc != 0xff;
816 tu6_emit_vs_system_values(cs, vs, hs, ds, gs, primid_passthru);
817
818 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
819 tu_cs_emit(cs, ~linkage.varmask[0]);
820 tu_cs_emit(cs, ~linkage.varmask[1]);
821 tu_cs_emit(cs, ~linkage.varmask[2]);
822 tu_cs_emit(cs, ~linkage.varmask[3]);
823
824 /* a6xx finds position/pointsize at the end */
825 const uint32_t position_regid =
826 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
827 const uint32_t pointsize_regid =
828 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
829 const uint32_t layer_regid =
830 ir3_find_output_regid(last_shader, VARYING_SLOT_LAYER);
831 uint32_t primitive_regid = gs ?
832 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) : regid(63, 0);
833 uint32_t flags_regid = gs ?
834 ir3_find_output_regid(gs, VARYING_SLOT_GS_VERTEX_FLAGS_IR3) : 0;
835
836 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
837 if (layer_regid != regid(63, 0)) {
838 layer_loc = linkage.max_loc;
839 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
840 }
841 if (position_regid != regid(63, 0)) {
842 position_loc = linkage.max_loc;
843 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
844 }
845 if (pointsize_regid != regid(63, 0)) {
846 pointsize_loc = linkage.max_loc;
847 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
848 }
849
850 tu6_setup_streamout(cs, last_shader, &linkage);
851
852 /* The GPU hangs on some models when there are no outputs (xs_pack::CNT),
853 * at least when a DS is the last stage, so add a dummy output to keep it
854 * happy if there aren't any. We do this late in order to avoid emitting
855 * any unused code and make sure that optimizations don't remove it.
856 */
857 if (linkage.cnt == 0)
858 ir3_link_add(&linkage, 0, 0x1, linkage.max_loc);
859
860 /* map outputs of the last shader to VPC */
861 assert(linkage.cnt <= 32);
862 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
863 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
864 uint32_t sp_out[16];
865 uint32_t sp_vpc_dst[8];
866 for (uint32_t i = 0; i < linkage.cnt; i++) {
867 ((uint16_t *) sp_out)[i] =
868 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
869 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
870 ((uint8_t *) sp_vpc_dst)[i] =
871 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
872 }
873
874 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_out_reg, sp_out_count);
875 tu_cs_emit_array(cs, sp_out, sp_out_count);
876
877 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_vpc_dst_reg, sp_vpc_dst_count);
878 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
879
880 tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_pack, 1);
881 tu_cs_emit(cs, A6XX_VPC_VS_PACK_POSITIONLOC(position_loc) |
882 A6XX_VPC_VS_PACK_PSIZELOC(pointsize_loc) |
883 A6XX_VPC_VS_PACK_STRIDE_IN_VPC(linkage.max_loc));
884
885 tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_clip_cntl, 1);
886 tu_cs_emit(cs, 0xffff00);
887
888 tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_cl_cntl, 1);
889 tu_cs_emit(cs, 0);
890
891 tu_cs_emit_pkt4(cs, cfg->reg_pc_xs_out_cntl, 1);
892 tu_cs_emit(cs, A6XX_PC_VS_OUT_CNTL_STRIDE_IN_VPC(linkage.max_loc) |
893 CONDREG(pointsize_regid, A6XX_PC_VS_OUT_CNTL_PSIZE) |
894 CONDREG(layer_regid, A6XX_PC_VS_OUT_CNTL_LAYER) |
895 CONDREG(primitive_regid, A6XX_PC_VS_OUT_CNTL_PRIMITIVE_ID));
896
897 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_primitive_cntl, 1);
898 tu_cs_emit(cs, A6XX_SP_VS_PRIMITIVE_CNTL_OUT(linkage.cnt) |
899 A6XX_SP_GS_PRIMITIVE_CNTL_FLAGS_REGID(flags_regid));
900
901 tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_layer_cntl, 1);
902 tu_cs_emit(cs, A6XX_VPC_GS_LAYER_CNTL_LAYERLOC(layer_loc) | 0xff00);
903
904 tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_layer_cntl, 1);
905 tu_cs_emit(cs, CONDREG(layer_regid, A6XX_GRAS_GS_LAYER_CNTL_WRITES_LAYER));
906
907 tu_cs_emit_regs(cs, A6XX_PC_PRIMID_PASSTHRU(primid_passthru));
908
909 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
910 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs ? fs->total_in : 0) |
911 COND(fs && fs->total_in, A6XX_VPC_CNTL_0_VARYING) |
912 A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
913 A6XX_VPC_CNTL_0_UNKLOC(0xff));
914
915 if (hs) {
916 shader_info *hs_info = &hs->shader->nir->info;
917 uint32_t unknown_a831 = vs->output_size;
918
919 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_NUM_VERTEX, 1);
920 tu_cs_emit(cs, hs_info->tess.tcs_vertices_out);
921
922 /* Total attribute slots in HS incoming patch. */
923 tu_cs_emit_pkt4(cs, REG_A6XX_PC_HS_INPUT_SIZE, 1);
924 tu_cs_emit(cs, patch_control_points * vs->output_size / 4);
925
926 /* for A650 this value seems to be local memory size per wave */
927 if (vshs_workgroup) {
928 const uint32_t wavesize = 64;
929 /* note: if HS is really just the VS extended, then this
930 * should be by MAX2(patch_control_points, hs_info->tess.tcs_vertices_out)
931 * however that doesn't match the blob, and fails some dEQP tests.
932 */
933 uint32_t prims_per_wave = wavesize / hs_info->tess.tcs_vertices_out;
934 uint32_t total_size = vs->output_size * patch_control_points * prims_per_wave;
935 unknown_a831 = DIV_ROUND_UP(total_size, wavesize);
936 }
937
938 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
939 tu_cs_emit(cs, unknown_a831);
940
941 /* In SPIR-V generated from GLSL, the tessellation primitive params are
942 * are specified in the tess eval shader, but in SPIR-V generated from
943 * HLSL, they are specified in the tess control shader. */
944 shader_info *tess_info =
945 ds->shader->nir->info.tess.spacing == TESS_SPACING_UNSPECIFIED ?
