turnip: refactor draw states and dynamic states
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "ir3/ir3_nir.h"
31 #include "main/menums.h"
32 #include "nir/nir.h"
33 #include "nir/nir_builder.h"
34 #include "spirv/nir_spirv.h"
35 #include "util/debug.h"
36 #include "util/mesa-sha1.h"
37 #include "util/u_atomic.h"
38 #include "vk_format.h"
39 #include "vk_util.h"
40
41 #include "tu_cs.h"
42
43 uint32_t
44 tu6_stage2opcode(gl_shader_stage stage)
45 {
46 if (stage == MESA_SHADER_FRAGMENT || stage == MESA_SHADER_COMPUTE)
47 return CP_LOAD_STATE6_FRAG;
48 return CP_LOAD_STATE6_GEOM;
49 }
50
51 static enum a6xx_state_block
52 tu6_stage2texsb(gl_shader_stage stage)
53 {
54 return SB6_VS_TEX + stage;
55 }
56
57 enum a6xx_state_block
58 tu6_stage2shadersb(gl_shader_stage stage)
59 {
60 return SB6_VS_SHADER + stage;
61 }
62
63 /* Emit IB that preloads the descriptors that the shader uses */
64
65 static void
66 emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
67 enum a6xx_state_block sb, unsigned base, unsigned offset,
68 unsigned count)
69 {
70 /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
71 * clear if emitting more packets will even help anything. Presumably the
72 * descriptor cache is relatively small, and these packets stop doing
73 * anything when there are too many descriptors.
74 */
75 tu_cs_emit_pkt7(cs, opcode, 3);
76 tu_cs_emit(cs,
77 CP_LOAD_STATE6_0_STATE_TYPE(st) |
78 CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
79 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
80 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
81 tu_cs_emit_qw(cs, offset | (base << 28));
82 }
83
84 static unsigned
85 tu6_load_state_size(struct tu_pipeline_layout *layout, bool compute)
86 {
87 const unsigned load_state_size = 4;
88 unsigned size = 0;
89 for (unsigned i = 0; i < layout->num_sets; i++) {
90 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
91 for (unsigned j = 0; j < set_layout->binding_count; j++) {
92 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
93 unsigned count = 0;
94 /* Note: some users, like amber for example, pass in
95 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
96 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
97 */
98 VkShaderStageFlags stages = compute ?
99 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
100 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
101 unsigned stage_count = util_bitcount(stages);
102 switch (binding->type) {
103 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
104 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
105 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
106 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
107 /* IBO-backed resources only need one packet for all graphics stages */
108 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
109 count += 1;
110 if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
111 count += 1;
112 break;
113 case VK_DESCRIPTOR_TYPE_SAMPLER:
114 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
115 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
116 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
117 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
118 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
119 /* Textures and UBO's needs a packet for each stage */
120 count = stage_count;
121 break;
122 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
123 /* Because of how we pack combined images and samplers, we
124 * currently can't use one packet for the whole array.
125 */
126 count = stage_count * binding->array_size * 2;
127 break;
128 default:
129 unreachable("bad descriptor type");
130 }
131 size += count * load_state_size;
132 }
133 }
134 return size;
135 }
136
137 static void
138 tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
139 {
140 unsigned size = tu6_load_state_size(pipeline->layout, compute);
141 if (size == 0)
142 return;
143
144 struct tu_cs cs;
145 tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
146
147 struct tu_pipeline_layout *layout = pipeline->layout;
148 for (unsigned i = 0; i < layout->num_sets; i++) {
149 /* From 13.2.7. Descriptor Set Binding:
150 *
151 * A compatible descriptor set must be bound for all set numbers that
152 * any shaders in a pipeline access, at the time that a draw or
153 * dispatch command is recorded to execute using that pipeline.
154 * However, if none of the shaders in a pipeline statically use any
155 * bindings with a particular set number, then no descriptor set need
156 * be bound for that set number, even if the pipeline layout includes
157 * a non-trivial descriptor set layout for that set number.
158 *
159 * This means that descriptor sets unused by the pipeline may have a
160 * garbage or 0 BINDLESS_BASE register, which will cause context faults
161 * when prefetching descriptors from these sets. Skip prefetching for
162 * descriptors from them to avoid this. This is also an optimization,
163 * since these prefetches would be useless.
164 */
165 if (!(pipeline->active_desc_sets & (1u << i)))
166 continue;
167
168 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
169 for (unsigned j = 0; j < set_layout->binding_count; j++) {
170 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
171 unsigned base = i;
172 unsigned offset = binding->offset / 4;
173 /* Note: some users, like amber for example, pass in
174 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
175 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
176 */
177 VkShaderStageFlags stages = compute ?
178 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
179 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
180 unsigned count = binding->array_size;
181 if (count == 0 || stages == 0)
182 continue;
183 switch (binding->type) {
184 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
185 base = MAX_SETS;
186 offset = (layout->input_attachment_count +
187 layout->set[i].dynamic_offset_start +
188 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
189 /* fallthrough */
190 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
191 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
192 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
193 /* IBO-backed resources only need one packet for all graphics stages */
194 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
195 emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
196 base, offset, count);
197 }
198 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
199 emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
200 base, offset, count);
201 }
202 break;
203 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
204 base = MAX_SETS;
205 offset = (layout->set[i].input_attachment_start +
206 binding->input_attachment_offset) * A6XX_TEX_CONST_DWORDS;
207 case VK_DESCRIPTOR_TYPE_SAMPLER:
208 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
209 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
210 tu_foreach_stage(stage, stages) {
211 emit_load_state(&cs, tu6_stage2opcode(stage),
212 binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
213 ST6_SHADER : ST6_CONSTANTS,
214 tu6_stage2texsb(stage), base, offset, count);
215 }
216 break;
217 }
218 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
219 base = MAX_SETS;
220 offset = (layout->input_attachment_count +
221 layout->set[i].dynamic_offset_start +
222 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
223 /* fallthrough */
224 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
225 tu_foreach_stage(stage, stages) {
226 emit_load_state(&cs, tu6_stage2opcode(stage), ST6_UBO,
227 tu6_stage2shadersb(stage), base, offset, count);
228 }
229 break;
230 }
231 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
232 tu_foreach_stage(stage, stages) {
233 /* TODO: We could emit less CP_LOAD_STATE6 if we used
234 * struct-of-arrays instead of array-of-structs.
235 */
236 for (unsigned i = 0; i < count; i++) {
237 unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
238 unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
239 emit_load_state(&cs, tu6_stage2opcode(stage),
240 ST6_CONSTANTS, tu6_stage2texsb(stage),
241 base, tex_offset, 1);
242 emit_load_state(&cs, tu6_stage2opcode(stage),
243 ST6_SHADER, tu6_stage2texsb(stage),
244 base, sam_offset, 1);
245 }
246 }
247 break;
248 }
249 default:
250 unreachable("bad descriptor type");
251 }
252 }
253 }
254
255 pipeline->load_state.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
256 }
257
258 struct tu_pipeline_builder
259 {
260 struct tu_device *device;
261 struct tu_pipeline_cache *cache;
262 struct tu_pipeline_layout *layout;
263 const VkAllocationCallbacks *alloc;
264 const VkGraphicsPipelineCreateInfo *create_info;
265
266 struct tu_shader *shaders[MESA_SHADER_STAGES];
267 struct ir3_shader_variant *variants[MESA_SHADER_STAGES];
268 struct ir3_shader_variant *binning_variant;
269 uint32_t shader_offsets[MESA_SHADER_STAGES];
270 uint32_t binning_vs_offset;
271 uint32_t shader_total_size;
272
273 bool rasterizer_discard;
274 /* these states are affectd by rasterizer_discard */
275 VkSampleCountFlagBits samples;
276 bool use_color_attachments;
277 bool use_dual_src_blend;
278 uint32_t color_attachment_count;
279 VkFormat color_attachment_formats[MAX_RTS];
280 VkFormat depth_attachment_format;
281 uint32_t render_components;
282 };
283
284 static bool
285 tu_logic_op_reads_dst(VkLogicOp op)
286 {
287 switch (op) {
288 case VK_LOGIC_OP_CLEAR:
289 case VK_LOGIC_OP_COPY:
290 case VK_LOGIC_OP_COPY_INVERTED:
291 case VK_LOGIC_OP_SET:
292 return false;
293 default:
294 return true;
295 }
296 }
297
298 static VkBlendFactor
299 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
300 {
301 /* treat dst alpha as 1.0 and avoid reading it */
302 switch (factor) {
303 case VK_BLEND_FACTOR_DST_ALPHA:
304 return VK_BLEND_FACTOR_ONE;
305 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
306 return VK_BLEND_FACTOR_ZERO;
307 default:
308 return factor;
309 }
310 }
311
312 static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
313 {
314 switch (factor) {
315 case VK_BLEND_FACTOR_SRC1_COLOR:
316 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
