turnip: add support for pre-fs texture fetch
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "main/menums.h"
31 #include "nir/nir.h"
32 #include "nir/nir_builder.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/u_atomic.h"
37 #include "vk_format.h"
38 #include "vk_util.h"
39
40 #include "tu_cs.h"
41
42 struct tu_pipeline_builder
43 {
44 struct tu_device *device;
45 struct tu_pipeline_cache *cache;
46 const VkAllocationCallbacks *alloc;
47 const VkGraphicsPipelineCreateInfo *create_info;
48
49 struct tu_shader *shaders[MESA_SHADER_STAGES];
50 uint32_t shader_offsets[MESA_SHADER_STAGES];
51 uint32_t binning_vs_offset;
52 uint32_t shader_total_size;
53
54 bool rasterizer_discard;
55 /* these states are affectd by rasterizer_discard */
56 VkSampleCountFlagBits samples;
57 bool use_depth_stencil_attachment;
58 bool use_color_attachments;
59 uint32_t color_attachment_count;
60 VkFormat color_attachment_formats[MAX_RTS];
61 };
62
63 static enum tu_dynamic_state_bits
64 tu_dynamic_state_bit(VkDynamicState state)
65 {
66 switch (state) {
67 case VK_DYNAMIC_STATE_VIEWPORT:
68 return TU_DYNAMIC_VIEWPORT;
69 case VK_DYNAMIC_STATE_SCISSOR:
70 return TU_DYNAMIC_SCISSOR;
71 case VK_DYNAMIC_STATE_LINE_WIDTH:
72 return TU_DYNAMIC_LINE_WIDTH;
73 case VK_DYNAMIC_STATE_DEPTH_BIAS:
74 return TU_DYNAMIC_DEPTH_BIAS;
75 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
76 return TU_DYNAMIC_BLEND_CONSTANTS;
77 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
78 return TU_DYNAMIC_DEPTH_BOUNDS;
79 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
80 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
81 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
82 return TU_DYNAMIC_STENCIL_WRITE_MASK;
83 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
84 return TU_DYNAMIC_STENCIL_REFERENCE;
85 default:
86 unreachable("invalid dynamic state");
87 return 0;
88 }
89 }
90
91 static gl_shader_stage
92 tu_shader_stage(VkShaderStageFlagBits stage)
93 {
94 switch (stage) {
95 case VK_SHADER_STAGE_VERTEX_BIT:
96 return MESA_SHADER_VERTEX;
97 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
98 return MESA_SHADER_TESS_CTRL;
99 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
100 return MESA_SHADER_TESS_EVAL;
101 case VK_SHADER_STAGE_GEOMETRY_BIT:
102 return MESA_SHADER_GEOMETRY;
103 case VK_SHADER_STAGE_FRAGMENT_BIT:
104 return MESA_SHADER_FRAGMENT;
105 case VK_SHADER_STAGE_COMPUTE_BIT:
106 return MESA_SHADER_COMPUTE;
107 default:
108 unreachable("invalid VkShaderStageFlagBits");
109 return MESA_SHADER_NONE;
110 }
111 }
112
113 static const VkVertexInputAttributeDescription *
114 tu_find_vertex_input_attribute(
115 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
116 {
117 assert(slot >= VERT_ATTRIB_GENERIC0);
118 slot -= VERT_ATTRIB_GENERIC0;
119 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
120 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
121 return &vi_info->pVertexAttributeDescriptions[i];
122 }
123 return NULL;
124 }
125
126 static const VkVertexInputBindingDescription *
127 tu_find_vertex_input_binding(
128 const VkPipelineVertexInputStateCreateInfo *vi_info,
129 const VkVertexInputAttributeDescription *vi_attr)
130 {
131 assert(vi_attr);
132 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
133 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
134 return &vi_info->pVertexBindingDescriptions[i];
135 }
136 return NULL;
137 }
138
139 static bool
140 tu_logic_op_reads_dst(VkLogicOp op)
141 {
142 switch (op) {
143 case VK_LOGIC_OP_CLEAR:
144 case VK_LOGIC_OP_COPY:
145 case VK_LOGIC_OP_COPY_INVERTED:
146 case VK_LOGIC_OP_SET:
147 return false;
148 default:
149 return true;
150 }
151 }
152
153 static VkBlendFactor
154 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
155 {
156 /* treat dst alpha as 1.0 and avoid reading it */
157 switch (factor) {
158 case VK_BLEND_FACTOR_DST_ALPHA:
159 return VK_BLEND_FACTOR_ONE;
160 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
161 return VK_BLEND_FACTOR_ZERO;
162 default:
163 return factor;
164 }
165 }
166
167 static enum pc_di_primtype
168 tu6_primtype(VkPrimitiveTopology topology)
169 {
170 switch (topology) {
171 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
172 return DI_PT_POINTLIST;
173 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
174 return DI_PT_LINELIST;
175 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
176 return DI_PT_LINESTRIP;
177 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
178 return DI_PT_TRILIST;
179 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
180 return DI_PT_TRISTRIP;
181 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
182 return DI_PT_TRIFAN;
183 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
184 return DI_PT_LINE_ADJ;
185 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
186 return DI_PT_LINESTRIP_ADJ;
187 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
188 return DI_PT_TRI_ADJ;
189 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
190 return DI_PT_TRISTRIP_ADJ;
191 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
192 default:
193 unreachable("invalid primitive topology");
194 return DI_PT_NONE;
195 }
196 }
197
198 static enum adreno_compare_func
199 tu6_compare_func(VkCompareOp op)
200 {
201 switch (op) {
202 case VK_COMPARE_OP_NEVER:
203 return FUNC_NEVER;
204 case VK_COMPARE_OP_LESS:
205 return FUNC_LESS;
206 case VK_COMPARE_OP_EQUAL:
207 return FUNC_EQUAL;
208 case VK_COMPARE_OP_LESS_OR_EQUAL:
209 return FUNC_LEQUAL;
210 case VK_COMPARE_OP_GREATER:
211 return FUNC_GREATER;
212 case VK_COMPARE_OP_NOT_EQUAL:
213 return FUNC_NOTEQUAL;
214 case VK_COMPARE_OP_GREATER_OR_EQUAL:
215 return FUNC_GEQUAL;
216 case VK_COMPARE_OP_ALWAYS:
217 return FUNC_ALWAYS;
218 default:
219 unreachable("invalid VkCompareOp");
220 return FUNC_NEVER;
221 }
222 }
223
224 static enum adreno_stencil_op
225 tu6_stencil_op(VkStencilOp op)
226 {
227 switch (op) {
228 case VK_STENCIL_OP_KEEP:
229 return STENCIL_KEEP;
230 case VK_STENCIL_OP_ZERO:
231 return STENCIL_ZERO;
232 case VK_STENCIL_OP_REPLACE:
233 return STENCIL_REPLACE;
234 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
235 return STENCIL_INCR_CLAMP;
236 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
237 return STENCIL_DECR_CLAMP;
238 case VK_STENCIL_OP_INVERT:
239 return STENCIL_INVERT;
240 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
241 return STENCIL_INCR_WRAP;
242 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
243 return STENCIL_DECR_WRAP;
244 default:
245 unreachable("invalid VkStencilOp");
246 return STENCIL_KEEP;
247 }
248 }
249
250 static enum a3xx_rop_code
251 tu6_rop(VkLogicOp op)
252 {
253 switch (op) {
254 case VK_LOGIC_OP_CLEAR:
255 return ROP_CLEAR;
256 case VK_LOGIC_OP_AND:
257 return ROP_AND;
258 case VK_LOGIC_OP_AND_REVERSE:
259 return ROP_AND_REVERSE;
260 case VK_LOGIC_OP_COPY:
261 return ROP_COPY;
262 case VK_LOGIC_OP_AND_INVERTED:
263 return ROP_AND_INVERTED;
264 case VK_LOGIC_OP_NO_OP:
265 return ROP_NOOP;
266 case VK_LOGIC_OP_XOR:
267 return ROP_XOR;
268 case VK_LOGIC_OP_OR:
269 return ROP_OR;
270 case VK_LOGIC_OP_NOR:
271 return ROP_NOR;
272 case VK_LOGIC_OP_EQUIVALENT:
273 return ROP_EQUIV;
274 case VK_LOGIC_OP_INVERT:
275 return ROP_INVERT;
276 case VK_LOGIC_OP_OR_REVERSE:
277 return ROP_OR_REVERSE;
278 case VK_LOGIC_OP_COPY_INVERTED:
279 return ROP_COPY_INVERTED;
280 case VK_LOGIC_OP_OR_INVERTED:
281 return ROP_OR_INVERTED;
282 case VK_LOGIC_OP_NAND:
283 return ROP_NAND;
284 case VK_LOGIC_OP_SET:
285 return ROP_SET;
286 default:
287 unreachable("invalid VkLogicOp");
288 return ROP_NOOP;
289 }
290 }
291
292 static enum adreno_rb_blend_factor
293 tu6_blend_factor(VkBlendFactor factor)
294 {
295 switch (factor) {
296 case VK_BLEND_FACTOR_ZERO:
297 return FACTOR_ZERO;
298 case VK_BLEND_FACTOR_ONE:
299 return FACTOR_ONE;
300 case VK_BLEND_FACTOR_SRC_COLOR:
301 return FACTOR_SRC_COLOR;
302 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
303 return FACTOR_ONE_MINUS_SRC_COLOR;
304 case VK_BLEND_FACTOR_DST_COLOR:
305 return FACTOR_DST_COLOR;
306 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
307 return FACTOR_ONE_MINUS_DST_COLOR;
308 case VK_BLEND_FACTOR_SRC_ALPHA:
309 return FACTOR_SRC_ALPHA;
310 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