946 &hs->shader->nir->info : &ds->shader->nir->info;
947 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_CNTL, 1);
948 uint32_t output;
949 if (tess_info->tess.point_mode)
950 output = TESS_POINTS;
951 else if (tess_info->tess.primitive_mode == GL_ISOLINES)
952 output = TESS_LINES;
953 else if (tess_info->tess.ccw)
954 output = TESS_CCW_TRIS;
955 else
956 output = TESS_CW_TRIS;
957
958 enum a6xx_tess_spacing spacing;
959 switch (tess_info->tess.spacing) {
960 case TESS_SPACING_EQUAL:
961 spacing = TESS_EQUAL;
962 break;
963 case TESS_SPACING_FRACTIONAL_ODD:
964 spacing = TESS_FRACTIONAL_ODD;
965 break;
966 case TESS_SPACING_FRACTIONAL_EVEN:
967 spacing = TESS_FRACTIONAL_EVEN;
968 break;
969 case TESS_SPACING_UNSPECIFIED:
970 default:
971 unreachable("invalid tess spacing");
972 }
973 tu_cs_emit(cs, A6XX_PC_TESS_CNTL_SPACING(spacing) |
974 A6XX_PC_TESS_CNTL_OUTPUT(output));
975
976 tu6_emit_link_map(cs, vs, hs, SB6_HS_SHADER);
977 tu6_emit_link_map(cs, hs, ds, SB6_DS_SHADER);
978 }
979
980
981 if (gs) {
982 uint32_t vertices_out, invocations, output, vec4_size;
983 /* this detects the tu_clear_blit path, which doesn't set ->nir */
984 if (gs->shader->nir) {
985 if (hs) {
986 tu6_emit_link_map(cs, ds, gs, SB6_GS_SHADER);
987 } else {
988 tu6_emit_link_map(cs, vs, gs, SB6_GS_SHADER);
989 }
990 vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
991 output = gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
992 invocations = gs->shader->nir->info.gs.invocations - 1;
993 /* Size of per-primitive alloction in ldlw memory in vec4s. */
994 vec4_size = gs->shader->nir->info.gs.vertices_in *
995 DIV_ROUND_UP(vs->output_size, 4);
996 } else {
997 vertices_out = 3;
998 output = TESS_CW_TRIS;
999 invocations = 0;
1000 vec4_size = 0;
1001 }
1002
1003 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
1004 tu_cs_emit(cs,
1005 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
1006 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
1007 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
1008
1009 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
1010 tu_cs_emit(cs, 0);
1011
1012 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
1013 tu_cs_emit(cs, 0xff);
1014
1015 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
1016 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
1017
1018 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
1019 tu_cs_emit(cs, 0);
1020
1021 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
1022 tu_cs_emit(cs, vs->output_size);
1023 }
1024 }
1025
1026 static int
1027 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
1028 uint32_t index,
1029 uint8_t *interp_mode,
1030 uint8_t *ps_repl_mode)
1031 {
1032 enum
1033 {
1034 INTERP_SMOOTH = 0,
1035 INTERP_FLAT = 1,
1036 INTERP_ZERO = 2,
1037 INTERP_ONE = 3,
1038 };
1039 enum
1040 {
1041 PS_REPL_NONE = 0,
1042 PS_REPL_S = 1,
1043 PS_REPL_T = 2,
1044 PS_REPL_ONE_MINUS_T = 3,
1045 };
1046
1047 const uint32_t compmask = fs->inputs[index].compmask;
1048
1049 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
1050 * fourth component occupy three consecutive varying slots
1051 */
1052 int shift = 0;
1053 *interp_mode = 0;
1054 *ps_repl_mode = 0;
1055 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
1056 if (compmask & 0x1) {
1057 *ps_repl_mode |= PS_REPL_S << shift;
1058 shift += 2;
1059 }
1060 if (compmask & 0x2) {
1061 *ps_repl_mode |= PS_REPL_T << shift;
1062 shift += 2;
1063 }
1064 if (compmask & 0x4) {
1065 *interp_mode |= INTERP_ZERO << shift;
1066 shift += 2;
1067 }
1068 if (compmask & 0x8) {
1069 *interp_mode |= INTERP_ONE << 6;
1070 shift += 2;
1071 }
1072 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
1073 fs->inputs[index].rasterflat) {
1074 for (int i = 0; i < 4; i++) {
1075 if (compmask & (1 << i)) {
1076 *interp_mode |= INTERP_FLAT << shift;
1077 shift += 2;
1078 }
1079 }
1080 }
1081
1082 return shift;
1083 }
1084
1085 static void
1086 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
1087 const struct ir3_shader_variant *fs)
1088 {
1089 uint32_t interp_modes[8] = { 0 };
1090 uint32_t ps_repl_modes[8] = { 0 };
1091
1092 if (fs) {
1093 for (int i = -1;
1094 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
1095
1096 /* get the mode for input i */
1097 uint8_t interp_mode;
1098 uint8_t ps_repl_mode;
1099 const int bits =
1100 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
1101
1102 /* OR the mode into the array */
1103 const uint32_t inloc = fs->inputs[i].inloc * 2;
1104 uint32_t n = inloc / 32;
1105 uint32_t shift = inloc % 32;
1106 interp_modes[n] |= interp_mode << shift;
1107 ps_repl_modes[n] |= ps_repl_mode << shift;
1108 if (shift + bits > 32) {
1109 n++;
1110 shift = 32 - shift;
1111
1112 interp_modes[n] |= interp_mode >> shift;
1113 ps_repl_modes[n] |= ps_repl_mode >> shift;
1114 }
1115 }
1116 }
1117
1118 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
1119 tu_cs_emit_array(cs, interp_modes, 8);
1120
1121 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
1122 tu_cs_emit_array(cs, ps_repl_modes, 8);
1123 }
1124
1125 void
1126 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
1127 {
1128 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
1129 uint32_t ij_regid[IJ_COUNT];
1130 uint32_t smask_in_regid;
1131
1132 bool sample_shading = fs->per_samp | fs->key.sample_shading;
1133 bool enable_varyings = fs->total_in > 0;
1134
1135 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1136 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1137 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1138 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1139 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1140 for (unsigned i = 0; i < ARRAY_SIZE(ij_regid); i++)
1141 ij_regid[i] = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + i);
1142
1143 if (VALIDREG(ij_regid[IJ_LINEAR_SAMPLE]))
1144 tu_finishme("linear sample varying");
1145
1146 if (VALIDREG(ij_regid[IJ_LINEAR_CENTROID]))
1147 tu_finishme("linear centroid varying");
1148
1149 if (fs->num_sampler_prefetch > 0) {
1150 assert(VALIDREG(ij_regid[IJ_PERSP_PIXEL]));
1151 /* also, it seems like ij_pix is *required* to be r0.x */
1152 assert(ij_regid[IJ_PERSP_PIXEL] == regid(0, 0));
1153 }
1154
1155 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1156 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1157 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1158 0x7000); // XXX);
1159 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1160 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1161 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1162 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1163 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1164 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1165 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1166 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1167 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1168 }
1169
1170 if (fs->num_sampler_prefetch > 0) {
1171 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
1172 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1173 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1174 tu_cs_emit(cs,
1175 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
1176 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
1177 }
1178 }
1179
1180 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1181 tu_cs_emit(cs, 0x7);
1182 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1183 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1184 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1185 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_regid[IJ_PERSP_SIZE]));
1186 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_PIXEL(ij_regid[IJ_PERSP_PIXEL]) |
1187 A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_PIXEL(ij_regid[IJ_LINEAR_PIXEL]) |
1188 A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_CENTROID(ij_regid[IJ_PERSP_CENTROID]) |
1189 A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_CENTROID(ij_regid[IJ_LINEAR_CENTROID]));
1190 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1191 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1192 A6XX_HLSQ_CONTROL_4_REG_IJ_PERSP_SAMPLE(ij_regid[IJ_PERSP_SAMPLE]) |
1193 A6XX_HLSQ_CONTROL_4_REG_IJ_LINEAR_SAMPLE(ij_regid[IJ_LINEAR_SAMPLE]));
1194 tu_cs_emit(cs, 0xfc);
1195
1196 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1197 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1198
1199 bool need_size = fs->frag_face || fs->fragcoord_compmask != 0;
1200 bool need_size_persamp = false;
1201 if (VALIDREG(ij_regid[IJ_PERSP_SIZE])) {
1202 if (sample_shading)
1203 need_size_persamp = true;
1204 else
1205 need_size = true;
1206 }
1207 if (VALIDREG(ij_regid[IJ_LINEAR_PIXEL]))
1208 need_size = true;
1209
1210 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1211 tu_cs_emit(cs,
1212 CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_GRAS_CNTL_IJ_PERSP_PIXEL) |