317 case VK_BLEND_FACTOR_SRC1_ALPHA:
318 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
319 return true;
320 default:
321 return false;
322 }
323 }
324
325 static bool
326 tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
327 {
328 if (!info)
329 return false;
330
331 for (unsigned i = 0; i < info->attachmentCount; i++) {
332 const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
333 if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
334 tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
335 tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
336 tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
337 return true;
338 }
339
340 return false;
341 }
342
343 static enum pc_di_primtype
344 tu6_primtype(VkPrimitiveTopology topology)
345 {
346 switch (topology) {
347 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
348 return DI_PT_POINTLIST;
349 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
350 return DI_PT_LINELIST;
351 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
352 return DI_PT_LINESTRIP;
353 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
354 return DI_PT_TRILIST;
355 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
356 return DI_PT_TRISTRIP;
357 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
358 return DI_PT_TRIFAN;
359 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
360 return DI_PT_LINE_ADJ;
361 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
362 return DI_PT_LINESTRIP_ADJ;
363 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
364 return DI_PT_TRI_ADJ;
365 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
366 return DI_PT_TRISTRIP_ADJ;
367 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
368 default:
369 unreachable("invalid primitive topology");
370 return DI_PT_NONE;
371 }
372 }
373
374 static enum adreno_compare_func
375 tu6_compare_func(VkCompareOp op)
376 {
377 switch (op) {
378 case VK_COMPARE_OP_NEVER:
379 return FUNC_NEVER;
380 case VK_COMPARE_OP_LESS:
381 return FUNC_LESS;
382 case VK_COMPARE_OP_EQUAL:
383 return FUNC_EQUAL;
384 case VK_COMPARE_OP_LESS_OR_EQUAL:
385 return FUNC_LEQUAL;
386 case VK_COMPARE_OP_GREATER:
387 return FUNC_GREATER;
388 case VK_COMPARE_OP_NOT_EQUAL:
389 return FUNC_NOTEQUAL;
390 case VK_COMPARE_OP_GREATER_OR_EQUAL:
391 return FUNC_GEQUAL;
392 case VK_COMPARE_OP_ALWAYS:
393 return FUNC_ALWAYS;
394 default:
395 unreachable("invalid VkCompareOp");
396 return FUNC_NEVER;
397 }
398 }
399
400 static enum adreno_stencil_op
401 tu6_stencil_op(VkStencilOp op)
402 {
403 switch (op) {
404 case VK_STENCIL_OP_KEEP:
405 return STENCIL_KEEP;
406 case VK_STENCIL_OP_ZERO:
407 return STENCIL_ZERO;
408 case VK_STENCIL_OP_REPLACE:
409 return STENCIL_REPLACE;
410 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
411 return STENCIL_INCR_CLAMP;
412 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
413 return STENCIL_DECR_CLAMP;
414 case VK_STENCIL_OP_INVERT:
415 return STENCIL_INVERT;
416 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
417 return STENCIL_INCR_WRAP;
418 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
419 return STENCIL_DECR_WRAP;
420 default:
421 unreachable("invalid VkStencilOp");
422 return STENCIL_KEEP;
423 }
424 }
425
426 static enum a3xx_rop_code
427 tu6_rop(VkLogicOp op)
428 {
429 switch (op) {
430 case VK_LOGIC_OP_CLEAR:
431 return ROP_CLEAR;
432 case VK_LOGIC_OP_AND:
433 return ROP_AND;
434 case VK_LOGIC_OP_AND_REVERSE:
435 return ROP_AND_REVERSE;
436 case VK_LOGIC_OP_COPY:
437 return ROP_COPY;
438 case VK_LOGIC_OP_AND_INVERTED:
439 return ROP_AND_INVERTED;
440 case VK_LOGIC_OP_NO_OP:
441 return ROP_NOOP;
442 case VK_LOGIC_OP_XOR:
443 return ROP_XOR;
444 case VK_LOGIC_OP_OR:
445 return ROP_OR;
446 case VK_LOGIC_OP_NOR:
447 return ROP_NOR;
448 case VK_LOGIC_OP_EQUIVALENT:
449 return ROP_EQUIV;
450 case VK_LOGIC_OP_INVERT:
451 return ROP_INVERT;
452 case VK_LOGIC_OP_OR_REVERSE:
453 return ROP_OR_REVERSE;
454 case VK_LOGIC_OP_COPY_INVERTED:
455 return ROP_COPY_INVERTED;
456 case VK_LOGIC_OP_OR_INVERTED:
457 return ROP_OR_INVERTED;
458 case VK_LOGIC_OP_NAND:
459 return ROP_NAND;
460 case VK_LOGIC_OP_SET:
461 return ROP_SET;
462 default:
463 unreachable("invalid VkLogicOp");
464 return ROP_NOOP;
465 }
466 }
467
468 static enum adreno_rb_blend_factor
469 tu6_blend_factor(VkBlendFactor factor)
470 {
471 switch (factor) {
472 case VK_BLEND_FACTOR_ZERO:
473 return FACTOR_ZERO;
474 case VK_BLEND_FACTOR_ONE:
475 return FACTOR_ONE;
476 case VK_BLEND_FACTOR_SRC_COLOR:
477 return FACTOR_SRC_COLOR;
478 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
479 return FACTOR_ONE_MINUS_SRC_COLOR;
480 case VK_BLEND_FACTOR_DST_COLOR:
481 return FACTOR_DST_COLOR;
482 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
483 return FACTOR_ONE_MINUS_DST_COLOR;
484 case VK_BLEND_FACTOR_SRC_ALPHA:
485 return FACTOR_SRC_ALPHA;
486 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
487 return FACTOR_ONE_MINUS_SRC_ALPHA;
488 case VK_BLEND_FACTOR_DST_ALPHA:
489 return FACTOR_DST_ALPHA;
490 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
491 return FACTOR_ONE_MINUS_DST_ALPHA;
492 case VK_BLEND_FACTOR_CONSTANT_COLOR:
493 return FACTOR_CONSTANT_COLOR;
494 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
495 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
496 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
497 return FACTOR_CONSTANT_ALPHA;
498 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
499 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
500 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
501 return FACTOR_SRC_ALPHA_SATURATE;
502 case VK_BLEND_FACTOR_SRC1_COLOR:
503 return FACTOR_SRC1_COLOR;
504 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
505 return FACTOR_ONE_MINUS_SRC1_COLOR;
506 case VK_BLEND_FACTOR_SRC1_ALPHA:
507 return FACTOR_SRC1_ALPHA;
508 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
509 return FACTOR_ONE_MINUS_SRC1_ALPHA;
510 default:
511 unreachable("invalid VkBlendFactor");
512 return FACTOR_ZERO;
513 }
514 }
515
516 static enum a3xx_rb_blend_opcode
517 tu6_blend_op(VkBlendOp op)
518 {
519 switch (op) {
520 case VK_BLEND_OP_ADD:
521 return BLEND_DST_PLUS_SRC;
522 case VK_BLEND_OP_SUBTRACT:
523 return BLEND_SRC_MINUS_DST;
524 case VK_BLEND_OP_REVERSE_SUBTRACT:
525 return BLEND_DST_MINUS_SRC;
526 case VK_BLEND_OP_MIN:
527 return BLEND_MIN_DST_SRC;
528 case VK_BLEND_OP_MAX:
529 return BLEND_MAX_DST_SRC;
530 default:
531 unreachable("invalid VkBlendOp");
532 return BLEND_DST_PLUS_SRC;
533 }
534 }
535
536 void
537 tu6_emit_xs_config(struct tu_cs *cs,
538 gl_shader_stage stage, /* xs->type, but xs may be NULL */
539 const struct ir3_shader_variant *xs,
540 uint64_t binary_iova)
541 {
542 static const struct xs_config {
543 uint16_t reg_sp_xs_ctrl;
544 uint16_t reg_sp_xs_config;
545 uint16_t reg_hlsq_xs_ctrl;
546 uint16_t reg_sp_vs_obj_start;
547 } xs_config[] = {
548 [MESA_SHADER_VERTEX] = {
549 REG_A6XX_SP_VS_CTRL_REG0,
550 REG_A6XX_SP_VS_CONFIG,
551 REG_A6XX_HLSQ_VS_CNTL,
552 REG_A6XX_SP_VS_OBJ_START_LO,
553 },
554 [MESA_SHADER_TESS_CTRL] = {
555 REG_A6XX_SP_HS_CTRL_REG0,
556 REG_A6XX_SP_HS_CONFIG,
557 REG_A6XX_HLSQ_HS_CNTL,
558 REG_A6XX_SP_HS_OBJ_START_LO,
559 },
560 [MESA_SHADER_TESS_EVAL] = {
561 REG_A6XX_SP_DS_CTRL_REG0,
562 REG_A6XX_SP_DS_CONFIG,
563 REG_A6XX_HLSQ_DS_CNTL,
564 REG_A6XX_SP_DS_OBJ_START_LO,
565 },
566 [MESA_SHADER_GEOMETRY] = {
567 REG_A6XX_SP_GS_CTRL_REG0,
568 REG_A6XX_SP_GS_CONFIG,
569 REG_A6XX_HLSQ_GS_CNTL,
570 REG_A6XX_SP_GS_OBJ_START_LO,
571 },
572 [MESA_SHADER_FRAGMENT] = {
573 REG_A6XX_SP_FS_CTRL_REG0,
574 REG_A6XX_SP_FS_CONFIG,
575 REG_A6XX_HLSQ_FS_CNTL,
576 REG_A6XX_SP_FS_OBJ_START_LO,
577 },
578 [MESA_SHADER_COMPUTE] = {
579 REG_A6XX_SP_CS_CTRL_REG0,
580 REG_A6XX_SP_CS_CONFIG,
581 REG_A6XX_HLSQ_CS_CNTL,
582 REG_A6XX_SP_CS_OBJ_START_LO,
583 },
584 };
585 const struct xs_config *cfg = &xs_config[stage];
586
587 if (!xs) {
588 /* shader stage disabled */
589 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 1);
590 tu_cs_emit(cs, 0);
591
592 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
593 tu_cs_emit(cs, 0);
594 return;
595 }
596
597 bool is_fs = xs->type == MESA_SHADER_FRAGMENT;
598 enum a3xx_threadsize threadsize = FOUR_QUADS;
599
600 /* TODO:
601 * the "threadsize" field may have nothing to do with threadsize,
602 * use a value that matches the blob until it is figured out
603 */
604 if (xs->type == MESA_SHADER_GEOMETRY)
605 threadsize = TWO_QUADS;
606
607 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_ctrl, 1);
608 tu_cs_emit(cs,
609 A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) |
610 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) |
611 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
612 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) |
613 COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) |
614 COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) |
615 /* only fragment shader sets VARYING bit */
616 COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) |
617 /* unknown bit, seems unnecessary */
618 COND(is_fs, 0x1000000));
619
620 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 2);
621 tu_cs_emit(cs, A6XX_SP_VS_CONFIG_ENABLED |
622 COND(xs->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
623 COND(xs->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
624 COND(xs->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
625 COND(xs->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO) |
626 A6XX_SP_VS_CONFIG_NTEX(xs->num_samp) |
627 A6XX_SP_VS_CONFIG_NSAMP(xs->num_samp));
628 tu_cs_emit(cs, xs->instrlen);
629
630 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
631 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(xs->constlen, 4)) |
632 A6XX_HLSQ_VS_CNTL_ENABLED);
633
634 /* emit program binary
635 * binary_iova should be aligned to 1 instrlen unit (128 bytes)
636 */
637
638 assert((binary_iova & 0x7f) == 0);
639
640 tu_cs_emit_pkt4(cs, cfg->reg_sp_vs_obj_start, 2);
641 tu_cs_emit_qw(cs, binary_iova);
642
643 tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3);
644 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
