freedreno/regs: update a6xx VPC regs
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "ir3/ir3_nir.h"
31 #include "main/menums.h"
32 #include "nir/nir.h"
33 #include "nir/nir_builder.h"
34 #include "spirv/nir_spirv.h"
35 #include "util/debug.h"
36 #include "util/mesa-sha1.h"
37 #include "util/u_atomic.h"
38 #include "vk_format.h"
39 #include "vk_util.h"
40
41 #include "tu_cs.h"
42
43 /* Emit IB that preloads the descriptors that the shader uses */
44
45 static void
46 emit_load_state(struct tu_cs *cs, unsigned opcode, enum a6xx_state_type st,
47 enum a6xx_state_block sb, unsigned base, unsigned offset,
48 unsigned count)
49 {
50 /* Note: just emit one packet, even if count overflows NUM_UNIT. It's not
51 * clear if emitting more packets will even help anything. Presumably the
52 * descriptor cache is relatively small, and these packets stop doing
53 * anything when there are too many descriptors.
54 */
55 tu_cs_emit_pkt7(cs, opcode, 3);
56 tu_cs_emit(cs,
57 CP_LOAD_STATE6_0_STATE_TYPE(st) |
58 CP_LOAD_STATE6_0_STATE_SRC(SS6_BINDLESS) |
59 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
60 CP_LOAD_STATE6_0_NUM_UNIT(MIN2(count, 1024-1)));
61 tu_cs_emit_qw(cs, offset | (base << 28));
62 }
63
64 static unsigned
65 tu6_load_state_size(struct tu_pipeline *pipeline, bool compute)
66 {
67 const unsigned load_state_size = 4;
68 unsigned size = 0;
69 for (unsigned i = 0; i < pipeline->layout->num_sets; i++) {
70 if (pipeline && !(pipeline->active_desc_sets & (1u << i)))
71 continue;
72
73 struct tu_descriptor_set_layout *set_layout = pipeline->layout->set[i].layout;
74 for (unsigned j = 0; j < set_layout->binding_count; j++) {
75 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
76 unsigned count = 0;
77 /* Note: some users, like amber for example, pass in
78 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
79 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
80 */
81 VkShaderStageFlags stages = compute ?
82 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
83 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
84 unsigned stage_count = util_bitcount(stages);
85
86 if (!binding->array_size)
87 continue;
88
89 switch (binding->type) {
90 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
91 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
92 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
93 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
94 /* IBO-backed resources only need one packet for all graphics stages */
95 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT)
96 count += 1;
97 if (stages & VK_SHADER_STAGE_COMPUTE_BIT)
98 count += 1;
99 break;
100 case VK_DESCRIPTOR_TYPE_SAMPLER:
101 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
102 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
103 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
104 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
105 /* Textures and UBO's needs a packet for each stage */
106 count = stage_count;
107 break;
108 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
109 /* Because of how we pack combined images and samplers, we
110 * currently can't use one packet for the whole array.
111 */
112 count = stage_count * binding->array_size * 2;
113 break;
114 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
115 break;
116 default:
117 unreachable("bad descriptor type");
118 }
119 size += count * load_state_size;
120 }
121 }
122 return size;
123 }
124
125 static void
126 tu6_emit_load_state(struct tu_pipeline *pipeline, bool compute)
127 {
128 unsigned size = tu6_load_state_size(pipeline, compute);
129 if (size == 0)
130 return;
131
132 struct tu_cs cs;
133 tu_cs_begin_sub_stream(&pipeline->cs, size, &cs);
134
135 struct tu_pipeline_layout *layout = pipeline->layout;
136 for (unsigned i = 0; i < layout->num_sets; i++) {
137 /* From 13.2.7. Descriptor Set Binding:
138 *
139 * A compatible descriptor set must be bound for all set numbers that
140 * any shaders in a pipeline access, at the time that a draw or
141 * dispatch command is recorded to execute using that pipeline.
142 * However, if none of the shaders in a pipeline statically use any
143 * bindings with a particular set number, then no descriptor set need
144 * be bound for that set number, even if the pipeline layout includes
145 * a non-trivial descriptor set layout for that set number.
146 *
147 * This means that descriptor sets unused by the pipeline may have a
148 * garbage or 0 BINDLESS_BASE register, which will cause context faults
149 * when prefetching descriptors from these sets. Skip prefetching for
150 * descriptors from them to avoid this. This is also an optimization,
151 * since these prefetches would be useless.
152 */
153 if (!(pipeline->active_desc_sets & (1u << i)))
154 continue;
155
156 struct tu_descriptor_set_layout *set_layout = layout->set[i].layout;
157 for (unsigned j = 0; j < set_layout->binding_count; j++) {
158 struct tu_descriptor_set_binding_layout *binding = &set_layout->binding[j];
159 unsigned base = i;
160 unsigned offset = binding->offset / 4;
161 /* Note: some users, like amber for example, pass in
162 * VK_SHADER_STAGE_ALL which includes a bunch of extra bits, so
163 * filter these out by using VK_SHADER_STAGE_ALL_GRAPHICS explicitly.
164 */
165 VkShaderStageFlags stages = compute ?
166 binding->shader_stages & VK_SHADER_STAGE_COMPUTE_BIT :
167 binding->shader_stages & VK_SHADER_STAGE_ALL_GRAPHICS;
168 unsigned count = binding->array_size;
169 if (count == 0 || stages == 0)
170 continue;
171 switch (binding->type) {
172 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
173 base = MAX_SETS;
174 offset = (layout->set[i].dynamic_offset_start +
175 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
176 /* fallthrough */
177 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
178 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
179 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
180 /* IBO-backed resources only need one packet for all graphics stages */
181 if (stages & ~VK_SHADER_STAGE_COMPUTE_BIT) {
182 emit_load_state(&cs, CP_LOAD_STATE6, ST6_SHADER, SB6_IBO,
183 base, offset, count);
184 }
185 if (stages & VK_SHADER_STAGE_COMPUTE_BIT) {
186 emit_load_state(&cs, CP_LOAD_STATE6_FRAG, ST6_IBO, SB6_CS_SHADER,
187 base, offset, count);
188 }
189 break;
190 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
191 /* nothing - input attachment doesn't use bindless */
192 break;
193 case VK_DESCRIPTOR_TYPE_SAMPLER:
194 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
195 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
196 tu_foreach_stage(stage, stages) {
197 emit_load_state(&cs, tu6_stage2opcode(stage),
198 binding->type == VK_DESCRIPTOR_TYPE_SAMPLER ?
199 ST6_SHADER : ST6_CONSTANTS,
200 tu6_stage2texsb(stage), base, offset, count);
201 }
202 break;
203 }
204 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
205 base = MAX_SETS;
206 offset = (layout->set[i].dynamic_offset_start +
207 binding->dynamic_offset_offset) * A6XX_TEX_CONST_DWORDS;
208 /* fallthrough */
209 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
210 tu_foreach_stage(stage, stages) {
211 emit_load_state(&cs, tu6_stage2opcode(stage), ST6_UBO,
212 tu6_stage2shadersb(stage), base, offset, count);
213 }
214 break;
215 }
216 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
217 tu_foreach_stage(stage, stages) {
218 /* TODO: We could emit less CP_LOAD_STATE6 if we used
219 * struct-of-arrays instead of array-of-structs.
220 */
221 for (unsigned i = 0; i < count; i++) {
222 unsigned tex_offset = offset + 2 * i * A6XX_TEX_CONST_DWORDS;
223 unsigned sam_offset = offset + (2 * i + 1) * A6XX_TEX_CONST_DWORDS;
224 emit_load_state(&cs, tu6_stage2opcode(stage),
225 ST6_CONSTANTS, tu6_stage2texsb(stage),
226 base, tex_offset, 1);
227 emit_load_state(&cs, tu6_stage2opcode(stage),
228 ST6_SHADER, tu6_stage2texsb(stage),
229 base, sam_offset, 1);
230 }
231 }
232 break;
233 }
234 default:
235 unreachable("bad descriptor type");
236 }
237 }
238 }
239
240 pipeline->load_state = tu_cs_end_draw_state(&pipeline->cs, &cs);
241 }
242
243 struct tu_pipeline_builder
244 {
245 struct tu_device *device;
246 struct tu_pipeline_cache *cache;
247 struct tu_pipeline_layout *layout;
248 const VkAllocationCallbacks *alloc;
249 const VkGraphicsPipelineCreateInfo *create_info;
250
251 struct tu_shader *shaders[MESA_SHADER_STAGES];
252 struct ir3_shader_variant *variants[MESA_SHADER_STAGES];
253 struct ir3_shader_variant *binning_variant;
254 uint64_t shader_iova[MESA_SHADER_STAGES];
255 uint64_t binning_vs_iova;
256
257 bool rasterizer_discard;
258 /* these states are affectd by rasterizer_discard */
259 VkSampleCountFlagBits samples;
260 bool use_color_attachments;
261 bool use_dual_src_blend;
262 uint32_t color_attachment_count;
263 VkFormat color_attachment_formats[MAX_RTS];
264 VkFormat depth_attachment_format;
265 uint32_t render_components;
266 };
267
268 static bool
269 tu_logic_op_reads_dst(VkLogicOp op)
270 {
271 switch (op) {
272 case VK_LOGIC_OP_CLEAR:
273 case VK_LOGIC_OP_COPY:
274 case VK_LOGIC_OP_COPY_INVERTED:
275 case VK_LOGIC_OP_SET:
276 return false;
277 default:
278 return true;
279 }
280 }
281
282 static VkBlendFactor
283 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
284 {
285 /* treat dst alpha as 1.0 and avoid reading it */
286 switch (factor) {
287 case VK_BLEND_FACTOR_DST_ALPHA:
288 return VK_BLEND_FACTOR_ONE;
289 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
290 return VK_BLEND_FACTOR_ZERO;
291 default:
292 return factor;
293 }
294 }
295
296 static bool tu_blend_factor_is_dual_src(VkBlendFactor factor)
297 {
298 switch (factor) {
299 case VK_BLEND_FACTOR_SRC1_COLOR:
300 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
301 case VK_BLEND_FACTOR_SRC1_ALPHA:
302 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
303 return true;
304 default:
305 return false;
306 }
307 }
308
309 static bool
310 tu_blend_state_is_dual_src(const VkPipelineColorBlendStateCreateInfo *info)
311 {
312 if (!info)
313 return false;
314
315 for (unsigned i = 0; i < info->attachmentCount; i++) {
316 const VkPipelineColorBlendAttachmentState *blend = &info->pAttachments[i];
317 if (tu_blend_factor_is_dual_src(blend->srcColorBlendFactor) ||
318 tu_blend_factor_is_dual_src(blend->dstColorBlendFactor) ||
319 tu_blend_factor_is_dual_src(blend->srcAlphaBlendFactor) ||
320 tu_blend_factor_is_dual_src(blend->dstAlphaBlendFactor))
321 return true;
322 }
323
324 return false;
325 }
326
327 void
328 tu6_emit_xs_config(struct tu_cs *cs,
329 gl_shader_stage stage, /* xs->type, but xs may be NULL */
330 const struct ir3_shader_variant *xs,
331 uint64_t binary_iova)
332 {
333 static const struct xs_config {
334 uint16_t reg_sp_xs_ctrl;
335 uint16_t reg_sp_xs_config;