311 return FACTOR_ONE_MINUS_SRC_ALPHA;
312 case VK_BLEND_FACTOR_DST_ALPHA:
313 return FACTOR_DST_ALPHA;
314 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
315 return FACTOR_ONE_MINUS_DST_ALPHA;
316 case VK_BLEND_FACTOR_CONSTANT_COLOR:
317 return FACTOR_CONSTANT_COLOR;
318 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
319 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
320 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
321 return FACTOR_CONSTANT_ALPHA;
322 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
323 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
324 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
325 return FACTOR_SRC_ALPHA_SATURATE;
326 case VK_BLEND_FACTOR_SRC1_COLOR:
327 return FACTOR_SRC1_COLOR;
328 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
329 return FACTOR_ONE_MINUS_SRC1_COLOR;
330 case VK_BLEND_FACTOR_SRC1_ALPHA:
331 return FACTOR_SRC1_ALPHA;
332 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
333 return FACTOR_ONE_MINUS_SRC1_ALPHA;
334 default:
335 unreachable("invalid VkBlendFactor");
336 return FACTOR_ZERO;
337 }
338 }
339
340 static enum a3xx_rb_blend_opcode
341 tu6_blend_op(VkBlendOp op)
342 {
343 switch (op) {
344 case VK_BLEND_OP_ADD:
345 return BLEND_DST_PLUS_SRC;
346 case VK_BLEND_OP_SUBTRACT:
347 return BLEND_SRC_MINUS_DST;
348 case VK_BLEND_OP_REVERSE_SUBTRACT:
349 return BLEND_DST_MINUS_SRC;
350 case VK_BLEND_OP_MIN:
351 return BLEND_MIN_DST_SRC;
352 case VK_BLEND_OP_MAX:
353 return BLEND_MAX_DST_SRC;
354 default:
355 unreachable("invalid VkBlendOp");
356 return BLEND_DST_PLUS_SRC;
357 }
358 }
359
360 static void
361 tu6_emit_vs_config(struct tu_cs *cs, const struct ir3_shader_variant *vs)
362 {
363 uint32_t sp_vs_ctrl =
364 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
365 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
366 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
367 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
368 if (vs->need_pixlod)
369 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
370
371 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(vs->num_samp) |
372 A6XX_SP_VS_CONFIG_NSAMP(vs->num_samp);
373 if (vs->instrlen)
374 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
375
376 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
377 tu_cs_emit(cs, sp_vs_ctrl);
378
379 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
380 tu_cs_emit(cs, sp_vs_config);
381 tu_cs_emit(cs, vs->instrlen);
382
383 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
384 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
385 A6XX_HLSQ_VS_CNTL_ENABLED);
386 }
387
388 static void
389 tu6_emit_hs_config(struct tu_cs *cs, const struct ir3_shader_variant *hs)
390 {
391 uint32_t sp_hs_config = 0;
392 if (hs->instrlen)
393 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
394
395 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
396 tu_cs_emit(cs, 0);
397
398 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
399 tu_cs_emit(cs, sp_hs_config);
400 tu_cs_emit(cs, hs->instrlen);
401
402 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
403 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
404 }
405
406 static void
407 tu6_emit_ds_config(struct tu_cs *cs, const struct ir3_shader_variant *ds)
408 {
409 uint32_t sp_ds_config = 0;
410 if (ds->instrlen)
411 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
412
413 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
414 tu_cs_emit(cs, sp_ds_config);
415 tu_cs_emit(cs, ds->instrlen);
416
417 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
418 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
419 }
420
421 static void
422 tu6_emit_gs_config(struct tu_cs *cs, const struct ir3_shader_variant *gs)
423 {
424 uint32_t sp_gs_config = 0;
425 if (gs->instrlen)
426 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
427
428 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
429 tu_cs_emit(cs, 0);
430
431 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
432 tu_cs_emit(cs, sp_gs_config);
433 tu_cs_emit(cs, gs->instrlen);
434
435 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
436 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
437 }
438
439 static void
440 tu6_emit_fs_config(struct tu_cs *cs, const struct ir3_shader_variant *fs)
441 {
442 uint32_t sp_fs_ctrl =
443 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
444 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
445 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
446 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
447 if (fs->total_in > 0 || fs->frag_coord)
448 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
449 if (fs->need_pixlod)
450 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
451
452 uint32_t sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(fs->num_samp) |
453 A6XX_SP_FS_CONFIG_NSAMP(fs->num_samp);
454 if (fs->instrlen)
455 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
456
457 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1);
458 tu_cs_emit(cs, 0);
459
460 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1);
461 tu_cs_emit(cs, 0x5);
462
463 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
464 tu_cs_emit(cs, sp_fs_ctrl);
465
466 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
467 tu_cs_emit(cs, sp_fs_config);
468 tu_cs_emit(cs, fs->instrlen);
469
470 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
471 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
472 A6XX_HLSQ_FS_CNTL_ENABLED);
473 }
474
475 static void
476 tu6_emit_vs_system_values(struct tu_cs *cs,
477 const struct ir3_shader_variant *vs)
478 {
479 const uint32_t vertexid_regid =
480 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
481 const uint32_t instanceid_regid =
482 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
483
484 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
485 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
486 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
487 0xfcfc0000);
488 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
489 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
490 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
491 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
492 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
493 }
494
495 static void
496 tu6_emit_vpc(struct tu_cs *cs,
497 const struct ir3_shader_variant *vs,
498 const struct ir3_shader_variant *fs,
499 bool binning_pass)
500 {
501 struct ir3_shader_linkage linkage = { 0 };
502 ir3_link_shaders(&linkage, vs, fs);
503
504 if (vs->shader->stream_output.num_outputs && !binning_pass)
505 tu_finishme("stream output");
506
507 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
508 for (uint32_t i = 0; i < linkage.cnt; i++) {
509 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
510 for (uint32_t j = 0; j < comp_count; j++)
511 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
512 }
513
514 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
515 tu_cs_emit(cs, ~vpc_var_enables[0]);
516 tu_cs_emit(cs, ~vpc_var_enables[1]);
517 tu_cs_emit(cs, ~vpc_var_enables[2]);
518 tu_cs_emit(cs, ~vpc_var_enables[3]);
519
520 /* a6xx finds position/pointsize at the end */
521 const uint32_t position_regid =
522 ir3_find_output_regid(vs, VARYING_SLOT_POS);
523 const uint32_t pointsize_regid =
524 ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
525 uint32_t pointsize_loc = 0xff, position_loc = 0xff;
526 if (position_regid != regid(63, 0)) {
527 position_loc = linkage.max_loc;
528 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
529 }
530 if (pointsize_regid != regid(63, 0)) {
531 pointsize_loc = linkage.max_loc;
532 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
533 }
534
535 /* map vs outputs to VPC */
536 assert(linkage.cnt <= 32);
537 const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
538 const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
539 uint32_t sp_vs_out[16];
540 uint32_t sp_vs_vpc_dst[8];
541 sp_vs_out[sp_vs_out_count - 1] = 0;
542 sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
543 for (uint32_t i = 0; i < linkage.cnt; i++) {
544 ((uint16_t *) sp_vs_out)[i] =
545 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