645 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
646 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
647 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
648 CP_LOAD_STATE6_0_NUM_UNIT(xs->instrlen));
649 tu_cs_emit_qw(cs, binary_iova);
650
651 /* emit immediates */
652
653 const struct ir3_const_state *const_state = &xs->shader->const_state;
654 uint32_t base = const_state->offsets.immediate;
655 int size = const_state->immediates_count;
656
657 /* truncate size to avoid writing constants that shader
658 * does not use:
659 */
660 size = MIN2(size + base, xs->constlen) - base;
661
662 if (size <= 0)
663 return;
664
665 tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3 + size * 4);
666 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
667 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
668 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
669 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
670 CP_LOAD_STATE6_0_NUM_UNIT(size));
671 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
672 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
673
674 for (unsigned i = 0; i < size; i++) {
675 tu_cs_emit(cs, const_state->immediates[i].val[0]);
676 tu_cs_emit(cs, const_state->immediates[i].val[1]);
677 tu_cs_emit(cs, const_state->immediates[i].val[2]);
678 tu_cs_emit(cs, const_state->immediates[i].val[3]);
679 }
680 }
681
682 static void
683 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
684 const struct ir3_shader_variant *v,
685 uint32_t binary_iova)
686 {
687 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
688 tu_cs_emit(cs, 0xff);
689
690 tu6_emit_xs_config(cs, MESA_SHADER_COMPUTE, v, binary_iova);
691
692 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
693 tu_cs_emit(cs, 0x41);
694
695 uint32_t local_invocation_id =
696 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
697 uint32_t work_group_id =
698 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
699
700 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
701 tu_cs_emit(cs,
702 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
703 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
704 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
705 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
706 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
707 }
708
709 static void
710 tu6_emit_vs_system_values(struct tu_cs *cs,
711 const struct ir3_shader_variant *vs,
712 const struct ir3_shader_variant *gs,
713 bool primid_passthru)
714 {
715 const uint32_t vertexid_regid =
716 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
717 const uint32_t instanceid_regid =
718 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
719 const uint32_t primitiveid_regid = gs ?
720 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
721 regid(63, 0);
722 const uint32_t gsheader_regid = gs ?
723 ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
724 regid(63, 0);
725
726 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
727 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
728 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
729 A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
730 0xfc000000);
731 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
732 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
733 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
734 tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
735 0xfc00); /* VFD_CONTROL_5 */
736 tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
737 }
738
739 /* Add any missing varyings needed for stream-out. Otherwise varyings not
740 * used by fragment shader will be stripped out.
741 */
742 static void
743 tu6_link_streamout(struct ir3_shader_linkage *l,
744 const struct ir3_shader_variant *v)
745 {
746 const struct ir3_stream_output_info *info = &v->shader->stream_output;
747
748 /*
749 * First, any stream-out varyings not already in linkage map (ie. also
750 * consumed by frag shader) need to be added:
751 */
752 for (unsigned i = 0; i < info->num_outputs; i++) {
753 const struct ir3_stream_output *out = &info->output[i];
754 unsigned compmask =
755 (1 << (out->num_components + out->start_component)) - 1;
756 unsigned k = out->register_index;
757 unsigned idx, nextloc = 0;
758
759 /* psize/pos need to be the last entries in linkage map, and will
760 * get added link_stream_out, so skip over them:
761 */
762 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
763 v->outputs[k].slot == VARYING_SLOT_POS)
764 continue;
765
766 for (idx = 0; idx < l->cnt; idx++) {
767 if (l->var[idx].regid == v->outputs[k].regid)
768 break;
769 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
770 }
771
772 /* add if not already in linkage map: */
773 if (idx == l->cnt)
774 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
775
776 /* expand component-mask if needed, ie streaming out all components
777 * but frag shader doesn't consume all components:
778 */
779 if (compmask & ~l->var[idx].compmask) {
780 l->var[idx].compmask |= compmask;
781 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
782 util_last_bit(l->var[idx].compmask));
783 }
784 }
785 }
786
787 static void
788 tu6_setup_streamout(const struct ir3_shader_variant *v,
789 struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
790 {
791 const struct ir3_stream_output_info *info = &v->shader->stream_output;
792
793 memset(tf, 0, sizeof(*tf));
794
795 tf->prog_count = align(l->max_loc, 2) / 2;
796
797 debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
798
799 /* set stride info to the streamout state */
800 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
801 tf->stride[i] = info->stride[i];
802
803 for (unsigned i = 0; i < info->num_outputs; i++) {
804 const struct ir3_stream_output *out = &info->output[i];
805 unsigned k = out->register_index;
806 unsigned idx;
807
808 /* Skip it, if there's an unused reg in the middle of outputs. */
809 if (v->outputs[k].regid == INVALID_REG)
810 continue;
811
812 tf->ncomp[out->output_buffer] += out->num_components;
813
814 /* linkage map sorted by order frag shader wants things, so
815 * a bit less ideal here..
816 */
817 for (idx = 0; idx < l->cnt; idx++)
818 if (l->var[idx].regid == v->outputs[k].regid)
819 break;
820
821 debug_assert(idx < l->cnt);
822
823 for (unsigned j = 0; j < out->num_components; j++) {
824 unsigned c = j + out->start_component;
825 unsigned loc = l->var[idx].loc + c;
826 unsigned off = j + out->dst_offset; /* in dwords */
827
828 if (loc & 1) {
829 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
830 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
831 A6XX_VPC_SO_PROG_B_OFF(off * 4);
832 } else {
833 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
834 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
835 A6XX_VPC_SO_PROG_A_OFF(off * 4);
836 }
837 }
838 }
839
840 tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
841 COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
842 COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
843 COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
844 COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
845 }
846
847 static void
848 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
849 enum a6xx_state_block block, uint32_t offset,
850 uint32_t size, uint32_t *dwords) {
851 assert(size % 4 == 0);
852
853 tu_cs_emit_pkt7(cs, opcode, 3 + size);
854 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
855 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
856 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
857 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
858 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
859
860 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
861 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
862 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
863
864 tu_cs_emit_array(cs, dwords, size);
865 }
866
867 static void
868 tu6_emit_link_map(struct tu_cs *cs,
869 const struct ir3_shader_variant *producer,
870 const struct ir3_shader_variant *consumer) {
871 const struct ir3_const_state *const_state = &consumer->shader->const_state;
872 uint32_t base = const_state->offsets.primitive_map;
873 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
874 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
875 int size = DIV_ROUND_UP(num_loc, 4);
876
877 size = (MIN2(size + base, consumer->constlen) - base) * 4;
878 if (size <= 0)
879 return;
880
881 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, SB6_GS_SHADER, 0, size,
882 patch_locs);
883 }
884
885 static uint16_t
886 gl_primitive_to_tess(uint16_t primitive) {
887 switch (primitive) {
888 case GL_POINTS:
889 return TESS_POINTS;
890 case GL_LINE_STRIP:
891 return TESS_LINES;
892 case GL_TRIANGLE_STRIP:
893 return TESS_CW_TRIS;
894 default:
895 unreachable("");
896 }
897 }
898
899 void
900 tu6_emit_vpc(struct tu_cs *cs,
901 const struct ir3_shader_variant *vs,
902 const struct ir3_shader_variant *gs,
903 const struct ir3_shader_variant *fs,
904 struct tu_streamout_state *tf)
905 {
906 const struct ir3_shader_variant *last_shader = gs ?: vs;
907 struct ir3_shader_linkage linkage = { .primid_loc = 0xff };
908 if (fs)
909 ir3_link_shaders(&linkage, last_shader, fs, true);
910
911 if (last_shader->shader->stream_output.num_outputs)
912 tu6_link_streamout(&linkage, last_shader);
913
914 /* We do this after linking shaders in order to know whether PrimID
915 * passthrough needs to be enabled.
916 */
917 bool primid_passthru = linkage.primid_loc != 0xff;
918 tu6_emit_vs_system_values(cs, vs, gs, primid_passthru);
919
920 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
921 tu_cs_emit(cs, ~linkage.varmask[0]);
922 tu_cs_emit(cs, ~linkage.varmask[1]);
923 tu_cs_emit(cs, ~linkage.varmask[2]);
924 tu_cs_emit(cs, ~linkage.varmask[3]);
925
926 /* a6xx finds position/pointsize at the end */
927 const uint32_t position_regid =
928 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
929 const uint32_t pointsize_regid =
930 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
931 const uint32_t layer_regid = gs ?