336 uint16_t reg_hlsq_xs_ctrl;
337 uint16_t reg_sp_vs_obj_start;
338 } xs_config[] = {
339 [MESA_SHADER_VERTEX] = {
340 REG_A6XX_SP_VS_CTRL_REG0,
341 REG_A6XX_SP_VS_CONFIG,
342 REG_A6XX_HLSQ_VS_CNTL,
343 REG_A6XX_SP_VS_OBJ_START_LO,
344 },
345 [MESA_SHADER_TESS_CTRL] = {
346 REG_A6XX_SP_HS_CTRL_REG0,
347 REG_A6XX_SP_HS_CONFIG,
348 REG_A6XX_HLSQ_HS_CNTL,
349 REG_A6XX_SP_HS_OBJ_START_LO,
350 },
351 [MESA_SHADER_TESS_EVAL] = {
352 REG_A6XX_SP_DS_CTRL_REG0,
353 REG_A6XX_SP_DS_CONFIG,
354 REG_A6XX_HLSQ_DS_CNTL,
355 REG_A6XX_SP_DS_OBJ_START_LO,
356 },
357 [MESA_SHADER_GEOMETRY] = {
358 REG_A6XX_SP_GS_CTRL_REG0,
359 REG_A6XX_SP_GS_CONFIG,
360 REG_A6XX_HLSQ_GS_CNTL,
361 REG_A6XX_SP_GS_OBJ_START_LO,
362 },
363 [MESA_SHADER_FRAGMENT] = {
364 REG_A6XX_SP_FS_CTRL_REG0,
365 REG_A6XX_SP_FS_CONFIG,
366 REG_A6XX_HLSQ_FS_CNTL,
367 REG_A6XX_SP_FS_OBJ_START_LO,
368 },
369 [MESA_SHADER_COMPUTE] = {
370 REG_A6XX_SP_CS_CTRL_REG0,
371 REG_A6XX_SP_CS_CONFIG,
372 REG_A6XX_HLSQ_CS_CNTL,
373 REG_A6XX_SP_CS_OBJ_START_LO,
374 },
375 };
376 const struct xs_config *cfg = &xs_config[stage];
377
378 if (!xs) {
379 /* shader stage disabled */
380 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 1);
381 tu_cs_emit(cs, 0);
382
383 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
384 tu_cs_emit(cs, 0);
385 return;
386 }
387
388 bool is_fs = xs->type == MESA_SHADER_FRAGMENT;
389 enum a3xx_threadsize threadsize = FOUR_QUADS;
390
391 /* TODO:
392 * the "threadsize" field may have nothing to do with threadsize,
393 * use a value that matches the blob until it is figured out
394 */
395 if (xs->type == MESA_SHADER_GEOMETRY)
396 threadsize = TWO_QUADS;
397
398 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_ctrl, 1);
399 tu_cs_emit(cs,
400 A6XX_SP_VS_CTRL_REG0_THREADSIZE(threadsize) |
401 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(xs->info.max_reg + 1) |
402 A6XX_SP_VS_CTRL_REG0_HALFREGFOOTPRINT(xs->info.max_half_reg + 1) |
403 COND(xs->mergedregs, A6XX_SP_VS_CTRL_REG0_MERGEDREGS) |
404 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(xs->branchstack) |
405 COND(xs->need_pixlod, A6XX_SP_VS_CTRL_REG0_PIXLODENABLE) |
406 COND(xs->need_fine_derivatives, A6XX_SP_VS_CTRL_REG0_DIFF_FINE) |
407 /* only fragment shader sets VARYING bit */
408 COND(xs->total_in && is_fs, A6XX_SP_FS_CTRL_REG0_VARYING) |
409 /* unknown bit, seems unnecessary */
410 COND(is_fs, 0x1000000));
411
412 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_config, 2);
413 tu_cs_emit(cs, A6XX_SP_VS_CONFIG_ENABLED |
414 COND(xs->bindless_tex, A6XX_SP_VS_CONFIG_BINDLESS_TEX) |
415 COND(xs->bindless_samp, A6XX_SP_VS_CONFIG_BINDLESS_SAMP) |
416 COND(xs->bindless_ibo, A6XX_SP_VS_CONFIG_BINDLESS_IBO) |
417 COND(xs->bindless_ubo, A6XX_SP_VS_CONFIG_BINDLESS_UBO) |
418 A6XX_SP_VS_CONFIG_NTEX(xs->num_samp) |
419 A6XX_SP_VS_CONFIG_NSAMP(xs->num_samp));
420 tu_cs_emit(cs, xs->instrlen);
421
422 tu_cs_emit_pkt4(cs, cfg->reg_hlsq_xs_ctrl, 1);
423 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(xs->constlen) |
424 A6XX_HLSQ_VS_CNTL_ENABLED);
425
426 /* emit program binary
427 * binary_iova should be aligned to 1 instrlen unit (128 bytes)
428 */
429
430 assert((binary_iova & 0x7f) == 0);
431
432 tu_cs_emit_pkt4(cs, cfg->reg_sp_vs_obj_start, 2);
433 tu_cs_emit_qw(cs, binary_iova);
434
435 tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3);
436 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
437 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
438 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
439 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
440 CP_LOAD_STATE6_0_NUM_UNIT(xs->instrlen));
441 tu_cs_emit_qw(cs, binary_iova);
442
443 /* emit immediates */
444
445 const struct ir3_const_state *const_state = ir3_const_state(xs);
446 uint32_t base = const_state->offsets.immediate;
447 int size = const_state->immediates_count;
448
449 /* truncate size to avoid writing constants that shader
450 * does not use:
451 */
452 size = MIN2(size + base, xs->constlen) - base;
453
454 if (size <= 0)
455 return;
456
457 tu_cs_emit_pkt7(cs, tu6_stage2opcode(stage), 3 + size * 4);
458 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
459 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
460 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
461 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(stage)) |
462 CP_LOAD_STATE6_0_NUM_UNIT(size));
463 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
464 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
465
466 for (unsigned i = 0; i < size; i++) {
467 tu_cs_emit(cs, const_state->immediates[i].val[0]);
468 tu_cs_emit(cs, const_state->immediates[i].val[1]);
469 tu_cs_emit(cs, const_state->immediates[i].val[2]);
470 tu_cs_emit(cs, const_state->immediates[i].val[3]);
471 }
472 }
473
474 static void
475 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
476 const struct ir3_shader_variant *v,
477 uint32_t binary_iova)
478 {
479 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
480 .cs_state = true,
481 .cs_ibo = true));
482
483 tu6_emit_xs_config(cs, MESA_SHADER_COMPUTE, v, binary_iova);
484
485 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
486 tu_cs_emit(cs, 0x41);
487
488 uint32_t local_invocation_id =
489 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
490 uint32_t work_group_id =
491 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
492
493 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
494 tu_cs_emit(cs,
495 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
496 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
497 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
498 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
499 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
500 }
501
502 static void
503 tu6_emit_vs_system_values(struct tu_cs *cs,
504 const struct ir3_shader_variant *vs,
505 const struct ir3_shader_variant *hs,
506 const struct ir3_shader_variant *ds,
507 const struct ir3_shader_variant *gs,
508 bool primid_passthru)
509 {
510 const uint32_t vertexid_regid =
511 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
512 const uint32_t instanceid_regid =
513 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
514 const uint32_t tess_coord_x_regid = hs ?
515 ir3_find_sysval_regid(ds, SYSTEM_VALUE_TESS_COORD) :
516 regid(63, 0);
517 const uint32_t tess_coord_y_regid = VALIDREG(tess_coord_x_regid) ?
518 tess_coord_x_regid + 1 :
519 regid(63, 0);
520 const uint32_t hs_patch_regid = hs ?
521 ir3_find_sysval_regid(hs, SYSTEM_VALUE_PRIMITIVE_ID) :
522 regid(63, 0);
523 const uint32_t ds_patch_regid = hs ?
524 ir3_find_sysval_regid(ds, SYSTEM_VALUE_PRIMITIVE_ID) :
525 regid(63, 0);
526 const uint32_t hs_invocation_regid = hs ?
527 ir3_find_sysval_regid(hs, SYSTEM_VALUE_TCS_HEADER_IR3) :
528 regid(63, 0);
529 const uint32_t primitiveid_regid = gs ?
530 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) :
531 regid(63, 0);
532 const uint32_t gsheader_regid = gs ?
533 ir3_find_sysval_regid(gs, SYSTEM_VALUE_GS_HEADER_IR3) :
534 regid(63, 0);
535
536 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
537 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
538 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
539 A6XX_VFD_CONTROL_1_REGID4PRIMID(primitiveid_regid) |
540 0xfc000000);
541 tu_cs_emit(cs, A6XX_VFD_CONTROL_2_REGID_HSPATCHID(hs_patch_regid) |
542 A6XX_VFD_CONTROL_2_REGID_INVOCATIONID(hs_invocation_regid));
543 tu_cs_emit(cs, A6XX_VFD_CONTROL_3_REGID_DSPATCHID(ds_patch_regid) |
544 A6XX_VFD_CONTROL_3_REGID_TESSX(tess_coord_x_regid) |
545 A6XX_VFD_CONTROL_3_REGID_TESSY(tess_coord_y_regid) |
546 0xfc);
547 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
548 tu_cs_emit(cs, A6XX_VFD_CONTROL_5_REGID_GSHEADER(gsheader_regid) |
549 0xfc00); /* VFD_CONTROL_5 */
550 tu_cs_emit(cs, COND(primid_passthru, A6XX_VFD_CONTROL_6_PRIMID_PASSTHRU)); /* VFD_CONTROL_6 */
551 }
552
553 /* Add any missing varyings needed for stream-out. Otherwise varyings not
554 * used by fragment shader will be stripped out.
555 */
556 static void
557 tu6_link_streamout(struct ir3_shader_linkage *l,
558 const struct ir3_shader_variant *v)
559 {
560 const struct ir3_stream_output_info *info = &v->shader->stream_output;
561
562 /*
563 * First, any stream-out varyings not already in linkage map (ie. also
564 * consumed by frag shader) need to be added:
565 */
566 for (unsigned i = 0; i < info->num_outputs; i++) {
567 const struct ir3_stream_output *out = &info->output[i];
568 unsigned compmask =
569 (1 << (out->num_components + out->start_component)) - 1;
570 unsigned k = out->register_index;
571 unsigned idx, nextloc = 0;
572
573 /* psize/pos need to be the last entries in linkage map, and will
574 * get added link_stream_out, so skip over them:
575 */
576 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
577 v->outputs[k].slot == VARYING_SLOT_POS)
578 continue;
579
580 for (idx = 0; idx < l->cnt; idx++) {
581 if (l->var[idx].regid == v->outputs[k].regid)
582 break;
583 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
584 }
585
586 /* add if not already in linkage map: */
587 if (idx == l->cnt)
588 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
589
590 /* expand component-mask if needed, ie streaming out all components
591 * but frag shader doesn't consume all components:
592 */
593 if (compmask & ~l->var[idx].compmask) {
594 l->var[idx].compmask |= compmask;
595 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
596 util_last_bit(l->var[idx].compmask));
597 }
598 }
599 }
600
601 static void
602 tu6_setup_streamout(struct tu_cs *cs,
603 const struct ir3_shader_variant *v,
604 struct ir3_shader_linkage *l)
605 {
606 const struct ir3_stream_output_info *info = &v->shader->stream_output;
607 uint32_t prog[IR3_MAX_SO_OUTPUTS * 2] = {};
608 uint32_t ncomp[IR3_MAX_SO_BUFFERS] = {};
609 uint32_t prog_count = align(l->max_loc, 2) / 2;
610
611 /* TODO: streamout state should be in a non-GMEM draw state */
612
613 /* no streamout: */
614 if (info->num_outputs == 0) {
615 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 4);
616 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
617 tu_cs_emit(cs, 0);
618 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
619 tu_cs_emit(cs, 0);
620 return;
621 }
622
623 /* is there something to do with info->stride[i]? */
624
625 for (unsigned i = 0; i < info->num_outputs; i++) {
626 const struct ir3_stream_output *out = &info->output[i];
627 unsigned k = out->register_index;
628 unsigned idx;
629
630 /* Skip it, if there's an unused reg in the middle of outputs. */
631 if (v->outputs[k].regid == INVALID_REG)
632 continue;
633
634 ncomp[out->output_buffer] += out->num_components;
635
636 /* linkage map sorted by order frag shader wants things, so
637 * a bit less ideal here..