546 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
547 ((uint8_t *) sp_vs_vpc_dst)[i] =
548 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
549 }
550
551 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
552 tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
553
554 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
555 tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
556
557 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
558 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
559 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
560 0xff00ff00);
561
562 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
563 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
564 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
565 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
566
567 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1);
568 tu_cs_emit(cs, 0x0000ffff); /* XXX */
569
570 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
571 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
572
573 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
574 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
575 (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
576 }
577
578 static int
579 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
580 uint32_t index,
581 uint8_t *interp_mode,
582 uint8_t *ps_repl_mode)
583 {
584 enum
585 {
586 INTERP_SMOOTH = 0,
587 INTERP_FLAT = 1,
588 INTERP_ZERO = 2,
589 INTERP_ONE = 3,
590 };
591 enum
592 {
593 PS_REPL_NONE = 0,
594 PS_REPL_S = 1,
595 PS_REPL_T = 2,
596 PS_REPL_ONE_MINUS_T = 3,
597 };
598
599 const uint32_t compmask = fs->inputs[index].compmask;
600
601 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
602 * fourth component occupy three consecutive varying slots
603 */
604 int shift = 0;
605 *interp_mode = 0;
606 *ps_repl_mode = 0;
607 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
608 if (compmask & 0x1) {
609 *ps_repl_mode |= PS_REPL_S << shift;
610 shift += 2;
611 }
612 if (compmask & 0x2) {
613 *ps_repl_mode |= PS_REPL_T << shift;
614 shift += 2;
615 }
616 if (compmask & 0x4) {
617 *interp_mode |= INTERP_ZERO << shift;
618 shift += 2;
619 }
620 if (compmask & 0x8) {
621 *interp_mode |= INTERP_ONE << 6;
622 shift += 2;
623 }
624 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
625 fs->inputs[index].rasterflat) {
626 for (int i = 0; i < 4; i++) {
627 if (compmask & (1 << i)) {
628 *interp_mode |= INTERP_FLAT << shift;
629 shift += 2;
630 }
631 }
632 }
633
634 return shift;
635 }
636
637 static void
638 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
639 const struct ir3_shader_variant *fs,
640 bool binning_pass)
641 {
642 uint32_t interp_modes[8] = { 0 };
643 uint32_t ps_repl_modes[8] = { 0 };
644
645 if (!binning_pass) {
646 for (int i = -1;
647 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
648
649 /* get the mode for input i */
650 uint8_t interp_mode;
651 uint8_t ps_repl_mode;
652 const int bits =
653 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
654
655 /* OR the mode into the array */
656 const uint32_t inloc = fs->inputs[i].inloc * 2;
657 uint32_t n = inloc / 32;
658 uint32_t shift = inloc % 32;
659 interp_modes[n] |= interp_mode << shift;
660 ps_repl_modes[n] |= ps_repl_mode << shift;
661 if (shift + bits > 32) {
662 n++;
663 shift = 32 - shift;
664
665 interp_modes[n] |= interp_mode >> shift;
666 ps_repl_modes[n] |= ps_repl_mode >> shift;
667 }
668 }
669 }
670
671 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
672 tu_cs_emit_array(cs, interp_modes, 8);
673
674 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
675 tu_cs_emit_array(cs, ps_repl_modes, 8);
676 }
677
678 #define VALIDREG(r) ((r) != regid(63,0))
679 #define CONDREG(r, val) COND(VALIDREG(r), (val))
680
681 static void
682 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
683 {
684 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
685 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
686 uint32_t smask_in_regid;
687
688 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
689 bool enable_varyings = fs->total_in > 0;
690
691 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
692 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
693 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
694 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
695 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
696 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PIXEL);
697 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SAMPLE);
698 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_CENTROID);
699 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SIZE);
700
701 if (fs->num_sampler_prefetch > 0) {
702 assert(VALIDREG(ij_pix_regid));
703 /* also, it seems like ij_pix is *required* to be r0.x */
704 assert(ij_pix_regid == regid(0, 0));
705 }
706
707 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
708 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
709 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
710 0x7000); // XXX);
711 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
712 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
713 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
714 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
715 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
716 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
717 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
718 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
719 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
720 }
721
722 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
723 tu_cs_emit(cs, 0x7);
724 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
725 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
726 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
727 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
728 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
729 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
730 0xfc00fc00);
731 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
732 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
733 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
734 0x0000fc00);
735 tu_cs_emit(cs, 0xfc);
736
737 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
738 tu_cs_emit(cs, enable_varyings ? 3 : 1);
739
740 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1);
741 tu_cs_emit(cs, 0); /* XXX */
742
743 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
744 tu_cs_emit(cs, 0xff); /* XXX */
745
746 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
747 tu_cs_emit(cs,
748 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
749 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
750 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
751 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
752 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
753 COND(fs->frag_coord,
754 A6XX_GRAS_CNTL_SIZE |
755 A6XX_GRAS_CNTL_XCOORD |
756 A6XX_GRAS_CNTL_YCOORD |
757 A6XX_GRAS_CNTL_ZCOORD |
758 A6XX_GRAS_CNTL_WCOORD) |
759 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
760
761 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
762 tu_cs_emit(cs,
763 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
764 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
765 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
766 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
767 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
768 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
769 COND(fs->frag_coord,
770 A6XX_RB_RENDER_CONTROL0_SIZE |
771 A6XX_RB_RENDER_CONTROL0_XCOORD |
772 A6XX_RB_RENDER_CONTROL0_YCOORD |
773 A6XX_RB_RENDER_CONTROL0_ZCOORD |
774 A6XX_RB_RENDER_CONTROL0_WCOORD) |
775 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
776 tu_cs_emit(cs,
777 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
778 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
779 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
780 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
781 }
782
783 static void
784 tu6_emit_fs_outputs(struct tu_cs *cs,
785 const struct ir3_shader_variant *fs,
786 uint32_t mrt_count)
787 {
788 uint32_t smask_regid, posz_regid;