932 ir3_find_output_regid(gs, VARYING_SLOT_LAYER) : regid(63, 0);
933
934 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
935 if (layer_regid != regid(63, 0)) {
936 layer_loc = linkage.max_loc;
937 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
938 }
939 if (position_regid != regid(63, 0)) {
940 position_loc = linkage.max_loc;
941 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
942 }
943 if (pointsize_regid != regid(63, 0)) {
944 pointsize_loc = linkage.max_loc;
945 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
946 }
947
948 if (last_shader->shader->stream_output.num_outputs)
949 tu6_setup_streamout(last_shader, &linkage, tf);
950
951 /* map outputs of the last shader to VPC */
952 assert(linkage.cnt <= 32);
953 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
954 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
955 uint32_t sp_out[16];
956 uint32_t sp_vpc_dst[8];
957 for (uint32_t i = 0; i < linkage.cnt; i++) {
958 ((uint16_t *) sp_out)[i] =
959 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
960 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
961 ((uint8_t *) sp_vpc_dst)[i] =
962 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
963 }
964
965 if (gs)
966 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_OUT_REG(0), sp_out_count);
967 else
968 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_out_count);
969 tu_cs_emit_array(cs, sp_out, sp_out_count);
970
971 if (gs)
972 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_VPC_DST_REG(0), sp_vpc_dst_count);
973 else
974 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vpc_dst_count);
975 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
976
977 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1);
978 tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU));
979
980 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
981 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs ? fs->total_in : 0) |
982 COND(fs && fs->total_in, A6XX_VPC_CNTL_0_VARYING) |
983 A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
984 A6XX_VPC_CNTL_0_UNKLOC(0xff));
985
986 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
987 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
988 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
989 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
990
991 if (gs) {
992 uint32_t vertices_out, invocations, output, vec4_size;
993 /* this detects the tu_clear_blit path, which doesn't set ->nir */
994 if (gs->shader->nir) {
995 tu6_emit_link_map(cs, vs, gs);
996 vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
997 output = gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
998 invocations = gs->shader->nir->info.gs.invocations - 1;
999 /* Size of per-primitive alloction in ldlw memory in vec4s. */
1000 vec4_size = gs->shader->nir->info.gs.vertices_in *
1001 DIV_ROUND_UP(vs->shader->output_size, 4);
1002 } else {
1003 vertices_out = 3;
1004 output = TESS_CW_TRIS;
1005 invocations = 0;
1006 vec4_size = 0;
1007 }
1008
1009 uint32_t primitive_regid =
1010 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID);
1011 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK_GS, 1);
1012 tu_cs_emit(cs, A6XX_VPC_PACK_GS_POSITIONLOC(position_loc) |
1013 A6XX_VPC_PACK_GS_PSIZELOC(pointsize_loc) |
1014 A6XX_VPC_PACK_GS_STRIDE_IN_VPC(linkage.max_loc));
1015
1016 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9105, 1);
1017 tu_cs_emit(cs, A6XX_VPC_UNKNOWN_9105_LAYERLOC(layer_loc) | 0xff00);
1018
1019 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_809C, 1);
1020 tu_cs_emit(cs, CONDREG(layer_regid,
1021 A6XX_GRAS_UNKNOWN_809C_GS_WRITES_LAYER));
1022
1023 uint32_t flags_regid = ir3_find_output_regid(gs,
1024 VARYING_SLOT_GS_VERTEX_FLAGS_IR3);
1025
1026 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL_GS, 1);
1027 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_GS_GSOUT(linkage.cnt) |
1028 A6XX_SP_PRIMITIVE_CNTL_GS_FLAGS_REGID(flags_regid));
1029
1030 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_2, 1);
1031 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_2_STRIDE_IN_VPC(linkage.max_loc) |
1032 CONDREG(pointsize_regid, A6XX_PC_PRIMITIVE_CNTL_2_PSIZE) |
1033 CONDREG(layer_regid, A6XX_PC_PRIMITIVE_CNTL_2_LAYER) |
1034 CONDREG(primitive_regid, A6XX_PC_PRIMITIVE_CNTL_2_PRIMITIVE_ID));
1035
1036 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
1037 tu_cs_emit(cs,
1038 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
1039 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
1040 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
1041
1042 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
1043 tu_cs_emit(cs, 0);
1044
1045 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8003, 1);
1046 tu_cs_emit(cs, 0);
1047
1048 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
1049 tu_cs_emit(cs, 0xff);
1050
1051 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9102, 1);
1052 tu_cs_emit(cs, 0xffff00);
1053
1054 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
1055 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
1056
1057 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
1058 tu_cs_emit(cs, 0);
1059
1060 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
1061 tu_cs_emit(cs, vs->shader->output_size);
1062 }
1063
1064 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
1065 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
1066
1067 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
1068 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
1069 (last_shader->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
1070 }
1071
1072 static int
1073 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
1074 uint32_t index,
1075 uint8_t *interp_mode,
1076 uint8_t *ps_repl_mode)
1077 {
1078 enum
1079 {
1080 INTERP_SMOOTH = 0,
1081 INTERP_FLAT = 1,
1082 INTERP_ZERO = 2,
1083 INTERP_ONE = 3,
1084 };
1085 enum
1086 {
1087 PS_REPL_NONE = 0,
1088 PS_REPL_S = 1,
1089 PS_REPL_T = 2,
1090 PS_REPL_ONE_MINUS_T = 3,
1091 };
1092
1093 const uint32_t compmask = fs->inputs[index].compmask;
1094
1095 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
1096 * fourth component occupy three consecutive varying slots
1097 */
1098 int shift = 0;
1099 *interp_mode = 0;
1100 *ps_repl_mode = 0;
1101 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
1102 if (compmask & 0x1) {
1103 *ps_repl_mode |= PS_REPL_S << shift;
1104 shift += 2;
1105 }
1106 if (compmask & 0x2) {
1107 *ps_repl_mode |= PS_REPL_T << shift;
1108 shift += 2;
1109 }
1110 if (compmask & 0x4) {
1111 *interp_mode |= INTERP_ZERO << shift;
1112 shift += 2;
1113 }
1114 if (compmask & 0x8) {
1115 *interp_mode |= INTERP_ONE << 6;
1116 shift += 2;
1117 }
1118 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
1119 fs->inputs[index].rasterflat) {
1120 for (int i = 0; i < 4; i++) {
1121 if (compmask & (1 << i)) {
1122 *interp_mode |= INTERP_FLAT << shift;
1123 shift += 2;
1124 }
1125 }
1126 }
1127
1128 return shift;
1129 }
1130
1131 static void
1132 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
1133 const struct ir3_shader_variant *fs)
1134 {
1135 uint32_t interp_modes[8] = { 0 };
1136 uint32_t ps_repl_modes[8] = { 0 };
1137
1138 if (fs) {
1139 for (int i = -1;
1140 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
1141
1142 /* get the mode for input i */
1143 uint8_t interp_mode;
1144 uint8_t ps_repl_mode;
1145 const int bits =
1146 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
1147
1148 /* OR the mode into the array */
1149 const uint32_t inloc = fs->inputs[i].inloc * 2;
1150 uint32_t n = inloc / 32;
1151 uint32_t shift = inloc % 32;
1152 interp_modes[n] |= interp_mode << shift;
1153 ps_repl_modes[n] |= ps_repl_mode << shift;
1154 if (shift + bits > 32) {
1155 n++;
1156 shift = 32 - shift;
1157
1158 interp_modes[n] |= interp_mode >> shift;
1159 ps_repl_modes[n] |= ps_repl_mode >> shift;
1160 }
1161 }
1162 }
1163
1164 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
1165 tu_cs_emit_array(cs, interp_modes, 8);
1166
1167 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
1168 tu_cs_emit_array(cs, ps_repl_modes, 8);
1169 }
1170
1171 void
1172 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
1173 {
1174 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
1175 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
1176 uint32_t smask_in_regid;
1177
1178 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
1179 bool enable_varyings = fs->total_in > 0;
1180
1181 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1182 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1183 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1184 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1185 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1186 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1187 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1188 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1189 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1190
1191 if (fs->num_sampler_prefetch > 0) {
1192 assert(VALIDREG(ij_pix_regid));
1193 /* also, it seems like ij_pix is *required* to be r0.x */
1194 assert(ij_pix_regid == regid(0, 0));
1195 }
1196
1197 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1198 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1199 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1200 0x7000); // XXX);
1201 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1202 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1203 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1204 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1205 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1206 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1207 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1208 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1209 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1210 }
1211
1212 if (fs->num_sampler_prefetch > 0) {
1213 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
1214 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1215 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1216 tu_cs_emit(cs,
1217 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
1218 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
1219 }
1220 }
1221
1222 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1223 tu_cs_emit(cs, 0x7);
1224 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1225 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1226 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1227 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
1228 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
1229 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
1230 0xfc00fc00);
1231 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1232 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1233 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
1234 0x0000fc00);
1235 tu_cs_emit(cs, 0xfc);
1236
1237 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1238 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1239
1240 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1241 tu_cs_emit(cs,
1242 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
1243 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
1244 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
1245 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
1246 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1247 COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_SIZE |
1248 A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)) |
1249 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
1250
1251 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1252 tu_cs_emit(cs,
1253 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
1254 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
1255 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
1256 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1257 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
1258 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1259 COND(fs->fragcoord_compmask != 0, A6XX_RB_RENDER_CONTROL0_SIZE |
1260 A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)) |
1261 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
1262 tu_cs_emit(cs,
1263 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1264 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1265 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
1266 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1267
1268 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1269 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1270
1271 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1272 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1273
1274 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1275 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1276 }
1277
1278 static void
1279 tu6_emit_fs_outputs(struct tu_cs *cs,
1280 const struct ir3_shader_variant *fs,
1281 uint32_t mrt_count, bool dual_src_blend,
1282 uint32_t render_components)
1283 {
1284 uint32_t smask_regid, posz_regid;
1285
1286 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1287 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1288
1289 uint32_t fragdata_regid[8];
1290 if (fs->color0_mrt) {
1291 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1292 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1293 fragdata_regid[i] = fragdata_regid[0];
1294 } else {
1295 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1296 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1297 }
1298
1299 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1300 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1301 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1302 COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) |
1303 0xfc000000);
1304 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1305
1306 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1307 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1308 // TODO we could have a mix of half and full precision outputs,
1309 // we really need to figure out half-precision from IR3_REG_HALF
1310 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1311 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1312 }
1313
1314 tu_cs_emit_regs(cs,
1315 A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
1316
1317 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1318 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1319 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
1320 COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
1321 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1322
1323 tu_cs_emit_regs(cs,
1324 A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
1325
1326 enum a6xx_ztest_mode zmode;
1327
1328 if (fs->no_earlyz || fs->has_kill || fs->writes_pos) {
1329 zmode = A6XX_LATE_Z;
1330 } else {
1331 zmode = A6XX_EARLY_Z;
1332 }
1333
1334 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1335 tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1336
1337 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1338 tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1339 }
1340
1341 static void
1342 tu6_emit_geometry_consts(struct tu_cs *cs,
1343 const struct ir3_shader_variant *vs,
1344 const struct ir3_shader_variant *gs) {
1345 unsigned num_vertices = gs->shader->nir->info.gs.vertices_in;
1346
1347 uint32_t params[4] = {
1348 vs->shader->output_size * num_vertices * 4, /* primitive stride */
1349 vs->shader->output_size * 4, /* vertex stride */
1350 0,
1351 0,
1352 };
1353 uint32_t vs_base = vs->shader->const_state.offsets.primitive_param;
1354 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1355 ARRAY_SIZE(params), params);
1356
1357 uint32_t gs_base = gs->shader->const_state.offsets.primitive_param;
1358 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1359 ARRAY_SIZE(params), params);
1360 }
1361
1362 static void
1363 tu6_emit_program(struct tu_cs *cs,
1364 struct tu_pipeline_builder *builder,
1365 const struct tu_bo *binary_bo,
1366 bool binning_pass,
1367 struct tu_streamout_state *tf)
1368 {
1369 const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
1370 const struct ir3_shader_variant *bs = builder->binning_variant;
1371 const struct ir3_shader_variant *gs = builder->variants[MESA_SHADER_GEOMETRY];
1372 const struct ir3_shader_variant *fs = builder->variants[MESA_SHADER_FRAGMENT];
1373 gl_shader_stage stage = MESA_SHADER_VERTEX;
1374
1375 STATIC_ASSERT(MESA_SHADER_VERTEX == 0);
1376
1377 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
1378 tu_cs_emit(cs, 0xff); /* XXX */
1379
1380 /* Don't use the binning pass variant when GS is present because we don't
1381 * support compiling correct binning pass variants with GS.