1213 CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_GRAS_CNTL_IJ_PERSP_CENTROID) |
1214 CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_GRAS_CNTL_IJ_PERSP_SAMPLE) |
1215 COND(need_size, A6XX_GRAS_CNTL_SIZE) |
1216 COND(need_size_persamp, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1217 COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)));
1218
1219 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1220 tu_cs_emit(cs,
1221 CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_PIXEL) |
1222 CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_CENTROID) |
1223 CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_SAMPLE) |
1224 COND(need_size, A6XX_RB_RENDER_CONTROL0_SIZE) |
1225 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1226 COND(need_size_persamp, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1227 COND(fs->fragcoord_compmask != 0,
1228 A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)));
1229 tu_cs_emit(cs,
1230 /* these two bits (UNK4/UNK5) relate to fragcoord
1231 * without them, fragcoord is the same for all samples
1232 */
1233 COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK4) |
1234 COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK5) |
1235 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1236 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1237 CONDREG(ij_regid[IJ_PERSP_SIZE], A6XX_RB_RENDER_CONTROL1_SIZE) |
1238 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1239
1240 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1241 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1242
1243 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1244 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1245
1246 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1247 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1248 }
1249
1250 static void
1251 tu6_emit_fs_outputs(struct tu_cs *cs,
1252 const struct ir3_shader_variant *fs,
1253 uint32_t mrt_count, bool dual_src_blend,
1254 uint32_t render_components,
1255 bool is_s8_uint)
1256 {
1257 uint32_t smask_regid, posz_regid, stencilref_regid;
1258
1259 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1260 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1261 stencilref_regid = ir3_find_output_regid(fs, FRAG_RESULT_STENCIL);
1262
1263 uint32_t fragdata_regid[8];
1264 if (fs->color0_mrt) {
1265 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1266 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1267 fragdata_regid[i] = fragdata_regid[0];
1268 } else {
1269 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1270 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1271 }
1272
1273 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1274 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1275 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1276 A6XX_SP_FS_OUTPUT_CNTL0_STENCILREF_REGID(stencilref_regid) |
1277 COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
1278 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1279
1280 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1281 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1282 // TODO we could have a mix of half and full precision outputs,
1283 // we really need to figure out half-precision from IR3_REG_HALF
1284 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1285 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1286 }
1287
1288 tu_cs_emit_regs(cs,
1289 A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
1290
1291 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1292 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1293 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
1294 COND(fs->writes_stencilref, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_STENCILREF) |
1295 COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
1296 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1297
1298 tu_cs_emit_regs(cs,
1299 A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
1300
1301 enum a6xx_ztest_mode zmode;
1302
1303 if (fs->no_earlyz || fs->has_kill || fs->writes_pos || fs->writes_stencilref || is_s8_uint) {
1304 zmode = A6XX_LATE_Z;
1305 } else {
1306 zmode = A6XX_EARLY_Z;
1307 }
1308
1309 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1310 tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1311
1312 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1313 tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1314 }
1315
1316 static void
1317 tu6_emit_geom_tess_consts(struct tu_cs *cs,
1318 const struct ir3_shader_variant *vs,
1319 const struct ir3_shader_variant *hs,
1320 const struct ir3_shader_variant *ds,
1321 const struct ir3_shader_variant *gs,
1322 uint32_t cps_per_patch)
1323 {
1324 uint32_t num_vertices =
1325 hs ? cps_per_patch : gs->shader->nir->info.gs.vertices_in;
1326
1327 uint32_t vs_params[4] = {
1328 vs->output_size * num_vertices * 4, /* vs primitive stride */
1329 vs->output_size * 4, /* vs vertex stride */
1330 0,
1331 0,
1332 };
1333 uint32_t vs_base = ir3_const_state(vs)->offsets.primitive_param;
1334 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1335 ARRAY_SIZE(vs_params), vs_params);
1336
1337 if (hs) {
1338 assert(ds->type != MESA_SHADER_NONE);
1339 uint32_t hs_params[4] = {
1340 vs->output_size * num_vertices * 4, /* hs primitive stride */
1341 vs->output_size * 4, /* hs vertex stride */
1342 hs->output_size,
1343 cps_per_patch,
1344 };
1345
1346 uint32_t hs_base = hs->const_state->offsets.primitive_param;
1347 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, hs_base, SB6_HS_SHADER, 0,
1348 ARRAY_SIZE(hs_params), hs_params);
1349 if (gs)
1350 num_vertices = gs->shader->nir->info.gs.vertices_in;
1351
1352 uint32_t ds_params[4] = {
1353 ds->output_size * num_vertices * 4, /* ds primitive stride */
1354 ds->output_size * 4, /* ds vertex stride */
1355 hs->output_size, /* hs vertex stride (dwords) */
1356 hs->shader->nir->info.tess.tcs_vertices_out
1357 };
1358
1359 uint32_t ds_base = ds->const_state->offsets.primitive_param;
1360 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, ds_base, SB6_DS_SHADER, 0,
1361 ARRAY_SIZE(ds_params), ds_params);
1362 }
1363
1364 if (gs) {
1365 const struct ir3_shader_variant *prev = ds ? ds : vs;
1366 uint32_t gs_params[4] = {
1367 prev->output_size * num_vertices * 4, /* gs primitive stride */
1368 prev->output_size * 4, /* gs vertex stride */
1369 0,
1370 0,
1371 };
1372 uint32_t gs_base = gs->const_state->offsets.primitive_param;
1373 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1374 ARRAY_SIZE(gs_params), gs_params);
1375 }
1376 }
1377
1378 static void
1379 tu6_emit_program(struct tu_cs *cs,
1380 struct tu_pipeline_builder *builder,
1381 bool binning_pass)
1382 {
1383 const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
1384 const struct ir3_shader_variant *bs = builder->binning_variant;
1385 const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL];
1386 const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL];
1387 const struct ir3_shader_variant *gs = builder->variants[MESA_SHADER_GEOMETRY];
1388 const struct ir3_shader_variant *fs = builder->variants[MESA_SHADER_FRAGMENT];
1389 gl_shader_stage stage = MESA_SHADER_VERTEX;
1390 uint32_t cps_per_patch = builder->create_info->pTessellationState ?
1391 builder->create_info->pTessellationState->patchControlPoints : 0;
1392
1393 STATIC_ASSERT(MESA_SHADER_VERTEX == 0);
1394
1395 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
1396 .vs_state = true,
1397 .hs_state = true,
1398 .ds_state = true,
1399 .gs_state = true,
1400 .fs_state = true,
1401 .gfx_ibo = true));
1402
1403 /* Don't use the binning pass variant when GS is present because we don't
1404 * support compiling correct binning pass variants with GS.
1405 */
1406 if (binning_pass && !gs) {
1407 vs = bs;
1408 tu6_emit_xs_config(cs, stage, bs, builder->binning_vs_iova);
1409 stage++;
1410 }
1411
1412 for (; stage < ARRAY_SIZE(builder->shaders); stage++) {
1413 const struct ir3_shader_variant *xs = builder->variants[stage];
1414
1415 if (stage == MESA_SHADER_FRAGMENT && binning_pass)
1416 fs = xs = NULL;
1417
1418 tu6_emit_xs_config(cs, stage, xs, builder->shader_iova[stage]);
1419 }
1420
1421 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
1422 tu_cs_emit(cs, 0);
1423
1424 tu6_emit_vpc(cs, vs, hs, ds, gs, fs, cps_per_patch,
1425 builder->device->physical_device->gpu_id == 650);
1426 tu6_emit_vpc_varying_modes(cs, fs);
1427
1428 if (fs) {
1429 tu6_emit_fs_inputs(cs, fs);
1430 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
1431 builder->use_dual_src_blend,
1432 builder->render_components,
1433 builder->depth_attachment_format == VK_FORMAT_S8_UINT);
1434 } else {
1435 /* TODO: check if these can be skipped if fs is disabled */
1436 struct ir3_shader_variant dummy_variant = {};
1437 tu6_emit_fs_inputs(cs, &dummy_variant);