789
790 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
791 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
792
793 uint32_t fragdata_regid[8];
794 if (fs->color0_mrt) {
795 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
796 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
797 fragdata_regid[i] = fragdata_regid[0];
798 } else {
799 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
800 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
801 }
802
803 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
804 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
805 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
806 0xfc000000);
807 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
808
809 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
810 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
811 // TODO we could have a mix of half and full precision outputs,
812 // we really need to figure out half-precision from IR3_REG_HALF
813 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
814 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
815 }
816
817 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
818 tu_cs_emit(cs, fs->writes_pos ? A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z : 0);
819 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
820
821 uint32_t gras_su_depth_plane_cntl = 0;
822 uint32_t rb_depth_plane_cntl = 0;
823 if (fs->no_earlyz | fs->writes_pos) {
824 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
825 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
826 }
827
828 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
829 tu_cs_emit(cs, gras_su_depth_plane_cntl);
830
831 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
832 tu_cs_emit(cs, rb_depth_plane_cntl);
833 }
834
835 static void
836 tu6_emit_shader_object(struct tu_cs *cs,
837 gl_shader_stage stage,
838 const struct ir3_shader_variant *variant,
839 const struct tu_bo *binary_bo,
840 uint32_t binary_offset)
841 {
842 uint16_t reg;
843 uint8_t opcode;
844 enum a6xx_state_block sb;
845 switch (stage) {
846 case MESA_SHADER_VERTEX:
847 reg = REG_A6XX_SP_VS_OBJ_START_LO;
848 opcode = CP_LOAD_STATE6_GEOM;
849 sb = SB6_VS_SHADER;
850 break;
851 case MESA_SHADER_TESS_CTRL:
852 reg = REG_A6XX_SP_HS_OBJ_START_LO;
853 opcode = CP_LOAD_STATE6_GEOM;
854 sb = SB6_HS_SHADER;
855 break;
856 case MESA_SHADER_TESS_EVAL:
857 reg = REG_A6XX_SP_DS_OBJ_START_LO;
858 opcode = CP_LOAD_STATE6_GEOM;
859 sb = SB6_DS_SHADER;
860 break;
861 case MESA_SHADER_GEOMETRY:
862 reg = REG_A6XX_SP_GS_OBJ_START_LO;
863 opcode = CP_LOAD_STATE6_GEOM;
864 sb = SB6_GS_SHADER;
865 break;
866 case MESA_SHADER_FRAGMENT:
867 reg = REG_A6XX_SP_FS_OBJ_START_LO;
868 opcode = CP_LOAD_STATE6_FRAG;
869 sb = SB6_FS_SHADER;
870 break;
871 case MESA_SHADER_COMPUTE:
872 reg = REG_A6XX_SP_CS_OBJ_START_LO;
873 opcode = CP_LOAD_STATE6_FRAG;
874 sb = SB6_CS_SHADER;
875 break;
876 default:
877 unreachable("invalid gl_shader_stage");
878 opcode = CP_LOAD_STATE6_GEOM;
879 sb = SB6_VS_SHADER;
880 break;
881 }
882
883 if (!variant->instrlen) {
884 tu_cs_emit_pkt4(cs, reg, 2);
885 tu_cs_emit_qw(cs, 0);
886 return;
887 }
888
889 assert(variant->type == stage);
890
891 const uint64_t binary_iova = binary_bo->iova + binary_offset;
892 assert((binary_iova & 0x3) == 0);
893
894 tu_cs_emit_pkt4(cs, reg, 2);
895 tu_cs_emit_qw(cs, binary_iova);
896
897 /* always indirect */
898 const bool indirect = true;
899 if (indirect) {
900 tu_cs_emit_pkt7(cs, opcode, 3);
901 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
902 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
903 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
904 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
905 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
906 tu_cs_emit_qw(cs, binary_iova);
907 } else {
908 const void *binary = binary_bo->map + binary_offset;
909
910 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
911 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
912 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
913 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
914 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
915 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
916 tu_cs_emit_qw(cs, 0);
917 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
918 }
919 }
920
921 static void
922 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
923 uint32_t opcode, enum a6xx_state_block block)
924 {
925 /* dummy variant */
926 if (!v->shader)
927 return;
928
929 const struct ir3_const_state *const_state = &v->shader->const_state;
930 uint32_t base = const_state->offsets.immediate;
931 int size = const_state->immediates_count;
932
933 /* truncate size to avoid writing constants that shader
934 * does not use:
935 */
936 size = MIN2(size + base, v->constlen) - base;
937
938 if (size <= 0)
939 return;
940
941 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
942 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
943 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
944 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
945 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
946 CP_LOAD_STATE6_0_NUM_UNIT(size));
947 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
948 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
949
950 for (unsigned i = 0; i < size; i++) {
951 tu_cs_emit(cs, const_state->immediates[i].val[0]);
952 tu_cs_emit(cs, const_state->immediates[i].val[1]);
953 tu_cs_emit(cs, const_state->immediates[i].val[2]);
954 tu_cs_emit(cs, const_state->immediates[i].val[3]);
955 }
956 }
957
958 static void
959 tu6_emit_program(struct tu_cs *cs,
960 const struct tu_pipeline_builder *builder,
961 const struct tu_bo *binary_bo,
962 bool binning_pass)
963 {
964 static const struct ir3_shader_variant dummy_variant = {
965 .type = MESA_SHADER_NONE
966 };
967 assert(builder->shaders[MESA_SHADER_VERTEX]);
968 const struct ir3_shader_variant *vs =
969 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
970 const struct ir3_shader_variant *hs =
971 builder->shaders[MESA_SHADER_TESS_CTRL]
972 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
973 : &dummy_variant;
974 const struct ir3_shader_variant *ds =
975 builder->shaders[MESA_SHADER_TESS_EVAL]
976 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
977 : &dummy_variant;
978 const struct ir3_shader_variant *gs =
979 builder->shaders[MESA_SHADER_GEOMETRY]
980 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
981 : &dummy_variant;
982 const struct ir3_shader_variant *fs =
983 builder->shaders[MESA_SHADER_FRAGMENT]
984 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
985 : &dummy_variant;
986
987 if (binning_pass) {
988 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
989 fs = &dummy_variant;
990 }
991
992 tu6_emit_vs_config(cs, vs);
993 tu6_emit_hs_config(cs, hs);
994 tu6_emit_ds_config(cs, ds);
995 tu6_emit_gs_config(cs, gs);
996 tu6_emit_fs_config(cs, fs);
997
998 tu6_emit_vs_system_values(cs, vs);
999 tu6_emit_vpc(cs, vs, fs, binning_pass);
1000 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1001 tu6_emit_fs_inputs(cs, fs);
1002 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1003
1004 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1005 builder->shader_offsets[MESA_SHADER_VERTEX]);
1006
1007 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1008 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1009
1010 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1011 if (!binning_pass)
1012 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1013 }
1014
1015 static void
1016 tu6_emit_vertex_input(struct tu_cs *cs,
1017 const struct ir3_shader_variant *vs,
1018 const VkPipelineVertexInputStateCreateInfo *vi_info,
1019 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1020 uint16_t strides[MAX_VERTEX_ATTRIBS],
1021 uint16_t offsets[MAX_VERTEX_ATTRIBS],
1022 uint32_t *count)
1023 {
1024 uint32_t vfd_decode_idx = 0;
1025
1026 for (uint32_t i = 0; i < vs->inputs_count; i++) {
1027 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
1028 continue;
1029
1030 const VkVertexInputAttributeDescription *vi_attr =
1031 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
1032 const VkVertexInputBindingDescription *vi_binding =