638 */
639 for (idx = 0; idx < l->cnt; idx++)
640 if (l->var[idx].regid == v->outputs[k].regid)
641 break;
642
643 debug_assert(idx < l->cnt);
644
645 for (unsigned j = 0; j < out->num_components; j++) {
646 unsigned c = j + out->start_component;
647 unsigned loc = l->var[idx].loc + c;
648 unsigned off = j + out->dst_offset; /* in dwords */
649
650 if (loc & 1) {
651 prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
652 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
653 A6XX_VPC_SO_PROG_B_OFF(off * 4);
654 } else {
655 prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
656 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
657 A6XX_VPC_SO_PROG_A_OFF(off * 4);
658 }
659 }
660 }
661
662 tu_cs_emit_pkt7(cs, CP_CONTEXT_REG_BUNCH, 12 + 2 * prog_count);
663 tu_cs_emit(cs, REG_A6XX_VPC_SO_BUF_CNTL);
664 tu_cs_emit(cs, A6XX_VPC_SO_BUF_CNTL_ENABLE |
665 COND(ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
666 COND(ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
667 COND(ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
668 COND(ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3));
669 for (uint32_t i = 0; i < 4; i++) {
670 tu_cs_emit(cs, REG_A6XX_VPC_SO_NCOMP(i));
671 tu_cs_emit(cs, ncomp[i]);
672 }
673 /* note: "VPC_SO_CNTL" write seems to be responsible for resetting the SO_PROG */
674 tu_cs_emit(cs, REG_A6XX_VPC_SO_CNTL);
675 tu_cs_emit(cs, A6XX_VPC_SO_CNTL_ENABLE);
676 for (uint32_t i = 0; i < prog_count; i++) {
677 tu_cs_emit(cs, REG_A6XX_VPC_SO_PROG);
678 tu_cs_emit(cs, prog[i]);
679 }
680 }
681
682 static void
683 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
684 enum a6xx_state_block block, uint32_t offset,
685 uint32_t size, uint32_t *dwords) {
686 assert(size % 4 == 0);
687
688 tu_cs_emit_pkt7(cs, opcode, 3 + size);
689 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
690 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
691 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
692 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
693 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
694
695 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
696 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
697 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
698
699 tu_cs_emit_array(cs, dwords, size);
700 }
701
702 static void
703 tu6_emit_link_map(struct tu_cs *cs,
704 const struct ir3_shader_variant *producer,
705 const struct ir3_shader_variant *consumer,
706 enum a6xx_state_block sb)
707 {
708 const struct ir3_const_state *const_state = ir3_const_state(consumer);
709 uint32_t base = const_state->offsets.primitive_map;
710 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
711 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
712 int size = DIV_ROUND_UP(num_loc, 4);
713
714 size = (MIN2(size + base, consumer->constlen) - base) * 4;
715 if (size <= 0)
716 return;
717
718 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, sb, 0, size,
719 patch_locs);
720 }
721
722 static uint16_t
723 gl_primitive_to_tess(uint16_t primitive) {
724 switch (primitive) {
725 case GL_POINTS:
726 return TESS_POINTS;
727 case GL_LINE_STRIP:
728 return TESS_LINES;
729 case GL_TRIANGLE_STRIP:
730 return TESS_CW_TRIS;
731 default:
732 unreachable("");
733 }
734 }
735
736 void
737 tu6_emit_vpc(struct tu_cs *cs,
738 const struct ir3_shader_variant *vs,
739 const struct ir3_shader_variant *hs,
740 const struct ir3_shader_variant *ds,
741 const struct ir3_shader_variant *gs,
742 const struct ir3_shader_variant *fs)
743 {
744 /* note: doesn't compile as static because of the array regs.. */
745 const struct reg_config {
746 uint16_t reg_sp_xs_out_reg;
747 uint16_t reg_sp_xs_vpc_dst_reg;
748 uint16_t reg_vpc_xs_pack;
749 uint16_t reg_vpc_xs_clip_cntl;
750 uint16_t reg_gras_xs_cl_cntl;
751 uint16_t reg_pc_xs_out_cntl;
752 uint16_t reg_sp_xs_primitive_cntl;
753 uint16_t reg_vpc_xs_layer_cntl;
754 uint16_t reg_gras_xs_layer_cntl;
755 } reg_config[] = {
756 [MESA_SHADER_VERTEX] = {
757 REG_A6XX_SP_VS_OUT_REG(0),
758 REG_A6XX_SP_VS_VPC_DST_REG(0),
759 REG_A6XX_VPC_VS_PACK,
760 REG_A6XX_VPC_VS_CLIP_CNTL,
761 REG_A6XX_GRAS_VS_CL_CNTL,
762 REG_A6XX_PC_VS_OUT_CNTL,
763 REG_A6XX_SP_VS_PRIMITIVE_CNTL,
764 REG_A6XX_VPC_VS_LAYER_CNTL,
765 REG_A6XX_GRAS_VS_LAYER_CNTL
766 },
767 [MESA_SHADER_TESS_EVAL] = {
768 REG_A6XX_SP_DS_OUT_REG(0),
769 REG_A6XX_SP_DS_VPC_DST_REG(0),
770 REG_A6XX_VPC_DS_PACK,
771 REG_A6XX_VPC_DS_CLIP_CNTL,
772 REG_A6XX_GRAS_DS_CL_CNTL,
773 REG_A6XX_PC_DS_OUT_CNTL,
774 REG_A6XX_SP_DS_PRIMITIVE_CNTL,
775 REG_A6XX_VPC_DS_LAYER_CNTL,
776 REG_A6XX_GRAS_DS_LAYER_CNTL
777 },
778 [MESA_SHADER_GEOMETRY] = {
779 REG_A6XX_SP_GS_OUT_REG(0),
780 REG_A6XX_SP_GS_VPC_DST_REG(0),
781 REG_A6XX_VPC_GS_PACK,
782 REG_A6XX_VPC_GS_CLIP_CNTL,
783 REG_A6XX_GRAS_GS_CL_CNTL,
784 REG_A6XX_PC_GS_OUT_CNTL,
785 REG_A6XX_SP_GS_PRIMITIVE_CNTL,
786 REG_A6XX_VPC_GS_LAYER_CNTL,
787 REG_A6XX_GRAS_GS_LAYER_CNTL
788 },
789 };
790
791 const struct ir3_shader_variant *last_shader;
792 if (gs) {
793 last_shader = gs;
794 } else if (hs) {
795 last_shader = ds;
796 } else {
797 last_shader = vs;
798 }
799
800 const struct reg_config *cfg = &reg_config[last_shader->type];
801
802 struct ir3_shader_linkage linkage = { .primid_loc = 0xff };
803 if (fs)
804 ir3_link_shaders(&linkage, last_shader, fs, true);
805
806 if (last_shader->shader->stream_output.num_outputs)
807 tu6_link_streamout(&linkage, last_shader);
808
809 /* We do this after linking shaders in order to know whether PrimID
810 * passthrough needs to be enabled.
811 */
812 bool primid_passthru = linkage.primid_loc != 0xff;
813 tu6_emit_vs_system_values(cs, vs, hs, ds, gs, primid_passthru);
814
815 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
816 tu_cs_emit(cs, ~linkage.varmask[0]);
817 tu_cs_emit(cs, ~linkage.varmask[1]);
818 tu_cs_emit(cs, ~linkage.varmask[2]);
819 tu_cs_emit(cs, ~linkage.varmask[3]);
820
821 /* a6xx finds position/pointsize at the end */
822 const uint32_t position_regid =
823 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
824 const uint32_t pointsize_regid =
825 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
826 const uint32_t layer_regid =
827 ir3_find_output_regid(last_shader, VARYING_SLOT_LAYER);
828 uint32_t primitive_regid = gs ?
829 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID) : regid(63, 0);
830 uint32_t flags_regid = gs ?
831 ir3_find_output_regid(gs, VARYING_SLOT_GS_VERTEX_FLAGS_IR3) : 0;
832
833 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
834 if (layer_regid != regid(63, 0)) {
835 layer_loc = linkage.max_loc;
836 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
837 }
838 if (position_regid != regid(63, 0)) {
839 position_loc = linkage.max_loc;
840 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
841 }
842 if (pointsize_regid != regid(63, 0)) {
843 pointsize_loc = linkage.max_loc;
844 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
845 }
846
847 tu6_setup_streamout(cs, last_shader, &linkage);
848
849 /* map outputs of the last shader to VPC */
850 assert(linkage.cnt <= 32);
851 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
852 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
853 uint32_t sp_out[16];
854 uint32_t sp_vpc_dst[8];
855 for (uint32_t i = 0; i < linkage.cnt; i++) {
856 ((uint16_t *) sp_out)[i] =
857 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
858 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
859 ((uint8_t *) sp_vpc_dst)[i] =
860 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
861 }
862
863 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_out_reg, sp_out_count);
864 tu_cs_emit_array(cs, sp_out, sp_out_count);
865
866 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_vpc_dst_reg, sp_vpc_dst_count);
867 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
868
869 tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_pack, 1);
870 tu_cs_emit(cs, A6XX_VPC_VS_PACK_POSITIONLOC(position_loc) |
871 A6XX_VPC_VS_PACK_PSIZELOC(pointsize_loc) |
872 A6XX_VPC_VS_PACK_STRIDE_IN_VPC(linkage.max_loc));
873
874 tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_clip_cntl, 1);
875 tu_cs_emit(cs, 0xffff00);
876
877 tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_cl_cntl, 1);
878 tu_cs_emit(cs, 0);
879
880 tu_cs_emit_pkt4(cs, cfg->reg_pc_xs_out_cntl, 1);
881 tu_cs_emit(cs, A6XX_PC_VS_OUT_CNTL_STRIDE_IN_VPC(linkage.max_loc) |
882 CONDREG(pointsize_regid, A6XX_PC_VS_OUT_CNTL_PSIZE) |
883 CONDREG(layer_regid, A6XX_PC_VS_OUT_CNTL_LAYER) |
884 CONDREG(primitive_regid, A6XX_PC_VS_OUT_CNTL_PRIMITIVE_ID));
885
886 tu_cs_emit_pkt4(cs, cfg->reg_sp_xs_primitive_cntl, 1);
887 tu_cs_emit(cs, A6XX_SP_VS_PRIMITIVE_CNTL_OUT(linkage.cnt) |
888 A6XX_SP_GS_PRIMITIVE_CNTL_FLAGS_REGID(flags_regid));
889
890 tu_cs_emit_pkt4(cs, cfg->reg_vpc_xs_layer_cntl, 1);
891 tu_cs_emit(cs, A6XX_VPC_GS_LAYER_CNTL_LAYERLOC(layer_loc) | 0xff00);
892
893 tu_cs_emit_pkt4(cs, cfg->reg_gras_xs_layer_cntl, 1);
894 tu_cs_emit(cs, CONDREG(layer_regid, A6XX_GRAS_GS_LAYER_CNTL_WRITES_LAYER));
895
896 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMID_CNTL, 1);
897 tu_cs_emit(cs, COND(primid_passthru, A6XX_PC_PRIMID_CNTL_PRIMID_PASSTHRU));
898
899 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
900 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs ? fs->total_in : 0) |
901 COND(fs && fs->total_in, A6XX_VPC_CNTL_0_VARYING) |
902 A6XX_VPC_CNTL_0_PRIMIDLOC(linkage.primid_loc) |
903 A6XX_VPC_CNTL_0_UNKLOC(0xff));
904
905 if (hs) {
906 shader_info *hs_info = &hs->shader->nir->info;
907 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_NUM_VERTEX, 1);
908 tu_cs_emit(cs, hs_info->tess.tcs_vertices_out);
909
910 /* Total attribute slots in HS incoming patch. */
911 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9801, 1);
912 tu_cs_emit(cs,
913 hs_info->tess.tcs_vertices_out * vs->output_size / 4);
914
915 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
916 tu_cs_emit(cs, vs->output_size);
917 /* In SPIR-V generated from GLSL, the tessellation primitive params are
918 * are specified in the tess eval shader, but in SPIR-V generated from
919 * HLSL, they are specified in the tess control shader. */
920 shader_info *tess_info =
921 ds->shader->nir->info.tess.spacing == TESS_SPACING_UNSPECIFIED ?