1438 tu6_emit_fs_outputs(cs, &dummy_variant, builder->color_attachment_count,
1439 builder->use_dual_src_blend,
1440 builder->render_components,
1441 builder->depth_attachment_format == VK_FORMAT_S8_UINT);
1442 }
1443
1444 if (gs || hs) {
1445 tu6_emit_geom_tess_consts(cs, vs, hs, ds, gs, cps_per_patch);
1446 }
1447 }
1448
1449 static void
1450 tu6_emit_vertex_input(struct tu_cs *cs,
1451 const struct ir3_shader_variant *vs,
1452 const VkPipelineVertexInputStateCreateInfo *info,
1453 uint32_t *bindings_used)
1454 {
1455 uint32_t vfd_decode_idx = 0;
1456 uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
1457 uint32_t step_rate[MAX_VBS];
1458
1459 for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
1460 const VkVertexInputBindingDescription *binding =
1461 &info->pVertexBindingDescriptions[i];
1462
1463 tu_cs_emit_regs(cs,
1464 A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride));
1465
1466 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1467 binding_instanced |= 1 << binding->binding;
1468
1469 *bindings_used |= 1 << binding->binding;
1470 step_rate[binding->binding] = 1;
1471 }
1472
1473 const VkPipelineVertexInputDivisorStateCreateInfoEXT *div_state =
1474 vk_find_struct_const(info->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1475 if (div_state) {
1476 for (uint32_t i = 0; i < div_state->vertexBindingDivisorCount; i++) {
1477 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1478 &div_state->pVertexBindingDivisors[i];
1479 step_rate[desc->binding] = desc->divisor;
1480 }
1481 }
1482
1483 /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
1484
1485 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
1486 const VkVertexInputAttributeDescription *attr =
1487 &info->pVertexAttributeDescriptions[i];
1488 uint32_t input_idx;
1489
1490 assert(*bindings_used & BIT(attr->binding));
1491
1492 for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
1493 if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
1494 break;
1495 }
1496
1497 /* attribute not used, skip it */
1498 if (input_idx == vs->inputs_count)
1499 continue;
1500
1501 const struct tu_native_format format = tu6_format_vtx(attr->format);
1502 tu_cs_emit_regs(cs,
1503 A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
1504 .idx = attr->binding,
1505 .offset = attr->offset,
1506 .instanced = binding_instanced & (1 << attr->binding),
1507 .format = format.fmt,
1508 .swap = format.swap,
1509 .unk30 = 1,
1510 ._float = !vk_format_is_int(attr->format)),
1511 A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, step_rate[attr->binding]));
1512
1513 tu_cs_emit_regs(cs,
1514 A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
1515 .writemask = vs->inputs[input_idx].compmask,
1516 .regid = vs->inputs[input_idx].regid));
1517
1518 vfd_decode_idx++;
1519 }
1520
1521 tu_cs_emit_regs(cs,
1522 A6XX_VFD_CONTROL_0(
1523 .fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */
1524 .decode_cnt = vfd_decode_idx));
1525 }
1526
1527 void
1528 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1529 {
1530 float offsets[3];
1531 float scales[3];
1532 scales[0] = viewport->width / 2.0f;
1533 scales[1] = viewport->height / 2.0f;
1534 scales[2] = viewport->maxDepth - viewport->minDepth;
1535 offsets[0] = viewport->x + scales[0];
1536 offsets[1] = viewport->y + scales[1];
1537 offsets[2] = viewport->minDepth;
1538
1539 VkOffset2D min;
1540 VkOffset2D max;
1541 min.x = (int32_t) viewport->x;
1542 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1543 if (viewport->height >= 0.0f) {
1544 min.y = (int32_t) viewport->y;
1545 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1546 } else {
1547 min.y = (int32_t)(viewport->y + viewport->height);
1548 max.y = (int32_t) ceilf(viewport->y);
1549 }
1550 /* the spec allows viewport->height to be 0.0f */
1551 if (min.y == max.y)
1552 max.y++;
1553 assert(min.x >= 0 && min.x < max.x);
1554 assert(min.y >= 0 && min.y < max.y);
1555
1556 VkExtent2D guardband_adj;
1557 guardband_adj.width = fd_calc_guardband(offsets[0], scales[0], false);
1558 guardband_adj.height = fd_calc_guardband(offsets[1], scales[1], false);
1559
1560 tu_cs_emit_regs(cs,
1561 A6XX_GRAS_CL_VPORT_XOFFSET(0, offsets[0]),
1562 A6XX_GRAS_CL_VPORT_XSCALE(0, scales[0]),
1563 A6XX_GRAS_CL_VPORT_YOFFSET(0, offsets[1]),
1564 A6XX_GRAS_CL_VPORT_YSCALE(0, scales[1]),
1565 A6XX_GRAS_CL_VPORT_ZOFFSET(0, offsets[2]),
1566 A6XX_GRAS_CL_VPORT_ZSCALE(0, scales[2]));
1567
1568 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL(0), 2);
1569 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_X(min.x) |
1570 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_Y(min.y));
1571 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_X(max.x - 1) |
1572 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_Y(max.y - 1));
1573
1574 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1575 tu_cs_emit(cs,
1576 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1577 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1578
1579 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1580 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1581
1582 tu_cs_emit_regs(cs,
1583 A6XX_GRAS_CL_Z_CLAMP_MIN(0, z_clamp_min),
1584 A6XX_GRAS_CL_Z_CLAMP_MAX(0, z_clamp_max));
1585
1586 tu_cs_emit_regs(cs,
1587 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1588 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1589 }
1590
1591 void
1592 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1593 {
1594 VkOffset2D min = scissor->offset;
1595 VkOffset2D max = {
1596 scissor->offset.x + scissor->extent.width,
1597 scissor->offset.y + scissor->extent.height,
1598 };
1599
1600 /* special case for empty scissor with max == 0 to avoid overflow */
1601 if (max.x == 0)
1602 min.x = max.x = 1;
1603 if (max.y == 0)
1604 min.y = max.y = 1;
1605
1606 /* avoid overflow with large scissor
1607 * note the max will be limited to min - 1, so that empty scissor works
1608 */
1609 uint32_t scissor_max = BITFIELD_MASK(15);
1610 min.x = MIN2(scissor_max, min.x);
1611 min.y = MIN2(scissor_max, min.y);
1612 max.x = MIN2(scissor_max, max.x);
1613 max.y = MIN2(scissor_max, max.y);
1614
1615 tu_cs_emit_regs(cs,
1616 A6XX_GRAS_SC_SCREEN_SCISSOR_TL(0, .x = min.x, .y = min.y),
1617 A6XX_GRAS_SC_SCREEN_SCISSOR_BR(0, .x = max.x - 1, .y = max.y - 1));
1618 }
1619
1620 void
1621 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
1622 {
1623 if (!samp_loc) {
1624 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
1625 tu_cs_emit(cs, 0);
1626
1627 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
1628 tu_cs_emit(cs, 0);
1629
1630 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
1631 tu_cs_emit(cs, 0);
1632 return;
1633 }
1634
1635 assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
1636 assert(samp_loc->sampleLocationGridSize.width == 1);
1637 assert(samp_loc->sampleLocationGridSize.height == 1);
1638
1639 uint32_t sample_config =
1640 A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
1641 uint32_t sample_locations = 0;
1642 for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
1643 sample_locations |=
1644 (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
1645 A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
1646 }
1647
1648 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
1649 tu_cs_emit(cs, sample_config);
1650 tu_cs_emit(cs, sample_locations);
1651
1652 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
1653 tu_cs_emit(cs, sample_config);
1654 tu_cs_emit(cs, sample_locations);
1655
1656 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
1657 tu_cs_emit(cs, sample_config);
1658 tu_cs_emit(cs, sample_locations);
1659 }
1660
1661 static uint32_t
1662 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1663 VkSampleCountFlagBits samples)
1664 {
1665 uint32_t gras_su_cntl = 0;
1666
1667 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1668 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1669 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1670 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1671
1672 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1673 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1674
1675 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1676
1677 if (rast_info->depthBiasEnable)
1678 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1679
1680 if (samples > VK_SAMPLE_COUNT_1_BIT)
1681 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1682
1683 return gras_su_cntl;
1684 }
1685
1686 void
1687 tu6_emit_depth_bias(struct tu_cs *cs,
1688 float constant_factor,
1689 float clamp,
1690 float slope_factor)
1691 {
1692 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1693 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1694 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1695 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1696 }
1697
1698 static void
1699 tu6_emit_depth_control(struct tu_cs *cs,