1033 tu_find_vertex_input_binding(vi_info, vi_attr);
1034 assert(vi_attr && vi_binding);
1035
1036 const struct tu_native_format *format =
1037 tu6_get_native_format(vi_attr->format);
1038 assert(format && format->vtx >= 0);
1039
1040 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
1041 A6XX_VFD_DECODE_INSTR_FORMAT(format->vtx) |
1042 A6XX_VFD_DECODE_INSTR_SWAP(format->swap) |
1043 A6XX_VFD_DECODE_INSTR_UNK30;
1044 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1045 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
1046 if (!vk_format_is_int(vi_attr->format))
1047 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
1048
1049 const uint32_t vfd_decode_step_rate = 1;
1050
1051 const uint32_t vfd_dest_cntl =
1052 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
1053 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
1054
1055 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
1056 tu_cs_emit(cs, vfd_decode);
1057 tu_cs_emit(cs, vfd_decode_step_rate);
1058
1059 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
1060 tu_cs_emit(cs, vfd_dest_cntl);
1061
1062 bindings[vfd_decode_idx] = vi_binding->binding;
1063 strides[vfd_decode_idx] = vi_binding->stride;
1064 offsets[vfd_decode_idx] = vi_attr->offset;
1065
1066 vfd_decode_idx++;
1067 assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
1068 }
1069
1070 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
1071 tu_cs_emit(
1072 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1073
1074 *count = vfd_decode_idx;
1075 }
1076
1077 static uint32_t
1078 tu6_guardband_adj(uint32_t v)
1079 {
1080 if (v > 256)
1081 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1082 else
1083 return 511;
1084 }
1085
1086 void
1087 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1088 {
1089 float offsets[3];
1090 float scales[3];
1091 scales[0] = viewport->width / 2.0f;
1092 scales[1] = viewport->height / 2.0f;
1093 scales[2] = viewport->maxDepth - viewport->minDepth;
1094 offsets[0] = viewport->x + scales[0];
1095 offsets[1] = viewport->y + scales[1];
1096 offsets[2] = viewport->minDepth;
1097
1098 VkOffset2D min;
1099 VkOffset2D max;
1100 min.x = (int32_t) viewport->x;
1101 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1102 if (viewport->height >= 0.0f) {
1103 min.y = (int32_t) viewport->y;
1104 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1105 } else {
1106 min.y = (int32_t)(viewport->y + viewport->height);
1107 max.y = (int32_t) ceilf(viewport->y);
1108 }
1109 /* the spec allows viewport->height to be 0.0f */
1110 if (min.y == max.y)
1111 max.y++;
1112 assert(min.x >= 0 && min.x < max.x);
1113 assert(min.y >= 0 && min.y < max.y);
1114
1115 VkExtent2D guardband_adj;
1116 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1117 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1118
1119 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1120 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]));
1121 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]));
1122 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]));
1123 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]));
1124 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]));
1125 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]));
1126
1127 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1128 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1129 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1130 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1131 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1132
1133 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1134 tu_cs_emit(cs,
1135 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1136 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1137 }
1138
1139 void
1140 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1141 {
1142 const VkOffset2D min = scissor->offset;
1143 const VkOffset2D max = {
1144 scissor->offset.x + scissor->extent.width,
1145 scissor->offset.y + scissor->extent.height,
1146 };
1147
1148 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1149 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1150 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1151 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1152 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1153 }
1154
1155 static void
1156 tu6_emit_gras_unknowns(struct tu_cs *cs)
1157 {
1158 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8000, 1);
1159 tu_cs_emit(cs, 0x80);
1160 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1161 tu_cs_emit(cs, 0x0);
1162 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
1163 tu_cs_emit(cs, 0x0);
1164 }
1165
1166 static void
1167 tu6_emit_point_size(struct tu_cs *cs)
1168 {
1169 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1170 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1171 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1172 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f));
1173 }
1174
1175 static uint32_t
1176 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1177 VkSampleCountFlagBits samples)
1178 {
1179 uint32_t gras_su_cntl = 0;
1180
1181 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1182 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1183 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1184 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1185
1186 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1187 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1188
1189 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1190
1191 if (rast_info->depthBiasEnable)
1192 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1193
1194 if (samples > VK_SAMPLE_COUNT_1_BIT)
1195 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1196
1197 return gras_su_cntl;
1198 }
1199
1200 void
1201 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1202 uint32_t gras_su_cntl,
1203 float line_width)
1204 {
1205 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1206 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1207
1208 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1209 tu_cs_emit(cs, gras_su_cntl);
1210 }
1211
1212 void
1213 tu6_emit_depth_bias(struct tu_cs *cs,
1214 float constant_factor,
1215 float clamp,
1216 float slope_factor)
1217 {
1218 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1219 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor));
1220 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor));
1221 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp));
1222 }
1223
1224 static void
1225 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1226 {
1227 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1228 tu_cs_emit(cs, 0);
1229 }
1230
1231 static void
1232 tu6_emit_depth_control(struct tu_cs *cs,
1233 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1234 {
1235 assert(!ds_info->depthBoundsTestEnable);
1236
1237 uint32_t rb_depth_cntl = 0;
1238 if (ds_info->depthTestEnable) {
1239 rb_depth_cntl |=
1240 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1241 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1242 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1243
1244 if (ds_info->depthWriteEnable)
1245 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1246 }
1247
1248 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1249 tu_cs_emit(cs, rb_depth_cntl);
1250 }
1251
1252 static void
1253 tu6_emit_stencil_control(struct tu_cs *cs,
1254 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1255 {
1256 uint32_t rb_stencil_control = 0;
1257 if (ds_info->stencilTestEnable) {
1258 const VkStencilOpState *front = &ds_info->front;
1259 const VkStencilOpState *back = &ds_info->back;
1260 rb_stencil_control |=
1261 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1262 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1263 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1264 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1265 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1266 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1267 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1268 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1269 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1270 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1271 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1272 }