922 &hs->shader->nir->info : &ds->shader->nir->info;
923 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESS_CNTL, 1);
924 uint32_t output;
925 if (tess_info->tess.point_mode)
926 output = TESS_POINTS;
927 else if (tess_info->tess.primitive_mode == GL_ISOLINES)
928 output = TESS_LINES;
929 else if (tess_info->tess.ccw)
930 output = TESS_CCW_TRIS;
931 else
932 output = TESS_CW_TRIS;
933
934 enum a6xx_tess_spacing spacing;
935 switch (tess_info->tess.spacing) {
936 case TESS_SPACING_EQUAL:
937 spacing = TESS_EQUAL;
938 break;
939 case TESS_SPACING_FRACTIONAL_ODD:
940 spacing = TESS_FRACTIONAL_ODD;
941 break;
942 case TESS_SPACING_FRACTIONAL_EVEN:
943 spacing = TESS_FRACTIONAL_EVEN;
944 break;
945 case TESS_SPACING_UNSPECIFIED:
946 default:
947 unreachable("invalid tess spacing");
948 }
949 tu_cs_emit(cs, A6XX_PC_TESS_CNTL_SPACING(spacing) |
950 A6XX_PC_TESS_CNTL_OUTPUT(output));
951
952 tu6_emit_link_map(cs, vs, hs, SB6_HS_SHADER);
953 tu6_emit_link_map(cs, hs, ds, SB6_DS_SHADER);
954 }
955
956
957 if (gs) {
958 uint32_t vertices_out, invocations, output, vec4_size;
959 /* this detects the tu_clear_blit path, which doesn't set ->nir */
960 if (gs->shader->nir) {
961 if (hs) {
962 tu6_emit_link_map(cs, ds, gs, SB6_GS_SHADER);
963 } else {
964 tu6_emit_link_map(cs, vs, gs, SB6_GS_SHADER);
965 }
966 vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
967 output = gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
968 invocations = gs->shader->nir->info.gs.invocations - 1;
969 /* Size of per-primitive alloction in ldlw memory in vec4s. */
970 vec4_size = gs->shader->nir->info.gs.vertices_in *
971 DIV_ROUND_UP(vs->output_size, 4);
972 } else {
973 vertices_out = 3;
974 output = TESS_CW_TRIS;
975 invocations = 0;
976 vec4_size = 0;
977 }
978
979 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
980 tu_cs_emit(cs,
981 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
982 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
983 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
984
985 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
986 tu_cs_emit(cs, 0);
987
988 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
989 tu_cs_emit(cs, 0xff);
990
991 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
992 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
993
994 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
995 tu_cs_emit(cs, 0);
996
997 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_PRIM_SIZE, 1);
998 tu_cs_emit(cs, vs->output_size);
999 }
1000 }
1001
1002 static int
1003 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
1004 uint32_t index,
1005 uint8_t *interp_mode,
1006 uint8_t *ps_repl_mode)
1007 {
1008 enum
1009 {
1010 INTERP_SMOOTH = 0,
1011 INTERP_FLAT = 1,
1012 INTERP_ZERO = 2,
1013 INTERP_ONE = 3,
1014 };
1015 enum
1016 {
1017 PS_REPL_NONE = 0,
1018 PS_REPL_S = 1,
1019 PS_REPL_T = 2,
1020 PS_REPL_ONE_MINUS_T = 3,
1021 };
1022
1023 const uint32_t compmask = fs->inputs[index].compmask;
1024
1025 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
1026 * fourth component occupy three consecutive varying slots
1027 */
1028 int shift = 0;
1029 *interp_mode = 0;
1030 *ps_repl_mode = 0;
1031 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
1032 if (compmask & 0x1) {
1033 *ps_repl_mode |= PS_REPL_S << shift;
1034 shift += 2;
1035 }
1036 if (compmask & 0x2) {
1037 *ps_repl_mode |= PS_REPL_T << shift;
1038 shift += 2;
1039 }
1040 if (compmask & 0x4) {
1041 *interp_mode |= INTERP_ZERO << shift;
1042 shift += 2;
1043 }
1044 if (compmask & 0x8) {
1045 *interp_mode |= INTERP_ONE << 6;
1046 shift += 2;
1047 }
1048 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
1049 fs->inputs[index].rasterflat) {
1050 for (int i = 0; i < 4; i++) {
1051 if (compmask & (1 << i)) {
1052 *interp_mode |= INTERP_FLAT << shift;
1053 shift += 2;
1054 }
1055 }
1056 }
1057
1058 return shift;
1059 }
1060
1061 static void
1062 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
1063 const struct ir3_shader_variant *fs)
1064 {
1065 uint32_t interp_modes[8] = { 0 };
1066 uint32_t ps_repl_modes[8] = { 0 };
1067
1068 if (fs) {
1069 for (int i = -1;
1070 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
1071
1072 /* get the mode for input i */
1073 uint8_t interp_mode;
1074 uint8_t ps_repl_mode;
1075 const int bits =
1076 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
1077
1078 /* OR the mode into the array */
1079 const uint32_t inloc = fs->inputs[i].inloc * 2;
1080 uint32_t n = inloc / 32;
1081 uint32_t shift = inloc % 32;
1082 interp_modes[n] |= interp_mode << shift;
1083 ps_repl_modes[n] |= ps_repl_mode << shift;
1084 if (shift + bits > 32) {
1085 n++;
1086 shift = 32 - shift;
1087
1088 interp_modes[n] |= interp_mode >> shift;
1089 ps_repl_modes[n] |= ps_repl_mode >> shift;
1090 }
1091 }
1092 }
1093
1094 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
1095 tu_cs_emit_array(cs, interp_modes, 8);
1096
1097 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
1098 tu_cs_emit_array(cs, ps_repl_modes, 8);
1099 }
1100
1101 void
1102 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
1103 {
1104 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
1105 uint32_t ij_regid[IJ_COUNT];
1106 uint32_t smask_in_regid;
1107
1108 bool sample_shading = fs->per_samp | fs->key.sample_shading;
1109 bool enable_varyings = fs->total_in > 0;
1110
1111 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1112 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1113 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1114 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1115 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1116 for (unsigned i = 0; i < ARRAY_SIZE(ij_regid); i++)
1117 ij_regid[i] = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL + i);
1118
1119 if (VALIDREG(ij_regid[IJ_LINEAR_SAMPLE]))
1120 tu_finishme("linear sample varying");
1121
1122 if (VALIDREG(ij_regid[IJ_LINEAR_CENTROID]))
1123 tu_finishme("linear centroid varying");
1124
1125 if (fs->num_sampler_prefetch > 0) {
1126 assert(VALIDREG(ij_regid[IJ_PERSP_PIXEL]));
1127 /* also, it seems like ij_pix is *required* to be r0.x */
1128 assert(ij_regid[IJ_PERSP_PIXEL] == regid(0, 0));
1129 }
1130
1131 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1132 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1133 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1134 0x7000); // XXX);
1135 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1136 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1137 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1138 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1139 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1140 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1141 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1142 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1143 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1144 }
1145
1146 if (fs->num_sampler_prefetch > 0) {
1147 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_BINDLESS_PREFETCH_CMD(0), fs->num_sampler_prefetch);
1148 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1149 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1150 tu_cs_emit(cs,
1151 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_SAMP_ID(prefetch->samp_bindless_id) |
1152 A6XX_SP_FS_BINDLESS_PREFETCH_CMD_TEX_ID(prefetch->tex_bindless_id));
1153 }
1154 }
1155
1156 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1157 tu_cs_emit(cs, 0x7);
1158 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1159 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1160 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1161 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_regid[IJ_PERSP_SIZE]));
1162 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_PIXEL(ij_regid[IJ_PERSP_PIXEL]) |
1163 A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_PIXEL(ij_regid[IJ_LINEAR_PIXEL]) |
1164 A6XX_HLSQ_CONTROL_3_REG_IJ_PERSP_CENTROID(ij_regid[IJ_PERSP_CENTROID]) |
1165 A6XX_HLSQ_CONTROL_3_REG_IJ_LINEAR_CENTROID(ij_regid[IJ_LINEAR_CENTROID]));
1166 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1167 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1168 A6XX_HLSQ_CONTROL_4_REG_IJ_PERSP_SAMPLE(ij_regid[IJ_PERSP_SAMPLE]) |
1169 A6XX_HLSQ_CONTROL_4_REG_IJ_LINEAR_SAMPLE(ij_regid[IJ_LINEAR_SAMPLE]));
1170 tu_cs_emit(cs, 0xfc);
1171
1172 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1173 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1174
1175 bool need_size = fs->frag_face || fs->fragcoord_compmask != 0;
1176 bool need_size_persamp = false;
1177 if (VALIDREG(ij_regid[IJ_PERSP_SIZE])) {
1178 if (sample_shading)
1179 need_size_persamp = true;
1180 else
1181 need_size = true;
1182 }
1183 if (VALIDREG(ij_regid[IJ_LINEAR_PIXEL]))
1184 need_size = true;
1185
1186 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1187 tu_cs_emit(cs,
1188 CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_GRAS_CNTL_IJ_PERSP_PIXEL) |
1189 CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_GRAS_CNTL_IJ_PERSP_CENTROID) |
1190 CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_GRAS_CNTL_IJ_PERSP_SAMPLE) |
1191 COND(need_size, A6XX_GRAS_CNTL_SIZE) |
1192 COND(need_size_persamp, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1193 COND(fs->fragcoord_compmask != 0, A6XX_GRAS_CNTL_COORD_MASK(fs->fragcoord_compmask)));
1194
1195 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1196 tu_cs_emit(cs,
1197 CONDREG(ij_regid[IJ_PERSP_PIXEL], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_PIXEL) |
1198 CONDREG(ij_regid[IJ_PERSP_CENTROID], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_CENTROID) |
1199 CONDREG(ij_regid[IJ_PERSP_SAMPLE], A6XX_RB_RENDER_CONTROL0_IJ_PERSP_SAMPLE) |
1200 COND(need_size, A6XX_RB_RENDER_CONTROL0_SIZE) |
1201 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1202 COND(need_size_persamp, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1203 COND(fs->fragcoord_compmask != 0,
1204 A6XX_RB_RENDER_CONTROL0_COORD_MASK(fs->fragcoord_compmask)));
1205 tu_cs_emit(cs,
1206 /* these two bits (UNK4/UNK5) relate to fragcoord
1207 * without them, fragcoord is the same for all samples
1208 */
1209 COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK4) |
1210 COND(sample_shading, A6XX_RB_RENDER_CONTROL1_UNK5) |
1211 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1212 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1213 CONDREG(ij_regid[IJ_PERSP_SIZE], A6XX_RB_RENDER_CONTROL1_SIZE) |
1214 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1215
1216 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1217 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1218
1219 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1220 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1221
1222 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1223 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1224 }
1225
1226 static void
1227 tu6_emit_fs_outputs(struct tu_cs *cs,
1228 const struct ir3_shader_variant *fs,
1229 uint32_t mrt_count, bool dual_src_blend,
1230 uint32_t render_components,
1231 bool is_s8_uint)
1232 {
1233 uint32_t smask_regid, posz_regid;
1234
1235 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1236 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1237
1238 uint32_t fragdata_regid[8];
1239 if (fs->color0_mrt) {
1240 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1241 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1242 fragdata_regid[i] = fragdata_regid[0];
1243 } else {
1244 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1245 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1246 }
1247
1248 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1249 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1250 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1251 COND(dual_src_blend, A6XX_SP_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE) |
1252 0xfc000000);
1253 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1254
1255 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1256 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1257 // TODO we could have a mix of half and full precision outputs,
1258 // we really need to figure out half-precision from IR3_REG_HALF
1259 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1260 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1261 }
1262
1263 tu_cs_emit_regs(cs,
1264 A6XX_SP_FS_RENDER_COMPONENTS(.dword = render_components));
1265
1266 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1267 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1268 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK) |
1269 COND(dual_src_blend, A6XX_RB_FS_OUTPUT_CNTL0_DUAL_COLOR_IN_ENABLE));
1270 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1271
1272 tu_cs_emit_regs(cs,
1273 A6XX_RB_RENDER_COMPONENTS(.dword = render_components));
1274
1275 enum a6xx_ztest_mode zmode;
1276
1277 if (fs->no_earlyz || fs->has_kill || fs->writes_pos || is_s8_uint) {
1278 zmode = A6XX_LATE_Z;
1279 } else {
1280 zmode = A6XX_EARLY_Z;
1281 }
1282
1283 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1284 tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1285
1286 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1287 tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
1288 }
1289
1290 static void
1291 tu6_emit_geom_tess_consts(struct tu_cs *cs,
1292 const struct ir3_shader_variant *vs,
1293 const struct ir3_shader_variant *hs,
1294 const struct ir3_shader_variant *ds,
1295 const struct ir3_shader_variant *gs,
1296 uint32_t cps_per_patch)
1297 {
1298 uint32_t num_vertices =
1299 hs ? cps_per_patch : gs->shader->nir->info.gs.vertices_in;
1300
1301 uint32_t vs_params[4] = {
1302 vs->output_size * num_vertices * 4, /* vs primitive stride */
1303 vs->output_size * 4, /* vs vertex stride */
1304 0,
1305 0,
1306 };
1307 uint32_t vs_base = ir3_const_state(vs)->offsets.primitive_param;
1308 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1309 ARRAY_SIZE(vs_params), vs_params);
1310
1311 if (hs) {
1312 assert(ds->type != MESA_SHADER_NONE);
1313 uint32_t hs_params[4] = {
1314 vs->output_size * num_vertices * 4, /* hs primitive stride */
1315 vs->output_size * 4, /* hs vertex stride */
1316 hs->output_size,
1317 cps_per_patch,
1318 };
1319
1320 uint32_t hs_base = hs->const_state->offsets.primitive_param;
1321 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, hs_base, SB6_HS_SHADER, 0,
1322 ARRAY_SIZE(hs_params), hs_params);
1323 if (gs)
1324 num_vertices = gs->shader->nir->info.gs.vertices_in;
1325
1326 uint32_t ds_params[4] = {
1327 ds->output_size * num_vertices * 4, /* ds primitive stride */
1328 ds->output_size * 4, /* ds vertex stride */
1329 hs->output_size, /* hs vertex stride (dwords) */
1330 hs->shader->nir->info.tess.tcs_vertices_out
1331 };
1332
1333 uint32_t ds_base = ds->const_state->offsets.primitive_param;
1334 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, ds_base, SB6_DS_SHADER, 0,
1335 ARRAY_SIZE(ds_params), ds_params);
1336 }
1337
1338 if (gs) {
1339 const struct ir3_shader_variant *prev = ds ? ds : vs;
1340 uint32_t gs_params[4] = {
1341 prev->output_size * num_vertices * 4, /* gs primitive stride */
1342 prev->output_size * 4, /* gs vertex stride */
1343 0,
1344 0,
1345 };
1346 uint32_t gs_base = gs->const_state->offsets.primitive_param;
1347 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1348 ARRAY_SIZE(gs_params), gs_params);
1349 }
1350 }
1351
1352 static void
1353 tu6_emit_program(struct tu_cs *cs,
1354 struct tu_pipeline_builder *builder,
1355 bool binning_pass)
1356 {
1357 const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
1358 const struct ir3_shader_variant *bs = builder->binning_variant;
1359 const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL];
1360 const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL];
1361 const struct ir3_shader_variant *gs = builder->variants[MESA_SHADER_GEOMETRY];
1362 const struct ir3_shader_variant *fs = builder->variants[MESA_SHADER_FRAGMENT];
1363 gl_shader_stage stage = MESA_SHADER_VERTEX;
1364
1365 STATIC_ASSERT(MESA_SHADER_VERTEX == 0);
1366
1367 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
1368 .vs_state = true,
1369 .hs_state = true,
1370 .ds_state = true,
1371 .gs_state = true,
1372 .fs_state = true,
1373 .gfx_ibo = true));
1374
1375 /* Don't use the binning pass variant when GS is present because we don't
1376 * support compiling correct binning pass variants with GS.