1700 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1701 const VkPipelineRasterizationStateCreateInfo *rast_info)
1702 {
1703 uint32_t rb_depth_cntl = 0;
1704 if (ds_info->depthTestEnable) {
1705 rb_depth_cntl |=
1706 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1707 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1708 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE; /* TODO: don't set for ALWAYS/NEVER */
1709
1710 if (rast_info->depthClampEnable)
1711 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1712
1713 if (ds_info->depthWriteEnable)
1714 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1715 }
1716
1717 if (ds_info->depthBoundsTestEnable)
1718 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE | A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1719
1720 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1721 tu_cs_emit(cs, rb_depth_cntl);
1722 }
1723
1724 static void
1725 tu6_emit_stencil_control(struct tu_cs *cs,
1726 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1727 {
1728 uint32_t rb_stencil_control = 0;
1729 if (ds_info->stencilTestEnable) {
1730 const VkStencilOpState *front = &ds_info->front;
1731 const VkStencilOpState *back = &ds_info->back;
1732 rb_stencil_control |=
1733 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1734 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1735 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1736 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1737 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1738 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1739 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1740 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1741 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1742 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1743 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1744 }
1745
1746 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1747 tu_cs_emit(cs, rb_stencil_control);
1748 }
1749
1750 static uint32_t
1751 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1752 bool has_alpha)
1753 {
1754 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1755 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1756 has_alpha ? att->srcColorBlendFactor
1757 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1758 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1759 has_alpha ? att->dstColorBlendFactor
1760 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1761 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1762 const enum adreno_rb_blend_factor src_alpha_factor =
1763 tu6_blend_factor(att->srcAlphaBlendFactor);
1764 const enum adreno_rb_blend_factor dst_alpha_factor =
1765 tu6_blend_factor(att->dstAlphaBlendFactor);
1766
1767 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1768 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1769 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1770 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1771 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1772 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1773 }
1774
1775 static uint32_t
1776 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1777 uint32_t rb_mrt_control_rop,
1778 bool is_int,
1779 bool has_alpha)
1780 {
1781 uint32_t rb_mrt_control =
1782 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1783
1784 /* ignore blending and logic op for integer attachments */
1785 if (is_int) {
1786 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1787 return rb_mrt_control;
1788 }
1789
1790 rb_mrt_control |= rb_mrt_control_rop;
1791
1792 if (att->blendEnable) {
1793 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1794
1795 if (has_alpha)
1796 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1797 }
1798
1799 return rb_mrt_control;
1800 }
1801
1802 static void
1803 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1804 const VkPipelineColorBlendStateCreateInfo *blend_info,
1805 const VkFormat attachment_formats[MAX_RTS],
1806 uint32_t *blend_enable_mask)
1807 {
1808 *blend_enable_mask = 0;
1809
1810 bool rop_reads_dst = false;
1811 uint32_t rb_mrt_control_rop = 0;
1812 if (blend_info->logicOpEnable) {
1813 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1814 rb_mrt_control_rop =
1815 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1816 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1817 }
1818
1819 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1820 const VkPipelineColorBlendAttachmentState *att =
1821 &blend_info->pAttachments[i];
1822 const VkFormat format = attachment_formats[i];
1823
1824 uint32_t rb_mrt_control = 0;
1825 uint32_t rb_mrt_blend_control = 0;
1826 if (format != VK_FORMAT_UNDEFINED) {
1827 const bool is_int = vk_format_is_int(format);
1828 const bool has_alpha = vk_format_has_alpha(format);
1829
1830 rb_mrt_control =
1831 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1832 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1833
1834 if (att->blendEnable || rop_reads_dst)
1835 *blend_enable_mask |= 1 << i;
1836 }
1837
1838 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1839 tu_cs_emit(cs, rb_mrt_control);
1840 tu_cs_emit(cs, rb_mrt_blend_control);
1841 }
1842 }
1843
1844 static void
1845 tu6_emit_blend_control(struct tu_cs *cs,
1846 uint32_t blend_enable_mask,
1847 bool dual_src_blend,
1848 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1849 {
1850 const uint32_t sample_mask =
1851 msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff)
1852 : ((1 << msaa_info->rasterizationSamples) - 1);
1853
1854 tu_cs_emit_regs(cs,
1855 A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask,
1856 .dual_color_in_enable = dual_src_blend,
1857 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1858 .unk8 = true));
1859
1860 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1861 tu_cs_emit_regs(cs,
1862 A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask,
1863 .independent_blend = true,
1864 .sample_mask = sample_mask,
1865 .dual_color_in_enable = dual_src_blend,
1866 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1867 .alpha_to_one = msaa_info->alphaToOneEnable));
1868 }
1869
1870 static VkResult
1871 tu_pipeline_allocate_cs(struct tu_device *dev,
1872 struct tu_pipeline *pipeline,
1873 struct tu_pipeline_builder *builder,
1874 struct ir3_shader_variant *compute)
1875 {
1876 uint32_t size = 2048 + tu6_load_state_size(pipeline, compute);
1877
1878 /* graphics case: */
1879 if (builder) {
1880 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1881 if (builder->variants[i])
1882 size += builder->variants[i]->info.sizedwords;
1883 }
1884
1885 size += builder->binning_variant->info.sizedwords;
1886 } else {
1887 size += compute->info.sizedwords;
1888 }
1889
1890 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, size);
1891
1892 /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
1893 * that LOAD_STATE can potentially take up a large amount of space so we
1894 * calculate its size explicitly.
1895 */
1896 return tu_cs_reserve_space(&pipeline->cs, size);
1897 }
1898
1899 static void
1900 tu_pipeline_shader_key_init(struct ir3_shader_key *key,
1901 const VkGraphicsPipelineCreateInfo *pipeline_info)
1902 {
1903 for (uint32_t i = 0; i < pipeline_info->stageCount; i++) {
1904 if (pipeline_info->pStages[i].stage == VK_SHADER_STAGE_GEOMETRY_BIT) {
1905 key->has_gs = true;
1906 break;
1907 }
1908 }
1909
1910 if (pipeline_info->pRasterizationState->rasterizerDiscardEnable)
1911 return;
1912
1913 const VkPipelineMultisampleStateCreateInfo *msaa_info = pipeline_info->pMultisampleState;
1914 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
1915 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
1916 if (msaa_info->rasterizationSamples > 1 ||
1917 /* also set msaa key when sample location is not the default
1918 * since this affects varying interpolation */
1919 (sample_locations && sample_locations->sampleLocationsEnable)) {
1920 key->msaa = true;
1921 }
1922
1923 /* note: not actually used by ir3, just checked in tu6_emit_fs_inputs */
1924 if (msaa_info->sampleShadingEnable)
1925 key->sample_shading = true;
1926
1927 /* We set this after we compile to NIR because we need the prim mode */
1928 key->tessellation = IR3_TESS_NONE;
1929 }
1930
1931 static uint32_t
1932 tu6_get_tessmode(struct tu_shader* shader)
1933 {
1934 uint32_t primitive_mode = shader->ir3_shader->nir->info.tess.primitive_mode;
1935 switch (primitive_mode) {
1936 case GL_ISOLINES:
1937 return IR3_TESS_ISOLINES;
1938 case GL_TRIANGLES:
1939 return IR3_TESS_TRIANGLES;
1940 case GL_QUADS:
1941 return IR3_TESS_QUADS;
1942 case GL_NONE:
1943 return IR3_TESS_NONE;
1944 default:
1945 unreachable("bad tessmode");
1946 }
1947 }
1948
1949 static uint64_t
1950 tu_upload_variant(struct tu_pipeline *pipeline,
1951 const struct ir3_shader_variant *variant)
1952 {
1953 struct tu_cs_memory memory;
1954
1955 if (!variant)
1956 return 0;
1957