1273
1274 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1275 tu_cs_emit(cs, rb_stencil_control);
1276 }
1277
1278 void
1279 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1280 {
1281 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1282 tu_cs_emit(
1283 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1284 }
1285
1286 void
1287 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1288 {
1289 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1290 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1291 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1292 }
1293
1294 void
1295 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1296 {
1297 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1298 tu_cs_emit(cs,
1299 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1300 }
1301
1302 static uint32_t
1303 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1304 bool has_alpha)
1305 {
1306 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1307 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1308 has_alpha ? att->srcColorBlendFactor
1309 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1310 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1311 has_alpha ? att->dstColorBlendFactor
1312 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1313 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1314 const enum adreno_rb_blend_factor src_alpha_factor =
1315 tu6_blend_factor(att->srcAlphaBlendFactor);
1316 const enum adreno_rb_blend_factor dst_alpha_factor =
1317 tu6_blend_factor(att->dstAlphaBlendFactor);
1318
1319 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1320 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1321 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1322 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1323 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1324 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1325 }
1326
1327 static uint32_t
1328 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1329 uint32_t rb_mrt_control_rop,
1330 bool is_int,
1331 bool has_alpha)
1332 {
1333 uint32_t rb_mrt_control =
1334 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1335
1336 /* ignore blending and logic op for integer attachments */
1337 if (is_int) {
1338 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1339 return rb_mrt_control;
1340 }
1341
1342 rb_mrt_control |= rb_mrt_control_rop;
1343
1344 if (att->blendEnable) {
1345 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1346
1347 if (has_alpha)
1348 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1349 }
1350
1351 return rb_mrt_control;
1352 }
1353
1354 static void
1355 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1356 const VkPipelineColorBlendStateCreateInfo *blend_info,
1357 const VkFormat attachment_formats[MAX_RTS],
1358 uint32_t *blend_enable_mask)
1359 {
1360 *blend_enable_mask = 0;
1361
1362 bool rop_reads_dst = false;
1363 uint32_t rb_mrt_control_rop = 0;
1364 if (blend_info->logicOpEnable) {
1365 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1366 rb_mrt_control_rop =
1367 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1368 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1369 }
1370
1371 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1372 const VkPipelineColorBlendAttachmentState *att =
1373 &blend_info->pAttachments[i];
1374 const VkFormat format = attachment_formats[i];
1375
1376 uint32_t rb_mrt_control = 0;
1377 uint32_t rb_mrt_blend_control = 0;
1378 if (format != VK_FORMAT_UNDEFINED) {
1379 const bool is_int = vk_format_is_int(format);
1380 const bool has_alpha = vk_format_has_alpha(format);
1381
1382 rb_mrt_control =
1383 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1384 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1385
1386 if (att->blendEnable || rop_reads_dst)
1387 *blend_enable_mask |= 1 << i;
1388 }
1389
1390 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1391 tu_cs_emit(cs, rb_mrt_control);
1392 tu_cs_emit(cs, rb_mrt_blend_control);
1393 }
1394
1395 for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) {
1396 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1397 tu_cs_emit(cs, 0);
1398 tu_cs_emit(cs, 0);
1399 }
1400 }
1401
1402 static void
1403 tu6_emit_blend_control(struct tu_cs *cs,
1404 uint32_t blend_enable_mask,
1405 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1406 {
1407 assert(!msaa_info->sampleShadingEnable);
1408 assert(!msaa_info->alphaToOneEnable);
1409
1410 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1411 if (blend_enable_mask)
1412 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1413 if (msaa_info->alphaToCoverageEnable)
1414 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1415
1416 const uint32_t sample_mask =
1417 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1418 : ((1 << msaa_info->rasterizationSamples) - 1);
1419
1420 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1421 uint32_t rb_blend_cntl =
1422 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1423 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1424 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1425 if (msaa_info->alphaToCoverageEnable)
1426 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1427
1428 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1429 tu_cs_emit(cs, sp_blend_cntl);
1430
1431 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1432 tu_cs_emit(cs, rb_blend_cntl);
1433 }
1434
1435 void
1436 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1437 {
1438 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1439 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1440 }
1441
1442 static VkResult
1443 tu_pipeline_builder_create_pipeline(struct tu_pipeline_builder *builder,
1444 struct tu_pipeline **out_pipeline)
1445 {
1446 struct tu_device *dev = builder->device;
1447
1448 struct tu_pipeline *pipeline =
1449 vk_zalloc2(&dev->alloc, builder->alloc, sizeof(*pipeline), 8,
1450 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1451 if (!pipeline)
1452 return VK_ERROR_OUT_OF_HOST_MEMORY;
1453
1454 tu_cs_init(&pipeline->cs, TU_CS_MODE_SUB_STREAM, 2048);
1455
1456 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1457 VkResult result = tu_cs_reserve_space(dev, &pipeline->cs, 2048);
1458 if (result != VK_SUCCESS) {
1459 vk_free2(&dev->alloc, builder->alloc, pipeline);
1460 return result;
1461 }
1462
1463 *out_pipeline = pipeline;
1464
1465 return VK_SUCCESS;
1466 }
1467
1468 static VkResult
1469 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1470 {
1471 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1472 NULL
1473 };
1474 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1475 gl_shader_stage stage =
1476 tu_shader_stage(builder->create_info->pStages[i].stage);
1477 stage_infos[stage] = &builder->create_info->pStages[i];
1478 }
1479
1480 struct tu_shader_compile_options options;
1481 tu_shader_compile_options_init(&options, builder->create_info);
1482
1483 /* compile shaders in reverse order */
1484 struct tu_shader *next_stage_shader = NULL;
1485 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1486 stage > MESA_SHADER_NONE; stage--) {
1487 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1488 if (!stage_info)
1489 continue;
1490
1491 struct tu_shader *shader =
1492 tu_shader_create(builder->device, stage, stage_info, builder->alloc);
1493 if (!shader)
1494 return VK_ERROR_OUT_OF_HOST_MEMORY;
1495
1496 VkResult result =
1497 tu_shader_compile(builder->device, shader, next_stage_shader,
1498 &options, builder->alloc);
1499 if (result != VK_SUCCESS)
1500 return result;
1501
1502 builder->shaders[stage] = shader;
1503 builder->shader_offsets[stage] = builder->shader_total_size;
1504 builder->shader_total_size +=
1505 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1506
1507 next_stage_shader = shader;
1508 }
1509
1510 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1511 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1512 builder->binning_vs_offset = builder->shader_total_size;
1513 builder->shader_total_size +=
1514 sizeof(uint32_t) * vs->variants[1].info.sizedwords;
1515 }
1516