1382 */
1383 if (binning_pass && !gs) {
1384 vs = bs;
1385 tu6_emit_xs_config(cs, stage, bs,
1386 binary_bo->iova + builder->binning_vs_offset);
1387 stage++;
1388 }
1389
1390 for (; stage < ARRAY_SIZE(builder->shaders); stage++) {
1391 const struct ir3_shader_variant *xs = builder->variants[stage];
1392
1393 if (stage == MESA_SHADER_FRAGMENT && binning_pass)
1394 fs = xs = NULL;
1395
1396 tu6_emit_xs_config(cs, stage, xs,
1397 binary_bo->iova + builder->shader_offsets[stage]);
1398 }
1399
1400 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
1401 tu_cs_emit(cs, 0);
1402
1403 tu6_emit_vpc(cs, vs, gs, fs, tf);
1404 tu6_emit_vpc_varying_modes(cs, fs);
1405
1406 if (fs) {
1407 tu6_emit_fs_inputs(cs, fs);
1408 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
1409 builder->use_dual_src_blend,
1410 builder->render_components);
1411 } else {
1412 /* TODO: check if these can be skipped if fs is disabled */
1413 struct ir3_shader_variant dummy_variant = {};
1414 tu6_emit_fs_inputs(cs, &dummy_variant);
1415 tu6_emit_fs_outputs(cs, &dummy_variant, builder->color_attachment_count,
1416 builder->use_dual_src_blend,
1417 builder->render_components);
1418 }
1419
1420 if (gs)
1421 tu6_emit_geometry_consts(cs, vs, gs);
1422 }
1423
1424 static void
1425 tu6_emit_vertex_input(struct tu_cs *cs,
1426 const struct ir3_shader_variant *vs,
1427 const VkPipelineVertexInputStateCreateInfo *info,
1428 uint32_t *bindings_used)
1429 {
1430 uint32_t vfd_decode_idx = 0;
1431 uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
1432
1433 for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
1434 const VkVertexInputBindingDescription *binding =
1435 &info->pVertexBindingDescriptions[i];
1436
1437 tu_cs_emit_regs(cs,
1438 A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride));
1439
1440 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1441 binding_instanced |= 1 << binding->binding;
1442
1443 *bindings_used |= 1 << binding->binding;
1444 }
1445
1446 /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
1447
1448 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
1449 const VkVertexInputAttributeDescription *attr =
1450 &info->pVertexAttributeDescriptions[i];
1451 uint32_t input_idx;
1452
1453 for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
1454 if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
1455 break;
1456 }
1457
1458 /* attribute not used, skip it */
1459 if (input_idx == vs->inputs_count)
1460 continue;
1461
1462 const struct tu_native_format format = tu6_format_vtx(attr->format);
1463 tu_cs_emit_regs(cs,
1464 A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
1465 .idx = attr->binding,
1466 .offset = attr->offset,
1467 .instanced = binding_instanced & (1 << attr->binding),
1468 .format = format.fmt,
1469 .swap = format.swap,
1470 .unk30 = 1,
1471 ._float = !vk_format_is_int(attr->format)),
1472 A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, 1));
1473
1474 tu_cs_emit_regs(cs,
1475 A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
1476 .writemask = vs->inputs[input_idx].compmask,
1477 .regid = vs->inputs[input_idx].regid));
1478
1479 vfd_decode_idx++;
1480 }
1481
1482 tu_cs_emit_regs(cs,
1483 A6XX_VFD_CONTROL_0(
1484 .fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */
1485 .decode_cnt = vfd_decode_idx));
1486 }
1487
1488 static uint32_t
1489 tu6_guardband_adj(uint32_t v)
1490 {
1491 if (v > 256)
1492 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1493 else
1494 return 511;
1495 }
1496
1497 void
1498 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1499 {
1500 float offsets[3];
1501 float scales[3];
1502 scales[0] = viewport->width / 2.0f;
1503 scales[1] = viewport->height / 2.0f;
1504 scales[2] = viewport->maxDepth - viewport->minDepth;
1505 offsets[0] = viewport->x + scales[0];
1506 offsets[1] = viewport->y + scales[1];
1507 offsets[2] = viewport->minDepth;
1508
1509 VkOffset2D min;
1510 VkOffset2D max;
1511 min.x = (int32_t) viewport->x;
1512 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1513 if (viewport->height >= 0.0f) {
1514 min.y = (int32_t) viewport->y;
1515 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1516 } else {
1517 min.y = (int32_t)(viewport->y + viewport->height);
1518 max.y = (int32_t) ceilf(viewport->y);
1519 }
1520 /* the spec allows viewport->height to be 0.0f */
1521 if (min.y == max.y)
1522 max.y++;
1523 assert(min.x >= 0 && min.x < max.x);
1524 assert(min.y >= 0 && min.y < max.y);
1525
1526 VkExtent2D guardband_adj;
1527 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1528 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1529
1530 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1531 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1532 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1533 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1534 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1535 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1536 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1537
1538 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1539 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1540 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1541 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1542 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1543
1544 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1545 tu_cs_emit(cs,
1546 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1547 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1548
1549 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1550 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1551
1552 tu_cs_emit_regs(cs,
1553 A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
1554 A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
1555
1556 tu_cs_emit_regs(cs,
1557 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1558 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1559 }
1560
1561 void
1562 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1563 {
1564 const VkOffset2D min = scissor->offset;
1565 const VkOffset2D max = {
1566 scissor->offset.x + scissor->extent.width,
1567 scissor->offset.y + scissor->extent.height,
1568 };
1569
1570 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1571 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1572 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1573 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1574 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1575 }
1576
1577 void
1578 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
1579 {
1580 if (!samp_loc) {
1581 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
1582 tu_cs_emit(cs, 0);
1583
1584 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
1585 tu_cs_emit(cs, 0);
1586
1587 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
1588 tu_cs_emit(cs, 0);
1589 return;
1590 }
1591
1592 assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
1593 assert(samp_loc->sampleLocationGridSize.width == 1);
1594 assert(samp_loc->sampleLocationGridSize.height == 1);
1595
1596 uint32_t sample_config =
1597 A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
1598 uint32_t sample_locations = 0;
1599 for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
1600 sample_locations |=
1601 (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
1602 A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
1603 }
1604
1605 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
1606 tu_cs_emit(cs, sample_config);
1607 tu_cs_emit(cs, sample_locations);
1608
1609 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
1610 tu_cs_emit(cs, sample_config);
1611 tu_cs_emit(cs, sample_locations);
1612
1613 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
1614 tu_cs_emit(cs, sample_config);
1615 tu_cs_emit(cs, sample_locations);
1616 }
1617
1618 static uint32_t
1619 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1620 VkSampleCountFlagBits samples)
1621 {
1622 uint32_t gras_su_cntl = 0;
1623
1624 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1625 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1626 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1627 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1628
1629 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1630 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1631
1632 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1633
1634 if (rast_info->depthBiasEnable)
1635 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1636
1637 if (samples > VK_SAMPLE_COUNT_1_BIT)
1638 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1639
1640 return gras_su_cntl;
1641 }
1642
1643 void
1644 tu6_emit_depth_bias(struct tu_cs *cs,
1645 float constant_factor,
1646 float clamp,
1647 float slope_factor)
1648 {
1649 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1650 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1651 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1652 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1653 }
1654
1655 static void
1656 tu6_emit_depth_control(struct tu_cs *cs,
1657 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1658 const VkPipelineRasterizationStateCreateInfo *rast_info)
1659 {
1660 assert(!ds_info->depthBoundsTestEnable);
1661
1662 uint32_t rb_depth_cntl = 0;
1663 if (ds_info->depthTestEnable) {
1664 rb_depth_cntl |=
1665 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1666 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1667 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1668
1669 if (rast_info->depthClampEnable)
1670 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1671
1672 if (ds_info->depthWriteEnable)
1673 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1674 }
1675
1676 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1677 tu_cs_emit(cs, rb_depth_cntl);
1678 }
1679
1680 static void
1681 tu6_emit_stencil_control(struct tu_cs *cs,
1682 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1683 {
1684 uint32_t rb_stencil_control = 0;