1958 /* this expects to get enough alignment because shaders are allocated first
1959 * and sizedwords is always aligned correctly
1960 * note: an assert in tu6_emit_xs_config validates the alignment
1961 */
1962 tu_cs_alloc(&pipeline->cs, variant->info.sizedwords, 1, &memory);
1963
1964 memcpy(memory.map, variant->bin, sizeof(uint32_t) * variant->info.sizedwords);
1965 return memory.iova;
1966 }
1967
1968 static VkResult
1969 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder,
1970 struct tu_pipeline *pipeline)
1971 {
1972 const struct ir3_compiler *compiler = builder->device->compiler;
1973 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1974 NULL
1975 };
1976 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1977 gl_shader_stage stage =
1978 vk_to_mesa_shader_stage(builder->create_info->pStages[i].stage);
1979 stage_infos[stage] = &builder->create_info->pStages[i];
1980 }
1981
1982 struct ir3_shader_key key = {};
1983 tu_pipeline_shader_key_init(&key, builder->create_info);
1984
1985 for (gl_shader_stage stage = MESA_SHADER_VERTEX;
1986 stage < MESA_SHADER_STAGES; stage++) {
1987 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1988 if (!stage_info && stage != MESA_SHADER_FRAGMENT)
1989 continue;
1990
1991 struct tu_shader *shader =
1992 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1993 builder->alloc);
1994 if (!shader)
1995 return VK_ERROR_OUT_OF_HOST_MEMORY;
1996
1997 /* In SPIR-V generated from GLSL, the primitive mode is specified in the
1998 * tessellation evaluation shader, but in SPIR-V generated from HLSL,
1999 * the mode is specified in the tessellation control shader. */
2000 if ((stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_TESS_CTRL) &&
2001 key.tessellation == IR3_TESS_NONE) {
2002 key.tessellation = tu6_get_tessmode(shader);
2003 }
2004
2005 builder->shaders[stage] = shader;
2006 }
2007
2008 struct tu_shader *gs = builder->shaders[MESA_SHADER_GEOMETRY];
2009 key.layer_zero =
2010 !gs || !(gs->ir3_shader->nir->info.outputs_written & VARYING_SLOT_LAYER);
2011
2012 pipeline->tess.patch_type = key.tessellation;
2013
2014 for (gl_shader_stage stage = MESA_SHADER_VERTEX;
2015 stage < MESA_SHADER_STAGES; stage++) {
2016 if (!builder->shaders[stage])
2017 continue;
2018
2019 bool created;
2020 builder->variants[stage] =
2021 ir3_shader_get_variant(builder->shaders[stage]->ir3_shader,
2022 &key, false, &created);
2023 if (!builder->variants[stage])
2024 return VK_ERROR_OUT_OF_HOST_MEMORY;
2025 }
2026
2027 uint32_t safe_constlens = ir3_trim_constlen(builder->variants, compiler);
2028
2029 key.safe_constlen = true;
2030
2031 for (gl_shader_stage stage = MESA_SHADER_VERTEX;
2032 stage < MESA_SHADER_STAGES; stage++) {
2033 if (!builder->shaders[stage])
2034 continue;
2035
2036 if (safe_constlens & (1 << stage)) {
2037 bool created;
2038 builder->variants[stage] =
2039 ir3_shader_get_variant(builder->shaders[stage]->ir3_shader,
2040 &key, false, &created);
2041 if (!builder->variants[stage])
2042 return VK_ERROR_OUT_OF_HOST_MEMORY;
2043 }
2044 }
2045
2046 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2047 struct ir3_shader_variant *variant;
2048
2049 if (vs->ir3_shader->stream_output.num_outputs ||
2050 !ir3_has_binning_vs(&key)) {
2051 variant = builder->variants[MESA_SHADER_VERTEX];
2052 } else {
2053 bool created;
2054 key.safe_constlen = !!(safe_constlens & (1 << MESA_SHADER_VERTEX));
2055 variant = ir3_shader_get_variant(vs->ir3_shader, &key,
2056 true, &created);
2057 if (!variant)
2058 return VK_ERROR_OUT_OF_HOST_MEMORY;
2059 }
2060
2061 builder->binning_variant = variant;
2062
2063 return VK_SUCCESS;
2064 }
2065
2066 static void
2067 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
2068 struct tu_pipeline *pipeline)
2069 {
2070 const VkPipelineDynamicStateCreateInfo *dynamic_info =
2071 builder->create_info->pDynamicState;
2072
2073 if (!dynamic_info)
2074 return;
2075
2076 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
2077 VkDynamicState state = dynamic_info->pDynamicStates[i];
2078 switch (state) {
2079 case VK_DYNAMIC_STATE_VIEWPORT ... VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2080 pipeline->dynamic_state_mask |= BIT(state);
2081 break;
2082 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
2083 pipeline->dynamic_state_mask |= BIT(TU_DYNAMIC_STATE_SAMPLE_LOCATIONS);
2084 break;
2085 default:
2086 assert(!"unsupported dynamic state");
2087 break;
2088 }
2089 }
2090 }
2091
2092 static void
2093 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
2094 struct tu_shader *shader,
2095 struct ir3_shader_variant *v)
2096 {
2097 link->const_state = *ir3_const_state(v);
2098 link->constlen = v->constlen;
2099 link->push_consts = shader->push_consts;
2100 }
2101
2102 static void
2103 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
2104 struct tu_pipeline *pipeline)
2105 {
2106 struct tu_cs prog_cs;
2107 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2108 tu6_emit_program(&prog_cs, builder, false);
2109 pipeline->program.state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs);
2110
2111 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2112 tu6_emit_program(&prog_cs, builder, true);
2113 pipeline->program.binning_state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs);
2114
2115 VkShaderStageFlags stages = 0;
2116 for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
2117 stages |= builder->create_info->pStages[i].stage;
2118 }
2119 pipeline->active_stages = stages;
2120
2121 uint32_t desc_sets = 0;
2122 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2123 if (!builder->shaders[i])
2124 continue;
2125
2126 tu_pipeline_set_linkage(&pipeline->program.link[i],
2127 builder->shaders[i],
2128 builder->variants[i]);
2129 desc_sets |= builder->shaders[i]->active_desc_sets;
2130 }
2131 pipeline->active_desc_sets = desc_sets;
2132 }
2133
2134 static void
2135 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
2136 struct tu_pipeline *pipeline)
2137 {
2138 const VkPipelineVertexInputStateCreateInfo *vi_info =
2139 builder->create_info->pVertexInputState;
2140 const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
2141 const struct ir3_shader_variant *bs = builder->binning_variant;
2142
2143 struct tu_cs vi_cs;
2144 tu_cs_begin_sub_stream(&pipeline->cs,
2145 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2146 tu6_emit_vertex_input(&vi_cs, vs, vi_info,
2147 &pipeline->vi.bindings_used);
2148 pipeline->vi.state = tu_cs_end_draw_state(&pipeline->cs, &vi_cs);
2149
2150 if (bs) {
2151 tu_cs_begin_sub_stream(&pipeline->cs,
2152 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2153 tu6_emit_vertex_input(
2154 &vi_cs, bs, vi_info, &pipeline->vi.bindings_used);
2155 pipeline->vi.binning_state =
2156 tu_cs_end_draw_state(&pipeline->cs, &vi_cs);
2157 }
2158 }
2159
2160 static void
2161 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2162 struct tu_pipeline *pipeline)
2163 {
2164 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2165 builder->create_info->pInputAssemblyState;
2166
2167 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2168 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2169 }
2170
2171 static bool
2172 tu_pipeline_static_state(struct tu_pipeline *pipeline, struct tu_cs *cs,
2173 uint32_t id, uint32_t size)
2174 {
2175 assert(id < ARRAY_SIZE(pipeline->dynamic_state));
2176
2177 if (pipeline->dynamic_state_mask & BIT(id))
2178 return false;
2179
2180 pipeline->dynamic_state[id] = tu_cs_draw_state(&pipeline->cs, cs, size);
2181 return true;
2182 }
2183
2184 static void
2185 tu_pipeline_builder_parse_tessellation(struct tu_pipeline_builder *builder,
2186 struct tu_pipeline *pipeline)
2187 {
2188 const VkPipelineTessellationStateCreateInfo *tess_info =
2189 builder->create_info->pTessellationState;
2190
2191 if (!tess_info)
2192 return;
2193
2194 assert(pipeline->ia.primtype == DI_PT_PATCHES0);
2195 assert(tess_info->patchControlPoints <= 32);
2196 pipeline->ia.primtype += tess_info->patchControlPoints;
2197 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_info =
2198 vk_find_struct_const(tess_info->pNext, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
2199 pipeline->tess.upper_left_domain_origin = !domain_info ||
2200 domain_info->domainOrigin == VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
2201 const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL];
2202 const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL];
2203 pipeline->tess.param_stride = hs->output_size * 4;
2204 pipeline->tess.hs_bo_regid = hs->const_state->offsets.primitive_param + 1;
2205 pipeline->tess.ds_bo_regid = ds->const_state->offsets.primitive_param + 1;
2206 }
2207
2208 static void
2209 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2210 struct tu_pipeline *pipeline)
2211 {
2212 /* The spec says:
2213 *
2214 * pViewportState is a pointer to an instance of the
2215 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2216 * pipeline has rasterization disabled."