1377 */
1378 if (binning_pass && !gs) {
1379 vs = bs;
1380 tu6_emit_xs_config(cs, stage, bs, builder->binning_vs_iova);
1381 stage++;
1382 }
1383
1384 for (; stage < ARRAY_SIZE(builder->shaders); stage++) {
1385 const struct ir3_shader_variant *xs = builder->variants[stage];
1386
1387 if (stage == MESA_SHADER_FRAGMENT && binning_pass)
1388 fs = xs = NULL;
1389
1390 tu6_emit_xs_config(cs, stage, xs, builder->shader_iova[stage]);
1391 }
1392
1393 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
1394 tu_cs_emit(cs, 0);
1395
1396 tu6_emit_vpc(cs, vs, hs, ds, gs, fs);
1397 tu6_emit_vpc_varying_modes(cs, fs);
1398
1399 if (fs) {
1400 tu6_emit_fs_inputs(cs, fs);
1401 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count,
1402 builder->use_dual_src_blend,
1403 builder->render_components,
1404 builder->depth_attachment_format == VK_FORMAT_S8_UINT);
1405 } else {
1406 /* TODO: check if these can be skipped if fs is disabled */
1407 struct ir3_shader_variant dummy_variant = {};
1408 tu6_emit_fs_inputs(cs, &dummy_variant);
1409 tu6_emit_fs_outputs(cs, &dummy_variant, builder->color_attachment_count,
1410 builder->use_dual_src_blend,
1411 builder->render_components,
1412 builder->depth_attachment_format == VK_FORMAT_S8_UINT);
1413 }
1414
1415 if (gs || hs) {
1416 uint32_t cps_per_patch = builder->create_info->pTessellationState ?
1417 builder->create_info->pTessellationState->patchControlPoints : 0;
1418 tu6_emit_geom_tess_consts(cs, vs, hs, ds, gs, cps_per_patch);
1419 }
1420 }
1421
1422 static void
1423 tu6_emit_vertex_input(struct tu_cs *cs,
1424 const struct ir3_shader_variant *vs,
1425 const VkPipelineVertexInputStateCreateInfo *info,
1426 uint32_t *bindings_used)
1427 {
1428 uint32_t vfd_decode_idx = 0;
1429 uint32_t binding_instanced = 0; /* bitmask of instanced bindings */
1430 uint32_t step_rate[MAX_VBS];
1431
1432 for (uint32_t i = 0; i < info->vertexBindingDescriptionCount; i++) {
1433 const VkVertexInputBindingDescription *binding =
1434 &info->pVertexBindingDescriptions[i];
1435
1436 tu_cs_emit_regs(cs,
1437 A6XX_VFD_FETCH_STRIDE(binding->binding, binding->stride));
1438
1439 if (binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1440 binding_instanced |= 1 << binding->binding;
1441
1442 *bindings_used |= 1 << binding->binding;
1443 step_rate[binding->binding] = 1;
1444 }
1445
1446 const VkPipelineVertexInputDivisorStateCreateInfoEXT *div_state =
1447 vk_find_struct_const(info->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
1448 if (div_state) {
1449 for (uint32_t i = 0; i < div_state->vertexBindingDivisorCount; i++) {
1450 const VkVertexInputBindingDivisorDescriptionEXT *desc =
1451 &div_state->pVertexBindingDivisors[i];
1452 step_rate[desc->binding] = desc->divisor;
1453 }
1454 }
1455
1456 /* TODO: emit all VFD_DECODE/VFD_DEST_CNTL in same (two) pkt4 */
1457
1458 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
1459 const VkVertexInputAttributeDescription *attr =
1460 &info->pVertexAttributeDescriptions[i];
1461 uint32_t input_idx;
1462
1463 assert(*bindings_used & BIT(attr->binding));
1464
1465 for (input_idx = 0; input_idx < vs->inputs_count; input_idx++) {
1466 if ((vs->inputs[input_idx].slot - VERT_ATTRIB_GENERIC0) == attr->location)
1467 break;
1468 }
1469
1470 /* attribute not used, skip it */
1471 if (input_idx == vs->inputs_count)
1472 continue;
1473
1474 const struct tu_native_format format = tu6_format_vtx(attr->format);
1475 tu_cs_emit_regs(cs,
1476 A6XX_VFD_DECODE_INSTR(vfd_decode_idx,
1477 .idx = attr->binding,
1478 .offset = attr->offset,
1479 .instanced = binding_instanced & (1 << attr->binding),
1480 .format = format.fmt,
1481 .swap = format.swap,
1482 .unk30 = 1,
1483 ._float = !vk_format_is_int(attr->format)),
1484 A6XX_VFD_DECODE_STEP_RATE(vfd_decode_idx, step_rate[attr->binding]));
1485
1486 tu_cs_emit_regs(cs,
1487 A6XX_VFD_DEST_CNTL_INSTR(vfd_decode_idx,
1488 .writemask = vs->inputs[input_idx].compmask,
1489 .regid = vs->inputs[input_idx].regid));
1490
1491 vfd_decode_idx++;
1492 }
1493
1494 tu_cs_emit_regs(cs,
1495 A6XX_VFD_CONTROL_0(
1496 .fetch_cnt = vfd_decode_idx, /* decode_cnt for binning pass ? */
1497 .decode_cnt = vfd_decode_idx));
1498 }
1499
1500 static uint32_t
1501 tu6_guardband_adj(uint32_t v)
1502 {
1503 if (v > 256)
1504 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1505 else
1506 return 511;
1507 }
1508
1509 void
1510 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1511 {
1512 float offsets[3];
1513 float scales[3];
1514 scales[0] = viewport->width / 2.0f;
1515 scales[1] = viewport->height / 2.0f;
1516 scales[2] = viewport->maxDepth - viewport->minDepth;
1517 offsets[0] = viewport->x + scales[0];
1518 offsets[1] = viewport->y + scales[1];
1519 offsets[2] = viewport->minDepth;
1520
1521 VkOffset2D min;
1522 VkOffset2D max;
1523 min.x = (int32_t) viewport->x;
1524 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1525 if (viewport->height >= 0.0f) {
1526 min.y = (int32_t) viewport->y;
1527 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1528 } else {
1529 min.y = (int32_t)(viewport->y + viewport->height);
1530 max.y = (int32_t) ceilf(viewport->y);
1531 }
1532 /* the spec allows viewport->height to be 0.0f */
1533 if (min.y == max.y)
1534 max.y++;
1535 assert(min.x >= 0 && min.x < max.x);
1536 assert(min.y >= 0 && min.y < max.y);
1537
1538 VkExtent2D guardband_adj;
1539 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1540 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1541
1542 tu_cs_emit_regs(cs,
1543 A6XX_GRAS_CL_VPORT_XOFFSET(0, offsets[0]),
1544 A6XX_GRAS_CL_VPORT_XSCALE(0, scales[0]),
1545 A6XX_GRAS_CL_VPORT_YOFFSET(0, offsets[1]),
1546 A6XX_GRAS_CL_VPORT_YSCALE(0, scales[1]),
1547 A6XX_GRAS_CL_VPORT_ZOFFSET(0, offsets[2]),
1548 A6XX_GRAS_CL_VPORT_ZSCALE(0, scales[2]));
1549
1550 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL(0), 2);
1551 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_X(min.x) |
1552 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_Y(min.y));
1553 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_X(max.x - 1) |
1554 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_Y(max.y - 1));
1555
1556 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1557 tu_cs_emit(cs,
1558 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1559 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1560
1561 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1562 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1563
1564 tu_cs_emit_regs(cs,
1565 A6XX_GRAS_CL_Z_CLAMP_MIN(0, z_clamp_min),
1566 A6XX_GRAS_CL_Z_CLAMP_MAX(0, z_clamp_max));
1567
1568 tu_cs_emit_regs(cs,
1569 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1570 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1571 }
1572
1573 void
1574 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1575 {
1576 VkOffset2D min = scissor->offset;
1577 VkOffset2D max = {
1578 scissor->offset.x + scissor->extent.width,
1579 scissor->offset.y + scissor->extent.height,
1580 };
1581
1582 /* special case for empty scissor with max == 0 to avoid overflow */
1583 if (max.x == 0)
1584 min.x = max.x = 1;
1585 if (max.y == 0)
1586 min.y = max.y = 1;
1587
1588 /* avoid overflow with large scissor
1589 * note the max will be limited to min - 1, so that empty scissor works
1590 */
1591 uint32_t scissor_max = BITFIELD_MASK(15);
1592 min.x = MIN2(scissor_max, min.x);
1593 min.y = MIN2(scissor_max, min.y);
1594 max.x = MIN2(scissor_max, max.x);
1595 max.y = MIN2(scissor_max, max.y);
1596
1597 tu_cs_emit_regs(cs,
1598 A6XX_GRAS_SC_SCREEN_SCISSOR_TL(0, .x = min.x, .y = min.y),
1599 A6XX_GRAS_SC_SCREEN_SCISSOR_BR(0, .x = max.x - 1, .y = max.y - 1));
1600 }
1601
1602 void
1603 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc)
1604 {
1605 if (!samp_loc) {
1606 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 1);
1607 tu_cs_emit(cs, 0);
1608
1609 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 1);
1610 tu_cs_emit(cs, 0);
1611
1612 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 1);
1613 tu_cs_emit(cs, 0);
1614 return;
1615 }
1616
1617 assert(samp_loc->sampleLocationsPerPixel == samp_loc->sampleLocationsCount);
1618 assert(samp_loc->sampleLocationGridSize.width == 1);
1619 assert(samp_loc->sampleLocationGridSize.height == 1);
1620
1621 uint32_t sample_config =
1622 A6XX_RB_SAMPLE_CONFIG_LOCATION_ENABLE;
1623 uint32_t sample_locations = 0;
1624 for (uint32_t i = 0; i < samp_loc->sampleLocationsCount; i++) {
1625 sample_locations |=
1626 (A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_X(samp_loc->pSampleLocations[i].x) |
1627 A6XX_RB_SAMPLE_LOCATION_0_SAMPLE_0_Y(samp_loc->pSampleLocations[i].y)) << i*8;
1628 }
1629
1630 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CONFIG, 2);
1631 tu_cs_emit(cs, sample_config);
1632 tu_cs_emit(cs, sample_locations);
1633
1634 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CONFIG, 2);
1635 tu_cs_emit(cs, sample_config);
1636 tu_cs_emit(cs, sample_locations);
1637
1638 tu_cs_emit_pkt4(cs, REG_A6XX_SP_TP_SAMPLE_CONFIG, 2);
1639 tu_cs_emit(cs, sample_config);
1640 tu_cs_emit(cs, sample_locations);
1641 }
1642
1643 static uint32_t
1644 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1645 VkSampleCountFlagBits samples)
1646 {
1647 uint32_t gras_su_cntl = 0;
1648
1649 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1650 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1651 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1652 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1653
1654 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1655 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1656
1657 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1658
1659 if (rast_info->depthBiasEnable)
1660 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1661
1662 if (samples > VK_SAMPLE_COUNT_1_BIT)
1663 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1664
1665 return gras_su_cntl;
1666 }
1667
1668 void
1669 tu6_emit_depth_bias(struct tu_cs *cs,
1670 float constant_factor,
1671 float clamp,
1672 float slope_factor)
1673 {
1674 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1675 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1676 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1677 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1678 }
1679
1680 static void
1681 tu6_emit_depth_control(struct tu_cs *cs,
1682 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1683 const VkPipelineRasterizationStateCreateInfo *rast_info)
1684 {
1685 uint32_t rb_depth_cntl = 0;
1686 if (ds_info->depthTestEnable) {
1687 rb_depth_cntl |=
1688 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1689 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1690 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE; /* TODO: don't set for ALWAYS/NEVER */
1691
1692 if (rast_info->depthClampEnable)
1693 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1694
1695 if (ds_info->depthWriteEnable)
1696 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1697 }
1698