1685 if (ds_info->stencilTestEnable) {
1686 const VkStencilOpState *front = &ds_info->front;
1687 const VkStencilOpState *back = &ds_info->back;
1688 rb_stencil_control |=
1689 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1690 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1691 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1692 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1693 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1694 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1695 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1696 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1697 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1698 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1699 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1700 }
1701
1702 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1703 tu_cs_emit(cs, rb_stencil_control);
1704 }
1705
1706 static uint32_t
1707 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1708 bool has_alpha)
1709 {
1710 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1711 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1712 has_alpha ? att->srcColorBlendFactor
1713 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1714 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1715 has_alpha ? att->dstColorBlendFactor
1716 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1717 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1718 const enum adreno_rb_blend_factor src_alpha_factor =
1719 tu6_blend_factor(att->srcAlphaBlendFactor);
1720 const enum adreno_rb_blend_factor dst_alpha_factor =
1721 tu6_blend_factor(att->dstAlphaBlendFactor);
1722
1723 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1724 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1725 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1726 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1727 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1728 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1729 }
1730
1731 static uint32_t
1732 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1733 uint32_t rb_mrt_control_rop,
1734 bool is_int,
1735 bool has_alpha)
1736 {
1737 uint32_t rb_mrt_control =
1738 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1739
1740 /* ignore blending and logic op for integer attachments */
1741 if (is_int) {
1742 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1743 return rb_mrt_control;
1744 }
1745
1746 rb_mrt_control |= rb_mrt_control_rop;
1747
1748 if (att->blendEnable) {
1749 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1750
1751 if (has_alpha)
1752 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1753 }
1754
1755 return rb_mrt_control;
1756 }
1757
1758 static void
1759 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1760 const VkPipelineColorBlendStateCreateInfo *blend_info,
1761 const VkFormat attachment_formats[MAX_RTS],
1762 uint32_t *blend_enable_mask)
1763 {
1764 *blend_enable_mask = 0;
1765
1766 bool rop_reads_dst = false;
1767 uint32_t rb_mrt_control_rop = 0;
1768 if (blend_info->logicOpEnable) {
1769 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1770 rb_mrt_control_rop =
1771 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1772 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1773 }
1774
1775 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1776 const VkPipelineColorBlendAttachmentState *att =
1777 &blend_info->pAttachments[i];
1778 const VkFormat format = attachment_formats[i];
1779
1780 uint32_t rb_mrt_control = 0;
1781 uint32_t rb_mrt_blend_control = 0;
1782 if (format != VK_FORMAT_UNDEFINED) {
1783 const bool is_int = vk_format_is_int(format);
1784 const bool has_alpha = vk_format_has_alpha(format);
1785
1786 rb_mrt_control =
1787 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1788 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1789
1790 if (att->blendEnable || rop_reads_dst)
1791 *blend_enable_mask |= 1 << i;
1792 }
1793
1794 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1795 tu_cs_emit(cs, rb_mrt_control);
1796 tu_cs_emit(cs, rb_mrt_blend_control);
1797 }
1798 }
1799
1800 static void
1801 tu6_emit_blend_control(struct tu_cs *cs,
1802 uint32_t blend_enable_mask,
1803 bool dual_src_blend,
1804 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1805 {
1806 const uint32_t sample_mask =
1807 msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff)
1808 : ((1 << msaa_info->rasterizationSamples) - 1);
1809
1810 tu_cs_emit_regs(cs,
1811 A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask,
1812 .dual_color_in_enable = dual_src_blend,
1813 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1814 .unk8 = true));
1815
1816 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1817 tu_cs_emit_regs(cs,
1818 A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask,
1819 .independent_blend = true,
1820 .sample_mask = sample_mask,
1821 .dual_color_in_enable = dual_src_blend,
1822 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1823 .alpha_to_one = msaa_info->alphaToOneEnable));
1824 }
1825
1826 static VkResult
1827 tu_pipeline_create(struct tu_device *dev,
1828 struct tu_pipeline_layout *layout,
1829 bool compute,
1830 const VkAllocationCallbacks *pAllocator,
1831 struct tu_pipeline **out_pipeline)
1832 {
1833 struct tu_pipeline *pipeline =
1834 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
1835 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1836 if (!pipeline)
1837 return VK_ERROR_OUT_OF_HOST_MEMORY;
1838
1839 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
1840
1841 /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
1842 * that LOAD_STATE can potentially take up a large amount of space so we
1843 * calculate its size explicitly.
1844 */
1845 unsigned load_state_size = tu6_load_state_size(layout, compute);
1846 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048 + load_state_size);
1847 if (result != VK_SUCCESS) {
1848 vk_free2(&dev->alloc, pAllocator, pipeline);
1849 return result;
1850 }
1851
1852 *out_pipeline = pipeline;
1853
1854 return VK_SUCCESS;
1855 }
1856
1857 static void
1858 tu_pipeline_shader_key_init(struct ir3_shader_key *key,
1859 const VkGraphicsPipelineCreateInfo *pipeline_info)
1860 {
1861 bool has_gs = false;
1862 bool msaa = false;
1863 if (pipeline_info) {
1864 for (uint32_t i = 0; i < pipeline_info->stageCount; i++) {
1865 if (pipeline_info->pStages[i].stage == VK_SHADER_STAGE_GEOMETRY_BIT) {
1866 has_gs = true;
1867 break;
1868 }
1869 }
1870
1871 const VkPipelineMultisampleStateCreateInfo *msaa_info = pipeline_info->pMultisampleState;
1872 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
1873 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
1874 if (!pipeline_info->pRasterizationState->rasterizerDiscardEnable &&
1875 (msaa_info->rasterizationSamples > 1 ||
1876 /* also set msaa key when sample location is not the default
1877 * since this affects varying interpolation */
1878 (sample_locations && sample_locations->sampleLocationsEnable))) {
1879 msaa = true;
1880 }
1881 }
1882
1883 /* TODO: Populate the remaining fields of ir3_shader_key. */
1884 *key = (struct ir3_shader_key) {
1885 .has_gs = has_gs,
1886 .msaa = msaa,
1887 };
1888 }
1889
1890 static VkResult
1891 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1892 {
1893 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1894 NULL
1895 };
1896 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1897 gl_shader_stage stage =
1898 vk_to_mesa_shader_stage(builder->create_info->pStages[i].stage);
1899 stage_infos[stage] = &builder->create_info->pStages[i];
1900 }
1901
1902 struct ir3_shader_key key;
1903 tu_pipeline_shader_key_init(&key, builder->create_info);
1904
1905 for (gl_shader_stage stage = MESA_SHADER_VERTEX;
1906 stage < MESA_SHADER_STAGES; stage++) {
1907 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1908 if (!stage_info && stage != MESA_SHADER_FRAGMENT)
1909 continue;
1910
1911 struct tu_shader *shader =
1912 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1913 builder->alloc);
1914 if (!shader)
1915 return VK_ERROR_OUT_OF_HOST_MEMORY;
1916
1917 builder->shaders[stage] = shader;
1918 }
1919
1920 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1921 stage > MESA_SHADER_NONE; stage--) {
1922 if (!builder->shaders[stage])
1923 continue;
1924
1925 bool created;
1926 builder->variants[stage] =
1927 ir3_shader_get_variant(builder->shaders[stage]->ir3_shader,
1928 &key, false, &created);
1929 if (!builder->variants[stage])
1930 return VK_ERROR_OUT_OF_HOST_MEMORY;
1931
1932 builder->shader_offsets[stage] = builder->shader_total_size;
1933 builder->shader_total_size +=
1934 sizeof(uint32_t) * builder->variants[stage]->info.sizedwords;
1935 }
1936
1937 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1938 struct ir3_shader_variant *variant;
1939
1940 if (vs->ir3_shader->stream_output.num_outputs) {
1941 variant = builder->variants[MESA_SHADER_VERTEX];
1942 } else {
1943 bool created;
1944 variant = ir3_shader_get_variant(vs->ir3_shader, &key,
1945 true, &created);
1946 if (!variant)
1947 return VK_ERROR_OUT_OF_HOST_MEMORY;
1948 }
1949
1950 builder->binning_vs_offset = builder->shader_total_size;
1951 builder->shader_total_size +=
1952 sizeof(uint32_t) * variant->info.sizedwords;
1953 builder->binning_variant = variant;
1954
1955 return VK_SUCCESS;
1956 }
1957
1958 static VkResult
1959 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1960 struct tu_pipeline *pipeline)
1961 {
1962 struct tu_bo *bo = &pipeline->program.binary_bo;
1963
1964 VkResult result =
1965 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1966 if (result != VK_SUCCESS)
1967 return result;
1968
1969 result = tu_bo_map(builder->device, bo);
1970 if (result != VK_SUCCESS)
1971 return result;
1972
1973 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1974 const struct ir3_shader_variant *variant = builder->variants[i];
1975 if (!variant)
1976 continue;
1977