2217 *
2218 * We leave the relevant registers stale in that case.
2219 */
2220 if (builder->rasterizer_discard)
2221 return;
2222
2223 const VkPipelineViewportStateCreateInfo *vp_info =
2224 builder->create_info->pViewportState;
2225
2226 struct tu_cs cs;
2227
2228 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_VIEWPORT, 18))
2229 tu6_emit_viewport(&cs, vp_info->pViewports);
2230
2231 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_SCISSOR, 3))
2232 tu6_emit_scissor(&cs, vp_info->pScissors);
2233 }
2234
2235 static void
2236 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2237 struct tu_pipeline *pipeline)
2238 {
2239 const VkPipelineRasterizationStateCreateInfo *rast_info =
2240 builder->create_info->pRasterizationState;
2241
2242 enum a6xx_polygon_mode mode = tu6_polygon_mode(rast_info->polygonMode);
2243
2244 bool depth_clip_disable = rast_info->depthClampEnable;
2245
2246 const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state =
2247 vk_find_struct_const(rast_info, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
2248 if (depth_clip_state)
2249 depth_clip_disable = !depth_clip_state->depthClipEnable;
2250
2251 struct tu_cs cs;
2252 pipeline->rast_state = tu_cs_draw_state(&pipeline->cs, &cs, 9);
2253
2254 tu_cs_emit_regs(&cs,
2255 A6XX_GRAS_CL_CNTL(
2256 .znear_clip_disable = depth_clip_disable,
2257 .zfar_clip_disable = depth_clip_disable,
2258 /* TODO should this be depth_clip_disable instead? */
2259 .unk5 = rast_info->depthClampEnable,
2260 .zero_gb_scale_z = 1,
2261 .vp_clip_code_ignore = 1));
2262
2263 tu_cs_emit_regs(&cs,
2264 A6XX_VPC_POLYGON_MODE(mode));
2265
2266 tu_cs_emit_regs(&cs,
2267 A6XX_PC_POLYGON_MODE(mode));
2268
2269 /* move to hw ctx init? */
2270 tu_cs_emit_regs(&cs,
2271 A6XX_GRAS_SU_POINT_MINMAX(.min = 1.0f / 16.0f, .max = 4092.0f),
2272 A6XX_GRAS_SU_POINT_SIZE(1.0f));
2273
2274 pipeline->gras_su_cntl =
2275 tu6_gras_su_cntl(rast_info, builder->samples);
2276
2277 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_LINE_WIDTH, 2)) {
2278 pipeline->gras_su_cntl |=
2279 A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(rast_info->lineWidth / 2.0f);
2280 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = pipeline->gras_su_cntl));
2281 }
2282
2283 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BIAS, 4)) {
2284 tu6_emit_depth_bias(&cs, rast_info->depthBiasConstantFactor,
2285 rast_info->depthBiasClamp,
2286 rast_info->depthBiasSlopeFactor);
2287 }
2288
2289 }
2290
2291 static void
2292 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2293 struct tu_pipeline *pipeline)
2294 {
2295 /* The spec says:
2296 *
2297 * pDepthStencilState is a pointer to an instance of the
2298 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2299 * the pipeline has rasterization disabled or if the subpass of the
2300 * render pass the pipeline is created against does not use a
2301 * depth/stencil attachment.
2302 *
2303 * Disable both depth and stencil tests if there is no ds attachment,
2304 * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
2305 * only the separate stencil attachment
2306 */
2307 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2308 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2309 builder->depth_attachment_format != VK_FORMAT_UNDEFINED
2310 ? builder->create_info->pDepthStencilState
2311 : &dummy_ds_info;
2312 const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
2313 builder->depth_attachment_format != VK_FORMAT_S8_UINT
2314 ? ds_info : &dummy_ds_info;
2315
2316 struct tu_cs cs;
2317 pipeline->ds_state = tu_cs_draw_state(&pipeline->cs, &cs, 6);
2318
2319 /* move to hw ctx init? */
2320 tu_cs_emit_regs(&cs, A6XX_RB_ALPHA_CONTROL());
2321 tu6_emit_depth_control(&cs, ds_info_depth,
2322 builder->create_info->pRasterizationState);
2323 tu6_emit_stencil_control(&cs, ds_info);
2324
2325 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3)) {
2326 tu_cs_emit_regs(&cs,
2327 A6XX_RB_Z_BOUNDS_MIN(ds_info->minDepthBounds),
2328 A6XX_RB_Z_BOUNDS_MAX(ds_info->maxDepthBounds));
2329 }
2330
2331 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2)) {
2332 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.mask = ds_info->front.compareMask & 0xff,
2333 .bfmask = ds_info->back.compareMask & 0xff));
2334 }
2335
2336 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2)) {
2337 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.wrmask = ds_info->front.writeMask & 0xff,
2338 .bfwrmask = ds_info->back.writeMask & 0xff));
2339 }
2340
2341 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2)) {
2342 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.ref = ds_info->front.reference & 0xff,
2343 .bfref = ds_info->back.reference & 0xff));
2344 }
2345 }
2346
2347 static void
2348 tu_pipeline_builder_parse_multisample_and_color_blend(
2349 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2350 {
2351 /* The spec says:
2352 *
2353 * pMultisampleState is a pointer to an instance of the
2354 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2355 * has rasterization disabled.
2356 *
2357 * Also,
2358 *
2359 * pColorBlendState is a pointer to an instance of the
2360 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2361 * pipeline has rasterization disabled or if the subpass of the render
2362 * pass the pipeline is created against does not use any color
2363 * attachments.
2364 *
2365 * We leave the relevant registers stale when rasterization is disabled.
2366 */
2367 if (builder->rasterizer_discard)
2368 return;
2369
2370 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2371 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2372 builder->create_info->pMultisampleState;
2373 const VkPipelineColorBlendStateCreateInfo *blend_info =
2374 builder->use_color_attachments ? builder->create_info->pColorBlendState
2375 : &dummy_blend_info;
2376
2377 struct tu_cs cs;
2378 pipeline->blend_state =
2379 tu_cs_draw_state(&pipeline->cs, &cs, blend_info->attachmentCount * 3 + 4);
2380
2381 uint32_t blend_enable_mask;
2382 tu6_emit_rb_mrt_controls(&cs, blend_info,
2383 builder->color_attachment_formats,
2384 &blend_enable_mask);
2385
2386 tu6_emit_blend_control(&cs, blend_enable_mask,
2387 builder->use_dual_src_blend, msaa_info);
2388
2389 assert(cs.cur == cs.end); /* validate draw state size */
2390
2391 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5)) {
2392 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2393 tu_cs_emit_array(&cs, (const uint32_t *) blend_info->blendConstants, 4);
2394 }
2395
2396 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
2397 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
2398 const VkSampleLocationsInfoEXT *samp_loc = NULL;
2399
2400 if (sample_locations && sample_locations->sampleLocationsEnable)
2401 samp_loc = &sample_locations->sampleLocationsInfo;
2402
2403 if (tu_pipeline_static_state(pipeline, &cs, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS,
2404 samp_loc ? 9 : 6)) {
2405 tu6_emit_sample_locations(&cs, samp_loc);
2406 }
2407 }
2408
2409 static void
2410 tu_pipeline_finish(struct tu_pipeline *pipeline,
2411 struct tu_device *dev,
2412 const VkAllocationCallbacks *alloc)
2413 {
2414 tu_cs_finish(&pipeline->cs);
2415 }
2416
2417 static VkResult
2418 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2419 struct tu_pipeline **pipeline)
2420 {
2421 VkResult result;
2422
2423 *pipeline = vk_object_zalloc(&builder->device->vk, builder->alloc,
2424 sizeof(**pipeline), VK_OBJECT_TYPE_PIPELINE);
2425 if (!*pipeline)
2426 return VK_ERROR_OUT_OF_HOST_MEMORY;
2427
2428 (*pipeline)->layout = builder->layout;
2429
2430 /* compile and upload shaders */
2431 result = tu_pipeline_builder_compile_shaders(builder, *pipeline);
2432 if (result != VK_SUCCESS) {
2433 vk_object_free(&builder->device->vk, builder->alloc, *pipeline);
2434 return result;
2435 }
2436
2437 result = tu_pipeline_allocate_cs(builder->device, *pipeline, builder, NULL);