1699 if (ds_info->depthBoundsTestEnable)
1700 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_BOUNDS_ENABLE | A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1701
1702 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1703 tu_cs_emit(cs, rb_depth_cntl);
1704 }
1705
1706 static void
1707 tu6_emit_stencil_control(struct tu_cs *cs,
1708 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1709 {
1710 uint32_t rb_stencil_control = 0;
1711 if (ds_info->stencilTestEnable) {
1712 const VkStencilOpState *front = &ds_info->front;
1713 const VkStencilOpState *back = &ds_info->back;
1714 rb_stencil_control |=
1715 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1716 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1717 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1718 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1719 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1720 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1721 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1722 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1723 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1724 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1725 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1726 }
1727
1728 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1729 tu_cs_emit(cs, rb_stencil_control);
1730 }
1731
1732 static uint32_t
1733 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1734 bool has_alpha)
1735 {
1736 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1737 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1738 has_alpha ? att->srcColorBlendFactor
1739 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1740 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1741 has_alpha ? att->dstColorBlendFactor
1742 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1743 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1744 const enum adreno_rb_blend_factor src_alpha_factor =
1745 tu6_blend_factor(att->srcAlphaBlendFactor);
1746 const enum adreno_rb_blend_factor dst_alpha_factor =
1747 tu6_blend_factor(att->dstAlphaBlendFactor);
1748
1749 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1750 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1751 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1752 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1753 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1754 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1755 }
1756
1757 static uint32_t
1758 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1759 uint32_t rb_mrt_control_rop,
1760 bool is_int,
1761 bool has_alpha)
1762 {
1763 uint32_t rb_mrt_control =
1764 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1765
1766 /* ignore blending and logic op for integer attachments */
1767 if (is_int) {
1768 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1769 return rb_mrt_control;
1770 }
1771
1772 rb_mrt_control |= rb_mrt_control_rop;
1773
1774 if (att->blendEnable) {
1775 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1776
1777 if (has_alpha)
1778 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1779 }
1780
1781 return rb_mrt_control;
1782 }
1783
1784 static void
1785 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1786 const VkPipelineColorBlendStateCreateInfo *blend_info,
1787 const VkFormat attachment_formats[MAX_RTS],
1788 uint32_t *blend_enable_mask)
1789 {
1790 *blend_enable_mask = 0;
1791
1792 bool rop_reads_dst = false;
1793 uint32_t rb_mrt_control_rop = 0;
1794 if (blend_info->logicOpEnable) {
1795 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1796 rb_mrt_control_rop =
1797 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1798 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1799 }
1800
1801 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1802 const VkPipelineColorBlendAttachmentState *att =
1803 &blend_info->pAttachments[i];
1804 const VkFormat format = attachment_formats[i];
1805
1806 uint32_t rb_mrt_control = 0;
1807 uint32_t rb_mrt_blend_control = 0;
1808 if (format != VK_FORMAT_UNDEFINED) {
1809 const bool is_int = vk_format_is_int(format);
1810 const bool has_alpha = vk_format_has_alpha(format);
1811
1812 rb_mrt_control =
1813 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1814 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1815
1816 if (att->blendEnable || rop_reads_dst)
1817 *blend_enable_mask |= 1 << i;
1818 }
1819
1820 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1821 tu_cs_emit(cs, rb_mrt_control);
1822 tu_cs_emit(cs, rb_mrt_blend_control);
1823 }
1824 }
1825
1826 static void
1827 tu6_emit_blend_control(struct tu_cs *cs,
1828 uint32_t blend_enable_mask,
1829 bool dual_src_blend,
1830 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1831 {
1832 const uint32_t sample_mask =
1833 msaa_info->pSampleMask ? (*msaa_info->pSampleMask & 0xffff)
1834 : ((1 << msaa_info->rasterizationSamples) - 1);
1835
1836 tu_cs_emit_regs(cs,
1837 A6XX_SP_BLEND_CNTL(.enabled = blend_enable_mask,
1838 .dual_color_in_enable = dual_src_blend,
1839 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1840 .unk8 = true));
1841
1842 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1843 tu_cs_emit_regs(cs,
1844 A6XX_RB_BLEND_CNTL(.enable_blend = blend_enable_mask,
1845 .independent_blend = true,
1846 .sample_mask = sample_mask,
1847 .dual_color_in_enable = dual_src_blend,
1848 .alpha_to_coverage = msaa_info->alphaToCoverageEnable,
1849 .alpha_to_one = msaa_info->alphaToOneEnable));
1850 }
1851
1852 static VkResult
1853 tu_pipeline_allocate_cs(struct tu_device *dev,
1854 struct tu_pipeline *pipeline,
1855 struct tu_pipeline_builder *builder,
1856 struct ir3_shader_variant *compute)
1857 {
1858 uint32_t size = 2048 + tu6_load_state_size(pipeline, compute);
1859
1860 /* graphics case: */
1861 if (builder) {
1862 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1863 if (builder->variants[i])
1864 size += builder->variants[i]->info.sizedwords;
1865 }
1866
1867 size += builder->binning_variant->info.sizedwords;
1868 } else {
1869 size += compute->info.sizedwords;
1870 }
1871
1872 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, size);
1873
1874 /* Reserve the space now such that tu_cs_begin_sub_stream never fails. Note
1875 * that LOAD_STATE can potentially take up a large amount of space so we
1876 * calculate its size explicitly.
1877 */
1878 return tu_cs_reserve_space(&pipeline->cs, size);
1879 }
1880
1881 static void
1882 tu_pipeline_shader_key_init(struct ir3_shader_key *key,
1883 const VkGraphicsPipelineCreateInfo *pipeline_info)
1884 {
1885 for (uint32_t i = 0; i < pipeline_info->stageCount; i++) {
1886 if (pipeline_info->pStages[i].stage == VK_SHADER_STAGE_GEOMETRY_BIT) {
1887 key->has_gs = true;
1888 break;
1889 }
1890 }
1891
1892 if (pipeline_info->pRasterizationState->rasterizerDiscardEnable)
1893 return;
1894
1895 const VkPipelineMultisampleStateCreateInfo *msaa_info = pipeline_info->pMultisampleState;
1896 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
1897 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
1898 if (msaa_info->rasterizationSamples > 1 ||
1899 /* also set msaa key when sample location is not the default
1900 * since this affects varying interpolation */
1901 (sample_locations && sample_locations->sampleLocationsEnable)) {
1902 key->msaa = true;
1903 }
1904
1905 /* note: not actually used by ir3, just checked in tu6_emit_fs_inputs */
1906 if (msaa_info->sampleShadingEnable)
1907 key->sample_shading = true;
1908
1909 /* We set this after we compile to NIR because we need the prim mode */
1910 key->tessellation = IR3_TESS_NONE;
1911 }
1912
1913 static uint32_t
1914 tu6_get_tessmode(struct tu_shader* shader)
1915 {
1916 uint32_t primitive_mode = shader->ir3_shader->nir->info.tess.primitive_mode;
1917 switch (primitive_mode) {
1918 case GL_ISOLINES:
1919 return IR3_TESS_ISOLINES;
1920 case GL_TRIANGLES:
1921 return IR3_TESS_TRIANGLES;
1922 case GL_QUADS:
1923 return IR3_TESS_QUADS;
1924 case GL_NONE:
1925 return IR3_TESS_NONE;
1926 default:
1927 unreachable("bad tessmode");
1928 }
1929 }
1930
1931 static uint64_t
1932 tu_upload_variant(struct tu_pipeline *pipeline,
1933 const struct ir3_shader_variant *variant)
1934 {
1935 struct tu_cs_memory memory;
1936
1937 if (!variant)
1938 return 0;
1939
1940 /* this expects to get enough alignment because shaders are allocated first
1941 * and sizedwords is always aligned correctly
1942 * note: an assert in tu6_emit_xs_config validates the alignment
1943 */
1944 tu_cs_alloc(&pipeline->cs, variant->info.sizedwords, 1, &memory);
1945
1946 memcpy(memory.map, variant->bin, sizeof(uint32_t) * variant->info.sizedwords);
1947 return memory.iova;
1948 }
1949
1950 static VkResult
1951 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder,
1952 struct tu_pipeline *pipeline)
1953 {
1954 const struct ir3_compiler *compiler = builder->device->compiler;
1955 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1956 NULL
1957 };
1958 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1959 gl_shader_stage stage =
1960 vk_to_mesa_shader_stage(builder->create_info->pStages[i].stage);
1961 stage_infos[stage] = &builder->create_info->pStages[i];
1962 }
1963
1964 struct ir3_shader_key key = {};
1965 tu_pipeline_shader_key_init(&key, builder->create_info);
1966
1967 for (gl_shader_stage stage = MESA_SHADER_VERTEX;
1968 stage < MESA_SHADER_STAGES; stage++) {
1969 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1970 if (!stage_info && stage != MESA_SHADER_FRAGMENT)
1971 continue;
1972
1973 struct tu_shader *shader =
1974 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1975 builder->alloc);
1976 if (!shader)
1977 return VK_ERROR_OUT_OF_HOST_MEMORY;
1978
1979 /* In SPIR-V generated from GLSL, the primitive mode is specified in the
1980 * tessellation evaluation shader, but in SPIR-V generated from HLSL,
1981 * the mode is specified in the tessellation control shader. */
1982 if ((stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_TESS_CTRL) &&
1983 key.tessellation == IR3_TESS_NONE) {
1984 key.tessellation = tu6_get_tessmode(shader);
1985 }
1986
1987 builder->shaders[stage] = shader;
1988 }
1989
1990 struct tu_shader *gs = builder->shaders[MESA_SHADER_GEOMETRY];
1991 key.layer_zero =
1992 !gs || !(gs->ir3_shader->nir->info.outputs_written & VARYING_SLOT_LAYER);
1993
1994 pipeline->tess.patch_type = key.tessellation;
1995
1996 for (gl_shader_stage stage = MESA_SHADER_VERTEX;
1997 stage < MESA_SHADER_STAGES; stage++) {
1998 if (!builder->shaders[stage])
1999 continue;
2000
2001 bool created;
2002 builder->variants[stage] =
2003 ir3_shader_get_variant(builder->shaders[stage]->ir3_shader,
2004 &key, false, &created);
2005 if (!builder->variants[stage])
2006 return VK_ERROR_OUT_OF_HOST_MEMORY;
2007 }
2008
2009 uint32_t safe_constlens = ir3_trim_constlen(builder->variants, compiler);
2010
2011 key.safe_constlen = true;
2012
2013 for (gl_shader_stage stage = MESA_SHADER_VERTEX;
2014 stage < MESA_SHADER_STAGES; stage++) {