1978 memcpy(bo->map + builder->shader_offsets[i], variant->bin,
1979 sizeof(uint32_t) * variant->info.sizedwords);
1980 }
1981
1982 if (builder->binning_variant) {
1983 const struct ir3_shader_variant *variant = builder->binning_variant;
1984 memcpy(bo->map + builder->binning_vs_offset, variant->bin,
1985 sizeof(uint32_t) * variant->info.sizedwords);
1986 }
1987
1988 return VK_SUCCESS;
1989 }
1990
1991 static void
1992 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1993 struct tu_pipeline *pipeline)
1994 {
1995 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1996 builder->create_info->pDynamicState;
1997
1998 if (!dynamic_info)
1999 return;
2000
2001 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
2002 VkDynamicState state = dynamic_info->pDynamicStates[i];
2003 switch (state) {
2004 case VK_DYNAMIC_STATE_VIEWPORT ... VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2005 pipeline->dynamic_state_mask |= BIT(state);
2006 break;
2007 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
2008 pipeline->dynamic_state_mask |= BIT(TU_DYNAMIC_STATE_SAMPLE_LOCATIONS);
2009 break;
2010 default:
2011 assert(!"unsupported dynamic state");
2012 break;
2013 }
2014 }
2015 }
2016
2017 static void
2018 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
2019 struct tu_shader *shader,
2020 struct ir3_shader_variant *v)
2021 {
2022 link->ubo_state = v->shader->ubo_state;
2023 link->const_state = v->shader->const_state;
2024 link->constlen = v->constlen;
2025 link->push_consts = shader->push_consts;
2026 }
2027
2028 static void
2029 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
2030 struct tu_pipeline *pipeline)
2031 {
2032 struct tu_cs prog_cs;
2033 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2034 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
2035 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2036
2037 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2038 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
2039 pipeline->program.binning_state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2040
2041 VkShaderStageFlags stages = 0;
2042 for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
2043 stages |= builder->create_info->pStages[i].stage;
2044 }
2045 pipeline->active_stages = stages;
2046
2047 uint32_t desc_sets = 0;
2048 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2049 if (!builder->shaders[i])
2050 continue;
2051
2052 tu_pipeline_set_linkage(&pipeline->program.link[i],
2053 builder->shaders[i],
2054 builder->variants[i]);
2055 desc_sets |= builder->shaders[i]->active_desc_sets;
2056 }
2057 pipeline->active_desc_sets = desc_sets;
2058
2059 if (builder->shaders[MESA_SHADER_FRAGMENT]) {
2060 memcpy(pipeline->program.input_attachment_idx,
2061 builder->shaders[MESA_SHADER_FRAGMENT]->attachment_idx,
2062 sizeof(pipeline->program.input_attachment_idx));
2063 }
2064 }
2065
2066 static void
2067 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
2068 struct tu_pipeline *pipeline)
2069 {
2070 const VkPipelineVertexInputStateCreateInfo *vi_info =
2071 builder->create_info->pVertexInputState;
2072 const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
2073 const struct ir3_shader_variant *bs = builder->binning_variant;
2074
2075 struct tu_cs vi_cs;
2076 tu_cs_begin_sub_stream(&pipeline->cs,
2077 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2078 tu6_emit_vertex_input(&vi_cs, vs, vi_info,
2079 &pipeline->vi.bindings_used);
2080 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2081
2082 if (bs) {
2083 tu_cs_begin_sub_stream(&pipeline->cs,
2084 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2085 tu6_emit_vertex_input(
2086 &vi_cs, bs, vi_info, &pipeline->vi.bindings_used);
2087 pipeline->vi.binning_state_ib =
2088 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2089 }
2090 }
2091
2092 static void
2093 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2094 struct tu_pipeline *pipeline)
2095 {
2096 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2097 builder->create_info->pInputAssemblyState;
2098
2099 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2100 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2101 }
2102
2103 static bool
2104 tu_pipeline_static_state(struct tu_pipeline *pipeline, struct tu_cs *cs,
2105 uint32_t id, uint32_t size)
2106 {
2107 struct ts_cs_memory memory;
2108
2109 if (pipeline->dynamic_state_mask & BIT(id))
2110 return false;
2111
2112 /* TODO: share this logc with tu_cmd_dynamic_state */
2113 tu_cs_alloc(&pipeline->cs, size, 1, &memory);
2114 tu_cs_init_external(cs, memory.map, memory.map + size);
2115 tu_cs_begin(cs);
2116 tu_cs_reserve_space(cs, size);
2117
2118 assert(id < ARRAY_SIZE(pipeline->dynamic_state));
2119 pipeline->dynamic_state[id].iova = memory.iova;
2120 pipeline->dynamic_state[id].size = size;
2121 return true;
2122 }
2123
2124 static void
2125 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2126 struct tu_pipeline *pipeline)
2127 {
2128 /* The spec says:
2129 *
2130 * pViewportState is a pointer to an instance of the
2131 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2132 * pipeline has rasterization disabled."
2133 *
2134 * We leave the relevant registers stale in that case.
2135 */
2136 if (builder->rasterizer_discard)
2137 return;
2138
2139 const VkPipelineViewportStateCreateInfo *vp_info =
2140 builder->create_info->pViewportState;
2141
2142 struct tu_cs cs;
2143
2144 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_VIEWPORT, 18))
2145 tu6_emit_viewport(&cs, vp_info->pViewports);
2146
2147 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_SCISSOR, 3))
2148 tu6_emit_scissor(&cs, vp_info->pScissors);
2149 }
2150
2151 static void
2152 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2153 struct tu_pipeline *pipeline)
2154 {
2155 const VkPipelineRasterizationStateCreateInfo *rast_info =
2156 builder->create_info->pRasterizationState;
2157
2158 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
2159
2160 struct tu_cs cs;
2161 tu_cs_begin_sub_stream(&pipeline->cs, 7, &cs);
2162
2163 tu_cs_emit_regs(&cs,
2164 A6XX_GRAS_CL_CNTL(
2165 .znear_clip_disable = rast_info->depthClampEnable,
2166 .zfar_clip_disable = rast_info->depthClampEnable,
2167 .unk5 = rast_info->depthClampEnable,
2168 .zero_gb_scale_z = 1,
2169 .vp_clip_code_ignore = 1));
2170 /* move to hw ctx init? */
2171 tu_cs_emit_regs(&cs, A6XX_GRAS_UNKNOWN_8001());
2172 tu_cs_emit_regs(&cs,
2173 A6XX_GRAS_SU_POINT_MINMAX(.min = 1.0f / 16.0f, .max = 4092.0f),
2174 A6XX_GRAS_SU_POINT_SIZE(1.0f));
2175
2176 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
2177
2178 pipeline->gras_su_cntl =
2179 tu6_gras_su_cntl(rast_info, builder->samples);
2180
2181 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_LINE_WIDTH, 2)) {
2182 pipeline->gras_su_cntl |=
2183 A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(rast_info->lineWidth / 2.0f);
2184 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = pipeline->gras_su_cntl));
2185 }
2186
2187 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BIAS, 4)) {
2188 tu6_emit_depth_bias(&cs, rast_info->depthBiasConstantFactor,
2189 rast_info->depthBiasClamp,
2190 rast_info->depthBiasSlopeFactor);
2191 }
2192
2193 }
2194
2195 static void
2196 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2197 struct tu_pipeline *pipeline)
2198 {
2199 /* The spec says:
2200 *
2201 * pDepthStencilState is a pointer to an instance of the
2202 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2203 * the pipeline has rasterization disabled or if the subpass of the
2204 * render pass the pipeline is created against does not use a
2205 * depth/stencil attachment.
2206 *
2207 * Disable both depth and stencil tests if there is no ds attachment,
2208 * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
2209 * only the separate stencil attachment
2210 */
2211 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2212 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2213 builder->depth_attachment_format != VK_FORMAT_UNDEFINED
2214 ? builder->create_info->pDepthStencilState
2215 : &dummy_ds_info;
2216 const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
2217 builder->depth_attachment_format != VK_FORMAT_S8_UINT
2218 ? ds_info : &dummy_ds_info;
2219
2220 struct tu_cs cs;
2221 tu_cs_begin_sub_stream(&pipeline->cs, 6, &cs);
2222
2223 /* move to hw ctx init? */
2224 tu_cs_emit_regs(&cs, A6XX_RB_ALPHA_CONTROL());
2225 tu6_emit_depth_control(&cs, ds_info_depth,
2226 builder->create_info->pRasterizationState);
2227 tu6_emit_stencil_control(&cs, ds_info);
2228
2229 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
2230
2231 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2)) {
2232 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.mask = ds_info->front.compareMask & 0xff,
2233 .bfmask = ds_info->back.compareMask & 0xff));
2234 }
2235
2236 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2)) {
2237 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.wrmask = ds_info->front.writeMask & 0xff,
2238 .bfwrmask = ds_info->back.writeMask & 0xff));
2239 }
2240
2241 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2)) {
2242 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.ref = ds_info->front.reference & 0xff,
2243 .bfref = ds_info->back.reference & 0xff));
2244 }
2245 }
2246
2247 static void
2248 tu_pipeline_builder_parse_multisample_and_color_blend(
2249 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2250 {
2251 /* The spec says:
2252 *
2253 * pMultisampleState is a pointer to an instance of the
2254 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2255 * has rasterization disabled.
2256 *
2257 * Also,
2258 *
2259 * pColorBlendState is a pointer to an instance of the
2260 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2261 * pipeline has rasterization disabled or if the subpass of the render
2262 * pass the pipeline is created against does not use any color
2263 * attachments.
2264 *
2265 * We leave the relevant registers stale when rasterization is disabled.