1517 return VK_SUCCESS;
1518 }
1519
1520 static VkResult
1521 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1522 struct tu_pipeline *pipeline)
1523 {
1524 struct tu_bo *bo = &pipeline->program.binary_bo;
1525
1526 VkResult result =
1527 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1528 if (result != VK_SUCCESS)
1529 return result;
1530
1531 result = tu_bo_map(builder->device, bo);
1532 if (result != VK_SUCCESS)
1533 return result;
1534
1535 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1536 const struct tu_shader *shader = builder->shaders[i];
1537 if (!shader)
1538 continue;
1539
1540 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1541 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1542 }
1543
1544 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1545 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1546 memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary,
1547 sizeof(uint32_t) * vs->variants[1].info.sizedwords);
1548 }
1549
1550 return VK_SUCCESS;
1551 }
1552
1553 static void
1554 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1555 struct tu_pipeline *pipeline)
1556 {
1557 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1558 builder->create_info->pDynamicState;
1559
1560 if (!dynamic_info)
1561 return;
1562
1563 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1564 pipeline->dynamic_state.mask |=
1565 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1566 }
1567 }
1568
1569 static void
1570 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1571 struct tu_pipeline *pipeline)
1572 {
1573 struct tu_cs prog_cs;
1574 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1575 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false);
1576 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1577
1578 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1579 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true);
1580 pipeline->program.binning_state_ib =
1581 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1582
1583 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1584 if (!builder->shaders[i])
1585 continue;
1586
1587 struct tu_program_descriptor_linkage *link = &pipeline->program.link[i];
1588 struct ir3_shader *shader = builder->shaders[i]->variants[0].shader;
1589
1590 link->ubo_state = shader->ubo_state;
1591 link->const_state = shader->const_state;
1592 link->constlen = builder->shaders[i]->variants[0].constlen;
1593 link->texture_map = builder->shaders[i]->texture_map;
1594 link->sampler_map = builder->shaders[i]->sampler_map;
1595 link->ubo_map = builder->shaders[i]->ubo_map;
1596 link->ssbo_map = builder->shaders[i]->ssbo_map;
1597 link->image_mapping = builder->shaders[i]->variants[0].image_mapping;
1598 }
1599 }
1600
1601 static void
1602 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1603 struct tu_pipeline *pipeline)
1604 {
1605 const VkPipelineVertexInputStateCreateInfo *vi_info =
1606 builder->create_info->pVertexInputState;
1607 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1608
1609 struct tu_cs vi_cs;
1610 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1611 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1612 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1613 pipeline->vi.bindings, pipeline->vi.strides,
1614 pipeline->vi.offsets, &pipeline->vi.count);
1615 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1616
1617 if (vs->has_binning_pass) {
1618 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1619 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1620 tu6_emit_vertex_input(
1621 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
1622 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
1623 &pipeline->vi.binning_count);
1624 pipeline->vi.binning_state_ib =
1625 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1626 }
1627 }
1628
1629 static void
1630 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
1631 struct tu_pipeline *pipeline)
1632 {
1633 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1634 builder->create_info->pInputAssemblyState;
1635
1636 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
1637 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
1638 }
1639
1640 static void
1641 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
1642 struct tu_pipeline *pipeline)
1643 {
1644 /* The spec says:
1645 *
1646 * pViewportState is a pointer to an instance of the
1647 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
1648 * pipeline has rasterization disabled."
1649 *
1650 * We leave the relevant registers stale in that case.
1651 */
1652 if (builder->rasterizer_discard)
1653 return;
1654
1655 const VkPipelineViewportStateCreateInfo *vp_info =
1656 builder->create_info->pViewportState;
1657
1658 struct tu_cs vp_cs;
1659 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 15, &vp_cs);
1660
1661 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
1662 assert(vp_info->viewportCount == 1);
1663 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
1664 }
1665
1666 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
1667 assert(vp_info->scissorCount == 1);
1668 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
1669 }
1670
1671 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
1672 }
1673
1674 static void
1675 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
1676 struct tu_pipeline *pipeline)
1677 {
1678 const VkPipelineRasterizationStateCreateInfo *rast_info =
1679 builder->create_info->pRasterizationState;
1680
1681 assert(!rast_info->depthClampEnable);
1682 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
1683
1684 struct tu_cs rast_cs;
1685 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 20, &rast_cs);
1686
1687 /* move to hw ctx init? */
1688 tu6_emit_gras_unknowns(&rast_cs);
1689 tu6_emit_point_size(&rast_cs);
1690
1691 const uint32_t gras_su_cntl =
1692 tu6_gras_su_cntl(rast_info, builder->samples);
1693
1694 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
1695 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
1696
1697 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
1698 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
1699 rast_info->depthBiasClamp,
1700 rast_info->depthBiasSlopeFactor);
1701 }
1702
1703 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
1704
1705 pipeline->rast.gras_su_cntl = gras_su_cntl;
1706 }
1707
1708 static void
1709 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
1710 struct tu_pipeline *pipeline)
1711 {
1712 /* The spec says:
1713 *
1714 * pDepthStencilState is a pointer to an instance of the
1715 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
1716 * the pipeline has rasterization disabled or if the subpass of the
1717 * render pass the pipeline is created against does not use a
1718 * depth/stencil attachment.
1719 *
1720 * We disable both depth and stenil tests in those cases.
1721 */
1722 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
1723 const VkPipelineDepthStencilStateCreateInfo *ds_info =
1724 builder->use_depth_stencil_attachment
1725 ? builder->create_info->pDepthStencilState
1726 : &dummy_ds_info;
1727
1728 struct tu_cs ds_cs;
1729 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 12, &ds_cs);
1730
1731 /* move to hw ctx init? */
1732 tu6_emit_alpha_control_disable(&ds_cs);
1733
1734 tu6_emit_depth_control(&ds_cs, ds_info);
1735 tu6_emit_stencil_control(&ds_cs, ds_info);
1736
1737 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
1738 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
1739 ds_info->back.compareMask);
1740 }
1741 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
1742 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
1743 ds_info->back.writeMask);
1744 }
1745 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
1746 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
1747 ds_info->back.reference);
1748 }
1749
1750 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
1751 }
1752
1753 static void
1754 tu_pipeline_builder_parse_multisample_and_color_blend(
1755 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
1756 {
1757 /* The spec says:
1758 *
1759 * pMultisampleState is a pointer to an instance of the
1760 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
1761 * has rasterization disabled.