2015 if (!builder->shaders[stage])
2016 continue;
2017
2018 if (safe_constlens & (1 << stage)) {
2019 bool created;
2020 builder->variants[stage] =
2021 ir3_shader_get_variant(builder->shaders[stage]->ir3_shader,
2022 &key, false, &created);
2023 if (!builder->variants[stage])
2024 return VK_ERROR_OUT_OF_HOST_MEMORY;
2025 }
2026 }
2027
2028 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
2029 struct ir3_shader_variant *variant;
2030
2031 if (vs->ir3_shader->stream_output.num_outputs ||
2032 !ir3_has_binning_vs(&key)) {
2033 variant = builder->variants[MESA_SHADER_VERTEX];
2034 } else {
2035 bool created;
2036 key.safe_constlen = !!(safe_constlens & (1 << MESA_SHADER_VERTEX));
2037 variant = ir3_shader_get_variant(vs->ir3_shader, &key,
2038 true, &created);
2039 if (!variant)
2040 return VK_ERROR_OUT_OF_HOST_MEMORY;
2041 }
2042
2043 builder->binning_variant = variant;
2044
2045 return VK_SUCCESS;
2046 }
2047
2048 static void
2049 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
2050 struct tu_pipeline *pipeline)
2051 {
2052 const VkPipelineDynamicStateCreateInfo *dynamic_info =
2053 builder->create_info->pDynamicState;
2054
2055 if (!dynamic_info)
2056 return;
2057
2058 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
2059 VkDynamicState state = dynamic_info->pDynamicStates[i];
2060 switch (state) {
2061 case VK_DYNAMIC_STATE_VIEWPORT ... VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2062 pipeline->dynamic_state_mask |= BIT(state);
2063 break;
2064 case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
2065 pipeline->dynamic_state_mask |= BIT(TU_DYNAMIC_STATE_SAMPLE_LOCATIONS);
2066 break;
2067 default:
2068 assert(!"unsupported dynamic state");
2069 break;
2070 }
2071 }
2072 }
2073
2074 static void
2075 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
2076 struct tu_shader *shader,
2077 struct ir3_shader_variant *v)
2078 {
2079 link->const_state = *ir3_const_state(v);
2080 link->constlen = v->constlen;
2081 link->push_consts = shader->push_consts;
2082 }
2083
2084 static void
2085 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
2086 struct tu_pipeline *pipeline)
2087 {
2088 struct tu_cs prog_cs;
2089 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2090 tu6_emit_program(&prog_cs, builder, false);
2091 pipeline->program.state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs);
2092
2093 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2094 tu6_emit_program(&prog_cs, builder, true);
2095 pipeline->program.binning_state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs);
2096
2097 VkShaderStageFlags stages = 0;
2098 for (unsigned i = 0; i < builder->create_info->stageCount; i++) {
2099 stages |= builder->create_info->pStages[i].stage;
2100 }
2101 pipeline->active_stages = stages;
2102
2103 uint32_t desc_sets = 0;
2104 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2105 if (!builder->shaders[i])
2106 continue;
2107
2108 tu_pipeline_set_linkage(&pipeline->program.link[i],
2109 builder->shaders[i],
2110 builder->variants[i]);
2111 desc_sets |= builder->shaders[i]->active_desc_sets;
2112 }
2113 pipeline->active_desc_sets = desc_sets;
2114 }
2115
2116 static void
2117 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
2118 struct tu_pipeline *pipeline)
2119 {
2120 const VkPipelineVertexInputStateCreateInfo *vi_info =
2121 builder->create_info->pVertexInputState;
2122 const struct ir3_shader_variant *vs = builder->variants[MESA_SHADER_VERTEX];
2123 const struct ir3_shader_variant *bs = builder->binning_variant;
2124
2125 struct tu_cs vi_cs;
2126 tu_cs_begin_sub_stream(&pipeline->cs,
2127 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2128 tu6_emit_vertex_input(&vi_cs, vs, vi_info,
2129 &pipeline->vi.bindings_used);
2130 pipeline->vi.state = tu_cs_end_draw_state(&pipeline->cs, &vi_cs);
2131
2132 if (bs) {
2133 tu_cs_begin_sub_stream(&pipeline->cs,
2134 MAX_VERTEX_ATTRIBS * 7 + 2, &vi_cs);
2135 tu6_emit_vertex_input(
2136 &vi_cs, bs, vi_info, &pipeline->vi.bindings_used);
2137 pipeline->vi.binning_state =
2138 tu_cs_end_draw_state(&pipeline->cs, &vi_cs);
2139 }
2140 }
2141
2142 static void
2143 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2144 struct tu_pipeline *pipeline)
2145 {
2146 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2147 builder->create_info->pInputAssemblyState;
2148
2149 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2150 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2151 }
2152
2153 static bool
2154 tu_pipeline_static_state(struct tu_pipeline *pipeline, struct tu_cs *cs,
2155 uint32_t id, uint32_t size)
2156 {
2157 assert(id < ARRAY_SIZE(pipeline->dynamic_state));
2158
2159 if (pipeline->dynamic_state_mask & BIT(id))
2160 return false;
2161
2162 pipeline->dynamic_state[id] = tu_cs_draw_state(&pipeline->cs, cs, size);
2163 return true;
2164 }
2165
2166 static void
2167 tu_pipeline_builder_parse_tessellation(struct tu_pipeline_builder *builder,
2168 struct tu_pipeline *pipeline)
2169 {
2170 const VkPipelineTessellationStateCreateInfo *tess_info =
2171 builder->create_info->pTessellationState;
2172
2173 if (!tess_info)
2174 return;
2175
2176 assert(pipeline->ia.primtype == DI_PT_PATCHES0);
2177 assert(tess_info->patchControlPoints <= 32);
2178 pipeline->ia.primtype += tess_info->patchControlPoints;
2179 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_info =
2180 vk_find_struct_const(tess_info->pNext, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO);
2181 pipeline->tess.upper_left_domain_origin = !domain_info ||
2182 domain_info->domainOrigin == VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
2183 const struct ir3_shader_variant *hs = builder->variants[MESA_SHADER_TESS_CTRL];
2184 const struct ir3_shader_variant *ds = builder->variants[MESA_SHADER_TESS_EVAL];
2185 pipeline->tess.param_stride = hs->output_size * 4;
2186 pipeline->tess.hs_bo_regid = hs->const_state->offsets.primitive_param + 1;
2187 pipeline->tess.ds_bo_regid = ds->const_state->offsets.primitive_param + 1;
2188 }
2189
2190 static void
2191 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2192 struct tu_pipeline *pipeline)
2193 {
2194 /* The spec says:
2195 *
2196 * pViewportState is a pointer to an instance of the
2197 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2198 * pipeline has rasterization disabled."
2199 *
2200 * We leave the relevant registers stale in that case.
2201 */
2202 if (builder->rasterizer_discard)
2203 return;
2204
2205 const VkPipelineViewportStateCreateInfo *vp_info =
2206 builder->create_info->pViewportState;
2207
2208 struct tu_cs cs;
2209
2210 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_VIEWPORT, 18))
2211 tu6_emit_viewport(&cs, vp_info->pViewports);
2212
2213 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_SCISSOR, 3))
2214 tu6_emit_scissor(&cs, vp_info->pScissors);
2215 }
2216
2217 static void
2218 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2219 struct tu_pipeline *pipeline)
2220 {
2221 const VkPipelineRasterizationStateCreateInfo *rast_info =
2222 builder->create_info->pRasterizationState;
2223
2224 enum a6xx_polygon_mode mode = tu6_polygon_mode(rast_info->polygonMode);
2225
2226 struct tu_cs cs;
2227 pipeline->rast_state = tu_cs_draw_state(&pipeline->cs, &cs, 9);
2228
2229 tu_cs_emit_regs(&cs,
2230 A6XX_GRAS_CL_CNTL(
2231 .znear_clip_disable = rast_info->depthClampEnable,
2232 .zfar_clip_disable = rast_info->depthClampEnable,
2233 .unk5 = rast_info->depthClampEnable,
2234 .zero_gb_scale_z = 1,
2235 .vp_clip_code_ignore = 1));
2236
2237 tu_cs_emit_regs(&cs,
2238 A6XX_VPC_POLYGON_MODE(mode));
2239
2240 tu_cs_emit_regs(&cs,
2241 A6XX_PC_POLYGON_MODE(.mode = mode));
2242
2243 /* move to hw ctx init? */
2244 tu_cs_emit_regs(&cs,
2245 A6XX_GRAS_SU_POINT_MINMAX(.min = 1.0f / 16.0f, .max = 4092.0f),
2246 A6XX_GRAS_SU_POINT_SIZE(1.0f));
2247
2248 pipeline->gras_su_cntl =
2249 tu6_gras_su_cntl(rast_info, builder->samples);
2250
2251 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_LINE_WIDTH, 2)) {
2252 pipeline->gras_su_cntl |=
2253 A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(rast_info->lineWidth / 2.0f);
2254 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = pipeline->gras_su_cntl));
2255 }
2256
2257 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BIAS, 4)) {
2258 tu6_emit_depth_bias(&cs, rast_info->depthBiasConstantFactor,
2259 rast_info->depthBiasClamp,
2260 rast_info->depthBiasSlopeFactor);
2261 }
2262
2263 }
2264
2265 static void
2266 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2267 struct tu_pipeline *pipeline)
2268 {
2269 /* The spec says:
2270 *
2271 * pDepthStencilState is a pointer to an instance of the
2272 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2273 * the pipeline has rasterization disabled or if the subpass of the
2274 * render pass the pipeline is created against does not use a
2275 * depth/stencil attachment.
2276 *
2277 * Disable both depth and stencil tests if there is no ds attachment,
2278 * Disable depth test if ds attachment is S8_UINT, since S8_UINT defines
2279 * only the separate stencil attachment
2280 */
2281 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2282 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2283 builder->depth_attachment_format != VK_FORMAT_UNDEFINED
2284 ? builder->create_info->pDepthStencilState
2285 : &dummy_ds_info;
2286 const VkPipelineDepthStencilStateCreateInfo *ds_info_depth =
2287 builder->depth_attachment_format != VK_FORMAT_S8_UINT
2288 ? ds_info : &dummy_ds_info;
2289
2290 struct tu_cs cs;
2291 pipeline->ds_state = tu_cs_draw_state(&pipeline->cs, &cs, 6);
2292
2293 /* move to hw ctx init? */
2294 tu_cs_emit_regs(&cs, A6XX_RB_ALPHA_CONTROL());
2295 tu6_emit_depth_control(&cs, ds_info_depth,
2296 builder->create_info->pRasterizationState);
2297 tu6_emit_stencil_control(&cs, ds_info);
2298
2299 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3)) {
2300 tu_cs_emit_regs(&cs,
2301 A6XX_RB_Z_BOUNDS_MIN(ds_info->minDepthBounds),
2302 A6XX_RB_Z_BOUNDS_MAX(ds_info->maxDepthBounds));
2303 }
2304
2305 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2)) {
2306 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.mask = ds_info->front.compareMask & 0xff,
2307 .bfmask = ds_info->back.compareMask & 0xff));
2308 }
2309
2310 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2)) {
2311 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.wrmask = ds_info->front.writeMask & 0xff,
2312 .bfwrmask = ds_info->back.writeMask & 0xff));
2313 }
2314
2315 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2)) {
2316 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.ref = ds_info->front.reference & 0xff,
2317 .bfref = ds_info->back.reference & 0xff));
2318 }
2319 }
2320
2321 static void
2322 tu_pipeline_builder_parse_multisample_and_color_blend(
2323 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2324 {
2325 /* The spec says:
2326 *
2327 * pMultisampleState is a pointer to an instance of the
2328 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2329 * has rasterization disabled.