2438 if (result != VK_SUCCESS) {
2439 vk_object_free(&builder->device->vk, builder->alloc, *pipeline);
2440 return result;
2441 }
2442
2443 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
2444 builder->shader_iova[i] = tu_upload_variant(*pipeline, builder->variants[i]);
2445
2446 builder->binning_vs_iova =
2447 tu_upload_variant(*pipeline, builder->binning_variant);
2448
2449 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2450 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2451 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2452 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2453 tu_pipeline_builder_parse_tessellation(builder, *pipeline);
2454 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2455 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2456 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2457 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2458 tu6_emit_load_state(*pipeline, false);
2459
2460 /* we should have reserved enough space upfront such that the CS never
2461 * grows
2462 */
2463 assert((*pipeline)->cs.bo_count == 1);
2464
2465 return VK_SUCCESS;
2466 }
2467
2468 static void
2469 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2470 {
2471 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2472 if (!builder->shaders[i])
2473 continue;
2474 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2475 }
2476 }
2477
2478 static void
2479 tu_pipeline_builder_init_graphics(
2480 struct tu_pipeline_builder *builder,
2481 struct tu_device *dev,
2482 struct tu_pipeline_cache *cache,
2483 const VkGraphicsPipelineCreateInfo *create_info,
2484 const VkAllocationCallbacks *alloc)
2485 {
2486 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2487
2488 *builder = (struct tu_pipeline_builder) {
2489 .device = dev,
2490 .cache = cache,
2491 .create_info = create_info,
2492 .alloc = alloc,
2493 .layout = layout,
2494 };
2495
2496 builder->rasterizer_discard =
2497 create_info->pRasterizationState->rasterizerDiscardEnable;
2498
2499 if (builder->rasterizer_discard) {
2500 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2501 } else {
2502 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2503
2504 const struct tu_render_pass *pass =
2505 tu_render_pass_from_handle(create_info->renderPass);
2506 const struct tu_subpass *subpass =
2507 &pass->subpasses[create_info->subpass];
2508
2509 const uint32_t a = subpass->depth_stencil_attachment.attachment;
2510 builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
2511 pass->attachments[a].format : VK_FORMAT_UNDEFINED;
2512
2513 assert(subpass->color_count == 0 ||
2514 !create_info->pColorBlendState ||
2515 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2516 builder->color_attachment_count = subpass->color_count;
2517 for (uint32_t i = 0; i < subpass->color_count; i++) {
2518 const uint32_t a = subpass->color_attachments[i].attachment;
2519 if (a == VK_ATTACHMENT_UNUSED)
2520 continue;
2521
2522 builder->color_attachment_formats[i] = pass->attachments[a].format;
2523 builder->use_color_attachments = true;
2524 builder->render_components |= 0xf << (i * 4);
2525 }
2526
2527 if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
2528 builder->color_attachment_count++;
2529 builder->use_dual_src_blend = true;
2530 /* dual source blending has an extra fs output in the 2nd slot */
2531 if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
2532 builder->render_components |= 0xf << 4;
2533 }
2534 }
2535 }
2536
2537 static VkResult
2538 tu_graphics_pipeline_create(VkDevice device,
2539 VkPipelineCache pipelineCache,
2540 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2541 const VkAllocationCallbacks *pAllocator,
2542 VkPipeline *pPipeline)
2543 {
2544 TU_FROM_HANDLE(tu_device, dev, device);
2545 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2546
2547 struct tu_pipeline_builder builder;
2548 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2549 pCreateInfo, pAllocator);
2550
2551 struct tu_pipeline *pipeline = NULL;
2552 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2553 tu_pipeline_builder_finish(&builder);
2554
2555 if (result == VK_SUCCESS)
2556 *pPipeline = tu_pipeline_to_handle(pipeline);
2557 else
2558 *pPipeline = VK_NULL_HANDLE;
2559
2560 return result;
2561 }
2562
2563 VkResult
2564 tu_CreateGraphicsPipelines(VkDevice device,
2565 VkPipelineCache pipelineCache,
2566 uint32_t count,
2567 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2568 const VkAllocationCallbacks *pAllocator,
2569 VkPipeline *pPipelines)
2570 {
2571 VkResult final_result = VK_SUCCESS;
2572
2573 for (uint32_t i = 0; i < count; i++) {
2574 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2575 &pCreateInfos[i], pAllocator,
2576 &pPipelines[i]);
2577
2578 if (result != VK_SUCCESS)
2579 final_result = result;
2580 }
2581
2582 return final_result;
2583 }
2584
2585 static VkResult
2586 tu_compute_pipeline_create(VkDevice device,
2587 VkPipelineCache _cache,
2588 const VkComputePipelineCreateInfo *pCreateInfo,
2589 const VkAllocationCallbacks *pAllocator,
2590 VkPipeline *pPipeline)
2591 {
2592 TU_FROM_HANDLE(tu_device, dev, device);
2593 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2594 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2595 VkResult result;
2596
2597 struct tu_pipeline *pipeline;
2598
2599 *pPipeline = VK_NULL_HANDLE;
2600
2601 pipeline = vk_object_zalloc(&dev->vk, pAllocator, sizeof(*pipeline),
2602 VK_OBJECT_TYPE_PIPELINE);
2603 if (!pipeline)
2604 return VK_ERROR_OUT_OF_HOST_MEMORY;
2605
2606 pipeline->layout = layout;
2607
2608 struct ir3_shader_key key = {};
2609
2610 struct tu_shader *shader =
2611 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2612 if (!shader) {
2613 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2614 goto fail;
2615 }
2616
2617 pipeline->active_desc_sets = shader->active_desc_sets;
2618
2619 bool created;
2620 struct ir3_shader_variant *v =
2621 ir3_shader_get_variant(shader->ir3_shader, &key, false, &created);
2622 if (!v) {
2623 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2624 goto fail;
2625 }
2626
2627 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2628 shader, v);
2629
2630 result = tu_pipeline_allocate_cs(dev, pipeline, NULL, v);
2631 if (result != VK_SUCCESS)
2632 goto fail;
2633
2634 uint64_t shader_iova = tu_upload_variant(pipeline, v);
2635
2636 for (int i = 0; i < 3; i++)
2637 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2638
2639 struct tu_cs prog_cs;
2640 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2641 tu6_emit_cs_config(&prog_cs, shader, v, shader_iova);
2642 pipeline->program.state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs);
2643
2644 tu6_emit_load_state(pipeline, true);
2645
2646 *pPipeline = tu_pipeline_to_handle(pipeline);
2647 return VK_SUCCESS;
2648
2649 fail:
2650 if (shader)
2651 tu_shader_destroy(dev, shader, pAllocator);
2652
2653 vk_object_free(&dev->vk, pAllocator, pipeline);
2654
2655 return result;
2656 }
2657
2658 VkResult
2659 tu_CreateComputePipelines(VkDevice device,
2660 VkPipelineCache pipelineCache,
2661 uint32_t count,
2662 const VkComputePipelineCreateInfo *pCreateInfos,
2663 const VkAllocationCallbacks *pAllocator,
2664 VkPipeline *pPipelines)
2665 {
2666 VkResult final_result = VK_SUCCESS;
2667
2668 for (uint32_t i = 0; i < count; i++) {
2669 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2670 &pCreateInfos[i],
2671 pAllocator, &pPipelines[i]);
2672 if (result != VK_SUCCESS)
2673 final_result = result;
2674 }
2675
2676 return final_result;
2677 }
2678
2679 void
2680 tu_DestroyPipeline(VkDevice _device,
2681 VkPipeline _pipeline,
2682 const VkAllocationCallbacks *pAllocator)
2683 {
2684 TU_FROM_HANDLE(tu_device, dev, _device);
2685 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2686
2687 if (!_pipeline)
2688 return;
2689
2690 tu_pipeline_finish(pipeline, dev, pAllocator);
2691 vk_object_free(&dev->vk, pAllocator, pipeline);
2692 }