2266 */
2267 if (builder->rasterizer_discard)
2268 return;
2269
2270 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2271 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2272 builder->create_info->pMultisampleState;
2273 const VkPipelineColorBlendStateCreateInfo *blend_info =
2274 builder->use_color_attachments ? builder->create_info->pColorBlendState
2275 : &dummy_blend_info;
2276
2277 struct tu_cs cs;
2278 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 4, &cs);
2279
2280 uint32_t blend_enable_mask;
2281 tu6_emit_rb_mrt_controls(&cs, blend_info,
2282 builder->color_attachment_formats,
2283 &blend_enable_mask);
2284
2285 tu6_emit_blend_control(&cs, blend_enable_mask,
2286 builder->use_dual_src_blend, msaa_info);
2287
2288 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &cs);
2289
2290 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5)) {
2291 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2292 tu_cs_emit_array(&cs, (const uint32_t *) blend_info->blendConstants, 4);
2293 }
2294
2295 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
2296 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
2297 const VkSampleLocationsInfoEXT *samp_loc = NULL;
2298
2299 if (sample_locations && sample_locations->sampleLocationsEnable)
2300 samp_loc = &sample_locations->sampleLocationsInfo;
2301
2302 if (tu_pipeline_static_state(pipeline, &cs, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS,
2303 samp_loc ? 9 : 6)) {
2304 tu6_emit_sample_locations(&cs, samp_loc);
2305 }
2306 }
2307
2308 static void
2309 tu_pipeline_finish(struct tu_pipeline *pipeline,
2310 struct tu_device *dev,
2311 const VkAllocationCallbacks *alloc)
2312 {
2313 tu_cs_finish(&pipeline->cs);
2314
2315 if (pipeline->program.binary_bo.gem_handle)
2316 tu_bo_finish(dev, &pipeline->program.binary_bo);
2317 }
2318
2319 static VkResult
2320 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2321 struct tu_pipeline **pipeline)
2322 {
2323 VkResult result = tu_pipeline_create(builder->device, builder->layout,
2324 false, builder->alloc, pipeline);
2325 if (result != VK_SUCCESS)
2326 return result;
2327
2328 (*pipeline)->layout = builder->layout;
2329
2330 /* compile and upload shaders */
2331 result = tu_pipeline_builder_compile_shaders(builder);
2332 if (result == VK_SUCCESS)
2333 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
2334 if (result != VK_SUCCESS) {
2335 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
2336 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
2337 *pipeline = VK_NULL_HANDLE;
2338
2339 return result;
2340 }
2341
2342 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2343 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2344 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2345 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2346 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2347 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2348 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2349 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2350 tu6_emit_load_state(*pipeline, false);
2351
2352 /* we should have reserved enough space upfront such that the CS never
2353 * grows
2354 */
2355 assert((*pipeline)->cs.bo_count == 1);
2356
2357 return VK_SUCCESS;
2358 }
2359
2360 static void
2361 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2362 {
2363 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2364 if (!builder->shaders[i])
2365 continue;
2366 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2367 }
2368 }
2369
2370 static void
2371 tu_pipeline_builder_init_graphics(
2372 struct tu_pipeline_builder *builder,
2373 struct tu_device *dev,
2374 struct tu_pipeline_cache *cache,
2375 const VkGraphicsPipelineCreateInfo *create_info,
2376 const VkAllocationCallbacks *alloc)
2377 {
2378 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2379
2380 *builder = (struct tu_pipeline_builder) {
2381 .device = dev,
2382 .cache = cache,
2383 .create_info = create_info,
2384 .alloc = alloc,
2385 .layout = layout,
2386 };
2387
2388 builder->rasterizer_discard =
2389 create_info->pRasterizationState->rasterizerDiscardEnable;
2390
2391 if (builder->rasterizer_discard) {
2392 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2393 } else {
2394 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2395
2396 const struct tu_render_pass *pass =
2397 tu_render_pass_from_handle(create_info->renderPass);
2398 const struct tu_subpass *subpass =
2399 &pass->subpasses[create_info->subpass];
2400
2401 const uint32_t a = subpass->depth_stencil_attachment.attachment;
2402 builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
2403 pass->attachments[a].format : VK_FORMAT_UNDEFINED;
2404
2405 assert(subpass->color_count == 0 ||
2406 !create_info->pColorBlendState ||
2407 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2408 builder->color_attachment_count = subpass->color_count;
2409 for (uint32_t i = 0; i < subpass->color_count; i++) {
2410 const uint32_t a = subpass->color_attachments[i].attachment;
2411 if (a == VK_ATTACHMENT_UNUSED)
2412 continue;
2413
2414 builder->color_attachment_formats[i] = pass->attachments[a].format;
2415 builder->use_color_attachments = true;
2416 builder->render_components |= 0xf << (i * 4);
2417 }
2418
2419 if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
2420 builder->color_attachment_count++;
2421 builder->use_dual_src_blend = true;
2422 /* dual source blending has an extra fs output in the 2nd slot */
2423 if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
2424 builder->render_components |= 0xf << 4;
2425 }
2426 }
2427 }
2428
2429 static VkResult
2430 tu_graphics_pipeline_create(VkDevice device,
2431 VkPipelineCache pipelineCache,
2432 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2433 const VkAllocationCallbacks *pAllocator,
2434 VkPipeline *pPipeline)
2435 {
2436 TU_FROM_HANDLE(tu_device, dev, device);
2437 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2438
2439 struct tu_pipeline_builder builder;
2440 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2441 pCreateInfo, pAllocator);
2442
2443 struct tu_pipeline *pipeline = NULL;
2444 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2445 tu_pipeline_builder_finish(&builder);
2446
2447 if (result == VK_SUCCESS)
2448 *pPipeline = tu_pipeline_to_handle(pipeline);
2449 else
2450 *pPipeline = VK_NULL_HANDLE;
2451
2452 return result;
2453 }
2454
2455 VkResult
2456 tu_CreateGraphicsPipelines(VkDevice device,
2457 VkPipelineCache pipelineCache,
2458 uint32_t count,
2459 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2460 const VkAllocationCallbacks *pAllocator,
2461 VkPipeline *pPipelines)
2462 {
2463 VkResult final_result = VK_SUCCESS;
2464
2465 for (uint32_t i = 0; i < count; i++) {
2466 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2467 &pCreateInfos[i], pAllocator,
2468 &pPipelines[i]);
2469
2470 if (result != VK_SUCCESS)
2471 final_result = result;
2472 }
2473
2474 return final_result;
2475 }
2476
2477 static VkResult
2478 tu_compute_upload_shader(VkDevice device,
2479 struct tu_pipeline *pipeline,
2480 struct ir3_shader_variant *v)
2481 {
2482 TU_FROM_HANDLE(tu_device, dev, device);
2483 struct tu_bo *bo = &pipeline->program.binary_bo;
2484
2485 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2486 VkResult result =
2487 tu_bo_init_new(dev, bo, shader_size);
2488 if (result != VK_SUCCESS)
2489 return result;
2490
2491 result = tu_bo_map(dev, bo);
2492 if (result != VK_SUCCESS)
2493 return result;
2494
2495 memcpy(bo->map, v->bin, shader_size);
2496
2497 return VK_SUCCESS;
2498 }
2499
2500
2501 static VkResult
2502 tu_compute_pipeline_create(VkDevice device,
2503 VkPipelineCache _cache,
2504 const VkComputePipelineCreateInfo *pCreateInfo,
2505 const VkAllocationCallbacks *pAllocator,
2506 VkPipeline *pPipeline)
2507 {
2508 TU_FROM_HANDLE(tu_device, dev, device);
2509 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2510 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2511 VkResult result;
2512
2513 struct tu_pipeline *pipeline;
2514
2515 *pPipeline = VK_NULL_HANDLE;
2516
2517 result = tu_pipeline_create(dev, layout, true, pAllocator, &pipeline);
2518 if (result != VK_SUCCESS)
2519 return result;
2520
2521 pipeline->layout = layout;
2522
2523 struct ir3_shader_key key;
2524 tu_pipeline_shader_key_init(&key, NULL);
2525
2526 struct tu_shader *shader =
2527 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2528 if (!shader) {
2529 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2530 goto fail;
2531 }
2532
2533 bool created;
2534 struct ir3_shader_variant *v =
2535 ir3_shader_get_variant(shader->ir3_shader, &key, false, &created);
2536 if (!v)
2537 goto fail;
2538
2539 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2540 shader, v);
2541
2542 result = tu_compute_upload_shader(device, pipeline, v);
2543 if (result != VK_SUCCESS)
2544 goto fail;
2545
2546 for (int i = 0; i < 3; i++)
2547 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2548
2549 struct tu_cs prog_cs;
2550 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2551 tu6_emit_cs_config(&prog_cs, shader, v, pipeline->program.binary_bo.iova);
2552 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2553
2554 tu6_emit_load_state(pipeline, true);
2555
2556 *pPipeline = tu_pipeline_to_handle(pipeline);
2557 return VK_SUCCESS;
2558
2559 fail:
2560 if (shader)
2561 tu_shader_destroy(dev, shader, pAllocator);
2562
2563 tu_pipeline_finish(pipeline, dev, pAllocator);
2564 vk_free2(&dev->alloc, pAllocator, pipeline);
2565
2566 return result;
2567 }
2568
2569 VkResult
2570 tu_CreateComputePipelines(VkDevice device,
2571 VkPipelineCache pipelineCache,
2572 uint32_t count,
2573 const VkComputePipelineCreateInfo *pCreateInfos,
2574 const VkAllocationCallbacks *pAllocator,
2575 VkPipeline *pPipelines)
2576 {
2577 VkResult final_result = VK_SUCCESS;
2578
2579 for (uint32_t i = 0; i < count; i++) {
2580 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2581 &pCreateInfos[i],
2582 pAllocator, &pPipelines[i]);
2583 if (result != VK_SUCCESS)
2584 final_result = result;
2585 }
2586
2587 return final_result;
2588 }
2589
2590 void
2591 tu_DestroyPipeline(VkDevice _device,
2592 VkPipeline _pipeline,
2593 const VkAllocationCallbacks *pAllocator)
2594 {
2595 TU_FROM_HANDLE(tu_device, dev, _device);
2596 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2597
2598 if (!_pipeline)
2599 return;
2600
2601 tu_pipeline_finish(pipeline, dev, pAllocator);
2602 vk_free2(&dev->alloc, pAllocator, pipeline);
2603 }