2330 *
2331 * Also,
2332 *
2333 * pColorBlendState is a pointer to an instance of the
2334 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2335 * pipeline has rasterization disabled or if the subpass of the render
2336 * pass the pipeline is created against does not use any color
2337 * attachments.
2338 *
2339 * We leave the relevant registers stale when rasterization is disabled.
2340 */
2341 if (builder->rasterizer_discard)
2342 return;
2343
2344 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2345 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2346 builder->create_info->pMultisampleState;
2347 const VkPipelineColorBlendStateCreateInfo *blend_info =
2348 builder->use_color_attachments ? builder->create_info->pColorBlendState
2349 : &dummy_blend_info;
2350
2351 struct tu_cs cs;
2352 pipeline->blend_state =
2353 tu_cs_draw_state(&pipeline->cs, &cs, blend_info->attachmentCount * 3 + 4);
2354
2355 uint32_t blend_enable_mask;
2356 tu6_emit_rb_mrt_controls(&cs, blend_info,
2357 builder->color_attachment_formats,
2358 &blend_enable_mask);
2359
2360 tu6_emit_blend_control(&cs, blend_enable_mask,
2361 builder->use_dual_src_blend, msaa_info);
2362
2363 assert(cs.cur == cs.end); /* validate draw state size */
2364
2365 if (tu_pipeline_static_state(pipeline, &cs, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5)) {
2366 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2367 tu_cs_emit_array(&cs, (const uint32_t *) blend_info->blendConstants, 4);
2368 }
2369
2370 const struct VkPipelineSampleLocationsStateCreateInfoEXT *sample_locations =
2371 vk_find_struct_const(msaa_info->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT);
2372 const VkSampleLocationsInfoEXT *samp_loc = NULL;
2373
2374 if (sample_locations && sample_locations->sampleLocationsEnable)
2375 samp_loc = &sample_locations->sampleLocationsInfo;
2376
2377 if (tu_pipeline_static_state(pipeline, &cs, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS,
2378 samp_loc ? 9 : 6)) {
2379 tu6_emit_sample_locations(&cs, samp_loc);
2380 }
2381 }
2382
2383 static void
2384 tu_pipeline_finish(struct tu_pipeline *pipeline,
2385 struct tu_device *dev,
2386 const VkAllocationCallbacks *alloc)
2387 {
2388 tu_cs_finish(&pipeline->cs);
2389 }
2390
2391 static VkResult
2392 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2393 struct tu_pipeline **pipeline)
2394 {
2395 VkResult result;
2396
2397 *pipeline = vk_object_zalloc(&builder->device->vk, builder->alloc,
2398 sizeof(**pipeline), VK_OBJECT_TYPE_PIPELINE);
2399 if (!*pipeline)
2400 return VK_ERROR_OUT_OF_HOST_MEMORY;
2401
2402 (*pipeline)->layout = builder->layout;
2403
2404 /* compile and upload shaders */
2405 result = tu_pipeline_builder_compile_shaders(builder, *pipeline);
2406 if (result != VK_SUCCESS) {
2407 vk_object_free(&builder->device->vk, builder->alloc, *pipeline);
2408 return result;
2409 }
2410
2411 result = tu_pipeline_allocate_cs(builder->device, *pipeline, builder, NULL);
2412 if (result != VK_SUCCESS) {
2413 vk_object_free(&builder->device->vk, builder->alloc, *pipeline);
2414 return result;
2415 }
2416
2417 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++)
2418 builder->shader_iova[i] = tu_upload_variant(*pipeline, builder->variants[i]);
2419
2420 builder->binning_vs_iova =
2421 tu_upload_variant(*pipeline, builder->binning_variant);
2422
2423 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2424 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2425 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2426 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2427 tu_pipeline_builder_parse_tessellation(builder, *pipeline);
2428 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2429 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2430 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2431 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2432 tu6_emit_load_state(*pipeline, false);
2433
2434 /* we should have reserved enough space upfront such that the CS never
2435 * grows
2436 */
2437 assert((*pipeline)->cs.bo_count == 1);
2438
2439 return VK_SUCCESS;
2440 }
2441
2442 static void
2443 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2444 {
2445 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2446 if (!builder->shaders[i])
2447 continue;
2448 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2449 }
2450 }
2451
2452 static void
2453 tu_pipeline_builder_init_graphics(
2454 struct tu_pipeline_builder *builder,
2455 struct tu_device *dev,
2456 struct tu_pipeline_cache *cache,
2457 const VkGraphicsPipelineCreateInfo *create_info,
2458 const VkAllocationCallbacks *alloc)
2459 {
2460 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2461
2462 *builder = (struct tu_pipeline_builder) {
2463 .device = dev,
2464 .cache = cache,
2465 .create_info = create_info,
2466 .alloc = alloc,
2467 .layout = layout,
2468 };
2469
2470 builder->rasterizer_discard =
2471 create_info->pRasterizationState->rasterizerDiscardEnable;
2472
2473 if (builder->rasterizer_discard) {
2474 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2475 } else {
2476 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2477
2478 const struct tu_render_pass *pass =
2479 tu_render_pass_from_handle(create_info->renderPass);
2480 const struct tu_subpass *subpass =
2481 &pass->subpasses[create_info->subpass];
2482
2483 const uint32_t a = subpass->depth_stencil_attachment.attachment;
2484 builder->depth_attachment_format = (a != VK_ATTACHMENT_UNUSED) ?
2485 pass->attachments[a].format : VK_FORMAT_UNDEFINED;
2486
2487 assert(subpass->color_count == 0 ||
2488 !create_info->pColorBlendState ||
2489 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2490 builder->color_attachment_count = subpass->color_count;
2491 for (uint32_t i = 0; i < subpass->color_count; i++) {
2492 const uint32_t a = subpass->color_attachments[i].attachment;
2493 if (a == VK_ATTACHMENT_UNUSED)
2494 continue;
2495
2496 builder->color_attachment_formats[i] = pass->attachments[a].format;
2497 builder->use_color_attachments = true;
2498 builder->render_components |= 0xf << (i * 4);
2499 }
2500
2501 if (tu_blend_state_is_dual_src(create_info->pColorBlendState)) {
2502 builder->color_attachment_count++;
2503 builder->use_dual_src_blend = true;
2504 /* dual source blending has an extra fs output in the 2nd slot */
2505 if (subpass->color_attachments[0].attachment != VK_ATTACHMENT_UNUSED)
2506 builder->render_components |= 0xf << 4;
2507 }
2508 }
2509 }
2510
2511 static VkResult
2512 tu_graphics_pipeline_create(VkDevice device,
2513 VkPipelineCache pipelineCache,
2514 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2515 const VkAllocationCallbacks *pAllocator,
2516 VkPipeline *pPipeline)
2517 {
2518 TU_FROM_HANDLE(tu_device, dev, device);
2519 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2520
2521 struct tu_pipeline_builder builder;
2522 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2523 pCreateInfo, pAllocator);
2524
2525 struct tu_pipeline *pipeline = NULL;
2526 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2527 tu_pipeline_builder_finish(&builder);
2528
2529 if (result == VK_SUCCESS)
2530 *pPipeline = tu_pipeline_to_handle(pipeline);
2531 else
2532 *pPipeline = VK_NULL_HANDLE;
2533
2534 return result;
2535 }
2536
2537 VkResult
2538 tu_CreateGraphicsPipelines(VkDevice device,
2539 VkPipelineCache pipelineCache,
2540 uint32_t count,
2541 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2542 const VkAllocationCallbacks *pAllocator,
2543 VkPipeline *pPipelines)
2544 {
2545 VkResult final_result = VK_SUCCESS;
2546
2547 for (uint32_t i = 0; i < count; i++) {
2548 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2549 &pCreateInfos[i], pAllocator,
2550 &pPipelines[i]);
2551
2552 if (result != VK_SUCCESS)
2553 final_result = result;
2554 }
2555
2556 return final_result;
2557 }
2558
2559 static VkResult
2560 tu_compute_pipeline_create(VkDevice device,
2561 VkPipelineCache _cache,
2562 const VkComputePipelineCreateInfo *pCreateInfo,
2563 const VkAllocationCallbacks *pAllocator,
2564 VkPipeline *pPipeline)
2565 {
2566 TU_FROM_HANDLE(tu_device, dev, device);
2567 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2568 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2569 VkResult result;
2570
2571 struct tu_pipeline *pipeline;
2572
2573 *pPipeline = VK_NULL_HANDLE;
2574
2575 pipeline = vk_object_zalloc(&dev->vk, pAllocator, sizeof(*pipeline),
2576 VK_OBJECT_TYPE_PIPELINE);
2577 if (!pipeline)
2578 return VK_ERROR_OUT_OF_HOST_MEMORY;
2579
2580 pipeline->layout = layout;
2581
2582 struct ir3_shader_key key = {};
2583
2584 struct tu_shader *shader =
2585 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2586 if (!shader) {
2587 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2588 goto fail;
2589 }
2590
2591 pipeline->active_desc_sets = shader->active_desc_sets;
2592
2593 bool created;
2594 struct ir3_shader_variant *v =
2595 ir3_shader_get_variant(shader->ir3_shader, &key, false, &created);
2596 if (!v) {
2597 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2598 goto fail;
2599 }
2600
2601 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2602 shader, v);
2603
2604 result = tu_pipeline_allocate_cs(dev, pipeline, NULL, v);
2605 if (result != VK_SUCCESS)
2606 goto fail;
2607
2608 uint64_t shader_iova = tu_upload_variant(pipeline, v);
2609
2610 for (int i = 0; i < 3; i++)
2611 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2612
2613 struct tu_cs prog_cs;
2614 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2615 tu6_emit_cs_config(&prog_cs, shader, v, shader_iova);
2616 pipeline->program.state = tu_cs_end_draw_state(&pipeline->cs, &prog_cs);
2617
2618 tu6_emit_load_state(pipeline, true);
2619
2620 *pPipeline = tu_pipeline_to_handle(pipeline);
2621 return VK_SUCCESS;
2622
2623 fail:
2624 if (shader)
2625 tu_shader_destroy(dev, shader, pAllocator);
2626
2627 vk_object_free(&dev->vk, pAllocator, pipeline);
2628
2629 return result;
2630 }
2631
2632 VkResult
2633 tu_CreateComputePipelines(VkDevice device,
2634 VkPipelineCache pipelineCache,
2635 uint32_t count,
2636 const VkComputePipelineCreateInfo *pCreateInfos,
2637 const VkAllocationCallbacks *pAllocator,
2638 VkPipeline *pPipelines)
2639 {
2640 VkResult final_result = VK_SUCCESS;
2641
2642 for (uint32_t i = 0; i < count; i++) {
2643 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2644 &pCreateInfos[i],
2645 pAllocator, &pPipelines[i]);
2646 if (result != VK_SUCCESS)
2647 final_result = result;
2648 }
2649
2650 return final_result;
2651 }
2652
2653 void
2654 tu_DestroyPipeline(VkDevice _device,
2655 VkPipeline _pipeline,
2656 const VkAllocationCallbacks *pAllocator)
2657 {
2658 TU_FROM_HANDLE(tu_device, dev, _device);
2659 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2660
2661 if (!_pipeline)
2662 return;
2663
2664 tu_pipeline_finish(pipeline, dev, pAllocator);
2665 vk_object_free(&dev->vk, pAllocator, pipeline);
2666 }