1762 *
1763 * Also,
1764 *
1765 * pColorBlendState is a pointer to an instance of the
1766 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
1767 * pipeline has rasterization disabled or if the subpass of the render
1768 * pass the pipeline is created against does not use any color
1769 * attachments.
1770 *
1771 * We leave the relevant registers stale when rasterization is disabled.
1772 */
1773 if (builder->rasterizer_discard)
1774 return;
1775
1776 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
1777 const VkPipelineMultisampleStateCreateInfo *msaa_info =
1778 builder->create_info->pMultisampleState;
1779 const VkPipelineColorBlendStateCreateInfo *blend_info =
1780 builder->use_color_attachments ? builder->create_info->pColorBlendState
1781 : &dummy_blend_info;
1782
1783 struct tu_cs blend_cs;
1784 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_RTS * 3 + 9,
1785 &blend_cs);
1786
1787 uint32_t blend_enable_mask;
1788 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
1789 builder->color_attachment_formats,
1790 &blend_enable_mask);
1791
1792 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
1793 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
1794
1795 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
1796
1797 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
1798 }
1799
1800 static void
1801 tu_pipeline_finish(struct tu_pipeline *pipeline,
1802 struct tu_device *dev,
1803 const VkAllocationCallbacks *alloc)
1804 {
1805 tu_cs_finish(dev, &pipeline->cs);
1806
1807 if (pipeline->program.binary_bo.gem_handle)
1808 tu_bo_finish(dev, &pipeline->program.binary_bo);
1809 }
1810
1811 static VkResult
1812 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
1813 struct tu_pipeline **pipeline)
1814 {
1815 VkResult result = tu_pipeline_builder_create_pipeline(builder, pipeline);
1816 if (result != VK_SUCCESS)
1817 return result;
1818
1819 /* compile and upload shaders */
1820 result = tu_pipeline_builder_compile_shaders(builder);
1821 if (result == VK_SUCCESS)
1822 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
1823 if (result != VK_SUCCESS) {
1824 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
1825 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
1826 *pipeline = VK_NULL_HANDLE;
1827
1828 return result;
1829 }
1830
1831 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
1832 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
1833 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
1834 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
1835 tu_pipeline_builder_parse_viewport(builder, *pipeline);
1836 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
1837 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
1838 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
1839
1840 /* we should have reserved enough space upfront such that the CS never
1841 * grows
1842 */
1843 assert((*pipeline)->cs.bo_count == 1);
1844
1845 return VK_SUCCESS;
1846 }
1847
1848 static void
1849 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
1850 {
1851 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1852 if (!builder->shaders[i])
1853 continue;
1854 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
1855 }
1856 }
1857
1858 static void
1859 tu_pipeline_builder_init_graphics(
1860 struct tu_pipeline_builder *builder,
1861 struct tu_device *dev,
1862 struct tu_pipeline_cache *cache,
1863 const VkGraphicsPipelineCreateInfo *create_info,
1864 const VkAllocationCallbacks *alloc)
1865 {
1866 *builder = (struct tu_pipeline_builder) {
1867 .device = dev,
1868 .cache = cache,
1869 .create_info = create_info,
1870 .alloc = alloc,
1871 };
1872
1873 builder->rasterizer_discard =
1874 create_info->pRasterizationState->rasterizerDiscardEnable;
1875
1876 if (builder->rasterizer_discard) {
1877 builder->samples = VK_SAMPLE_COUNT_1_BIT;
1878 } else {
1879 builder->samples = create_info->pMultisampleState->rasterizationSamples;
1880
1881 const struct tu_render_pass *pass =
1882 tu_render_pass_from_handle(create_info->renderPass);
1883 const struct tu_subpass *subpass =
1884 &pass->subpasses[create_info->subpass];
1885
1886 builder->use_depth_stencil_attachment =
1887 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
1888
1889 assert(subpass->color_count == 0 ||
1890 subpass->color_count == create_info->pColorBlendState->attachmentCount);
1891 builder->color_attachment_count = subpass->color_count;
1892 for (uint32_t i = 0; i < subpass->color_count; i++) {
1893 const uint32_t a = subpass->color_attachments[i].attachment;
1894 if (a == VK_ATTACHMENT_UNUSED)
1895 continue;
1896
1897 builder->color_attachment_formats[i] = pass->attachments[a].format;
1898 builder->use_color_attachments = true;
1899 }
1900 }
1901 }
1902
1903 VkResult
1904 tu_CreateGraphicsPipelines(VkDevice device,
1905 VkPipelineCache pipelineCache,
1906 uint32_t count,
1907 const VkGraphicsPipelineCreateInfo *pCreateInfos,
1908 const VkAllocationCallbacks *pAllocator,
1909 VkPipeline *pPipelines)
1910 {
1911 TU_FROM_HANDLE(tu_device, dev, device);
1912 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
1913 VkResult final_result = VK_SUCCESS;
1914
1915 for (uint32_t i = 0; i < count; i++) {
1916 struct tu_pipeline_builder builder;
1917 tu_pipeline_builder_init_graphics(&builder, dev, cache,
1918 &pCreateInfos[i], pAllocator);
1919
1920 struct tu_pipeline *pipeline = NULL;
1921 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
1922 tu_pipeline_builder_finish(&builder);
1923
1924 if (result == VK_SUCCESS) {
1925 pPipelines[i] = tu_pipeline_to_handle(pipeline);
1926 } else {
1927 pPipelines[i] = NULL;
1928 final_result = result;
1929 }
1930 }
1931
1932 return final_result;
1933 }
1934
1935 static VkResult
1936 tu_compute_pipeline_create(VkDevice _device,
1937 VkPipelineCache _cache,
1938 const VkComputePipelineCreateInfo *pCreateInfo,
1939 const VkAllocationCallbacks *pAllocator,
1940 VkPipeline *pPipeline)
1941 {
1942 return VK_SUCCESS;
1943 }
1944
1945 VkResult
1946 tu_CreateComputePipelines(VkDevice _device,
1947 VkPipelineCache pipelineCache,
1948 uint32_t count,
1949 const VkComputePipelineCreateInfo *pCreateInfos,
1950 const VkAllocationCallbacks *pAllocator,
1951 VkPipeline *pPipelines)
1952 {
1953 VkResult result = VK_SUCCESS;
1954
1955 unsigned i = 0;
1956 for (; i < count; i++) {
1957 VkResult r;
1958 r = tu_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i],
1959 pAllocator, &pPipelines[i]);
1960 if (r != VK_SUCCESS) {
1961 result = r;
1962 }
1963 pPipelines[i] = VK_NULL_HANDLE;
1964 }
1965
1966 return result;
1967 }
1968
1969 void
1970 tu_DestroyPipeline(VkDevice _device,
1971 VkPipeline _pipeline,
1972 const VkAllocationCallbacks *pAllocator)
1973 {
1974 TU_FROM_HANDLE(tu_device, dev, _device);
1975 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
1976
1977 if (!_pipeline)
1978 return;
1979
1980 tu_pipeline_finish(pipeline, dev, pAllocator);
1981 vk_free2(&dev->alloc, pAllocator, pipeline);
1982 }