add experimental order-reversing code (commented out) to DCT
[openpower-isa.git] / src / openpower / decoder / isa / fastdctlee.py
1 #
2 # Fast discrete cosine transform algorithms (Python)
3 #
4 # Copyright (c) 2020 Project Nayuki. (MIT License)
5 # https://www.nayuki.io/page/fast-discrete-cosine-transform-algorithms
6 #
7 # Permission is hereby granted, free of charge, to any person obtaining a copy of
8 # this software and associated documentation files (the "Software"), to deal in
9 # the Software without restriction, including without limitation the rights to
10 # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 # the Software, and to permit persons to whom the Software is furnished to do so,
12 # subject to the following conditions:
13 # - The above copyright notice and this permission notice shall be included in
14 # all copies or substantial portions of the Software.
15 # - The Software is provided "as is", without warranty of any kind, express or
16 # implied, including but not limited to the warranties of merchantability,
17 # fitness for a particular purpose and noninfringement. In no event shall the
18 # authors or copyright holders be liable for any claim, damages or other
19 # liability, whether in an action of contract, tort or otherwise, arising from,
20 # out of or in connection with the Software or the use or other dealings in the
21 # Software.
22 #
23
24 import math
25 from copy import deepcopy
26
27 # bits of the integer 'val'.
28 def reverse_bits(val, width):
29 result = 0
30 for _ in range(width):
31 result = (result << 1) | (val & 1)
32 val >>= 1
33 return result
34
35
36 # DCT type II, unscaled. Algorithm by Byeong Gi Lee, 1984.
37 # See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.3056&rep=rep1&type=pdf#page=34
38 def transform(vector, indent=0):
39 idt = " " * indent
40 n = len(vector)
41 if n == 1:
42 return list(vector)
43 elif n == 0 or n % 2 != 0:
44 raise ValueError()
45 else:
46 half = n // 2
47 alpha = [(vector[i] + vector[-(i + 1)]) for i in range(half)]
48 beta = [(vector[i] - vector[-(i + 1)]) /
49 (math.cos((i + 0.5) * math.pi / n) * 2.0)
50 for i in range(half)]
51 alpha = transform(alpha)
52 beta = transform(beta )
53 result = []
54 for i in range(half - 1):
55 result.append(alpha[i])
56 result.append(beta[i] + beta[i + 1])
57 result.append(alpha[-1])
58 result.append(beta [-1])
59 return result
60
61
62 def transform(vector, indent=0):
63 idt = " " * indent
64 n = len(vector)
65 if n == 1:
66 return list(vector)
67 elif n == 0 or n % 2 != 0:
68 raise ValueError()
69 else:
70 half = n // 2
71 alpha = [0] * half
72 beta = [0] * half
73 print (idt, "xf", vector)
74 print (idt, "coeff", n, "->", end=" ")
75 for i in range(half):
76 t1, t2 = vector[i], vector[n-i-1]
77 k = (math.cos((i + 0.5) * math.pi / n) * 2.0)
78 print (i, n-i-1, "i/n", (i+0.5)/n, ":", k, end= " ")
79 alpha[i] = t1 + t2
80 beta[i] = (t1 - t2) * (1/k)
81 print ()
82 print (idt, "n", n, "alpha", end=" ")
83 for i in range(0, n, 2):
84 print (i, i//2, alpha[i//2], end=" ")
85 print()
86 print (idt, "n", n, "beta", end=" ")
87 for i in range(0, n, 2):
88 print (i, beta[i//2], end=" ")
89 print()
90 alpha = transform(alpha, indent+1)
91 beta = transform(beta , indent+1)
92 result = [0] * n
93 for i in range(half):
94 result[i*2] = alpha[i]
95 result[i*2+1] = beta[i]
96 print(idt, "merge", result)
97 for i in range(half - 1):
98 result[i*2+1] += result[i*2+3]
99 print(idt, "result", result)
100 return result
101
102
103 def transform_itersum(vector, indent=0):
104 idt = " " * indent
105 n = len(vector)
106 if n == 1:
107 return list(vector)
108 elif n == 0 or n % 2 != 0:
109 raise ValueError()
110 else:
111 half = n // 2
112 alpha = [0] * half
113 beta = [0] * half
114 for i in range(half):
115 t1, t2 = vector[i], vector[i+half]
116 alpha[i] = t1
117 beta[i] = t2
118 alpha = transform_itersum(alpha, indent+1)
119 beta = transform_itersum(beta , indent+1)
120 result = [0] * n
121 for i in range(half):
122 result[i*2] = alpha[i]
123 result[i*2+1] = beta[i]
124 print(idt, "iter-merge", result)
125 for i in range(half - 1):
126 result[i*2+1] += result[i*2+3]
127 print(idt, "iter-result", result)
128 return result
129
130
131
132 def transform2(vec, reverse=True):
133
134 vec = deepcopy(vec)
135 # Initialization
136 n = len(vec)
137 print ()
138 print ("transform2", n)
139 levels = n.bit_length() - 1
140
141 # reference (read/write) the in-place data in *reverse-bit-order*
142 if reverse:
143 ri = list(range(n))
144 ri = [ri[reverse_bits(i, levels)] for i in range(n)]
145
146 if reverse:
147 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
148
149 if False:
150 size = n
151 #v = list(range(n))
152 v = deepcopy(ri)
153 while size >= 2:
154 halfsize = size // 2
155 tablestep = n // size
156 ir = list(range(0, n, size))
157 for i in ir:
158 k = 0
159 j = list(range(i, i + halfsize))
160 jr = list(range(i+halfsize, i + size))
161 jr.reverse()
162 print (" xform jr", j, jr)
163 vec2 = deepcopy(v)
164 for ci, (jl, jh) in enumerate(zip(j, jr)):
165 t1, t2 = v[ri[jl]], v[ri[jh]]
166 vec2[ri[jl]] = t1
167 vec2[ri[jl+halfsize]] = t2
168 v = vec2
169 size //= 2
170
171 print ("ri rev", ri)
172 print ("rh rev", v)
173
174 #vec2 = deepcopy(vec)
175 #for i in range(n):
176 # vec[i] = vec2[v[i]]
177
178 ri = v
179
180 size = n
181 while size >= 2:
182 halfsize = size // 2
183 tablestep = n // size
184 ir = list(range(0, n, size))
185 print (" xform", size, ir)
186 for i in ir:
187 k = 0
188 j = list(range(i, i + halfsize))
189 jr = list(range(i+halfsize, i + size))
190 jr.reverse()
191 print (" xform jr", j, jr)
192 vec2 = deepcopy(vec)
193 for ci, (jl, jh) in enumerate(zip(j, jr)):
194 t1, t2 = vec[ri[jl]], vec[ri[jh]]
195 coeff = (math.cos((ci + 0.5) * math.pi / size) * 2.0)
196 vec2[ri[jl]] = t1 + t2
197 vec2[ri[jl+halfsize]] = (t1 - t2) * (1/coeff)
198 print ("coeff", size, i, k, "jl", jl, "jh", jh,
199 "i/n", (k+0.5)/size, coeff, vec[ri[jl]], vec[ri[jh]])
200 k += tablestep
201 vec = vec2
202 size //= 2
203
204 print("transform2 pre-itersum", vec)
205
206 n = len(vec)
207 size = n // 2
208 while size >= 2:
209 halfsize = size // 2
210 ir = list(range(0, halfsize))
211 print ("itersum", halfsize, size, ir)
212 for i in ir:
213 jr = list(range(i+halfsize, i+n-halfsize, size))
214 print ("itersum jr", i+halfsize, i+size, jr)
215 for jh in jr:
216 vec[jh] += vec[jh+size]
217 print (" itersum", size, i, jh, jh+size)
218 size //= 2
219
220 print("transform2 result", vec)
221
222 return vec
223
224
225 # DCT type III, unscaled. Algorithm by Byeong Gi Lee, 1984.
226 # See: https://www.nayuki.io/res/fast-discrete-cosine-transform-algorithms/lee-new-algo-discrete-cosine-transform.pdf
227 def inverse_transform(vector, root=True, indent=0):
228 idt = " " * indent
229 if root:
230 vector = list(vector)
231 vector[0] /= 2
232 n = len(vector)
233 if n == 1:
234 return vector, [0]
235 elif n == 0 or n % 2 != 0:
236 raise ValueError()
237 else:
238 half = n // 2
239 alpha = [vector[0]]
240 beta = [vector[1]]
241 for i in range(2, n, 2):
242 alpha.append(vector[i])
243 beta.append(vector[i - 1] + vector[i + 1])
244 print (idt, "n", n, "alpha 0", end=" ")
245 for i in range(2, n, 2):
246 print (i, end=" ")
247 print ("beta 1", end=" ")
248 for i in range(2, n, 2):
249 print ("%d+%d" % (i-1, i+1), end=" ")
250 print()
251 inverse_transform(alpha, False, indent+1)
252 inverse_transform(beta , False, indent+1)
253 for i in range(half):
254 x = alpha[i]
255 y = beta[i] / (math.cos((i + 0.5) * math.pi / n) * 2)
256 vector[i] = x + y
257 vector[-(i + 1)] = x - y
258 print (idt, " v[%d] = alpha[%d]+beta[%d]" % (i, i, i))
259 print (idt, " v[%d] = alpha[%d]-beta[%d]" % (n-i-1, i, i))
260 return vector
261
262
263 def inverse_transform2(vector, root=True):
264 n = len(vector)
265 if root:
266 vector = list(vector)
267 if n == 1:
268 return vector
269 elif n == 0 or n % 2 != 0:
270 raise ValueError()
271 else:
272 half = n // 2
273 alpha = [0]
274 beta = [1]
275 for i in range(2, n, 2):
276 alpha.append(i)
277 beta.append(("add", i - 1, i + 1))
278 inverse_transform2(alpha, False)
279 inverse_transform2(beta , False)
280 for i in range(half):
281 x = alpha[i]
282 y = ("cos", beta[i], i)
283 vector[i] = ("add", x, y)
284 vector[-(i + 1)] = ("sub", x, y)
285 return vector
286
287
288 def failllll_transform2(block):
289 N = len(block)
290 cos = [0.0] * (N>>1)
291
292 front = deepcopy(block)
293 back = deepcopy(block)
294
295 step = 1
296 j = N *2
297 half_N = N
298 prev_half_N = N
299
300 while j > 1: #// Cycle of iterations Input Butterfly
301 half_N = half_N >> 1
302 current_PI_half_By_N = (math.pi / 2) / prev_half_N
303 current_PI_By_N = 0.0
304 step_Phase = current_PI_half_By_N * 2.0
305 print ("n", N, "cos", end=" ")
306 for i in range(half_N):
307 #Precompute Cosine's coefficients
308 a = current_PI_By_N + current_PI_half_By_N
309 print (i, a / (math.pi), math.cos(a) * 2, end=" ")
310 cos[i] = 0.5 / math.cos(a)
311 current_PI_By_N += step_Phase
312 print()
313 k = 0
314 for x in range(step):
315 for i in range(half_N):
316 shift = k + prev_half_N - i - 1
317 back[k + i] = front[k + i] + front[shift]
318 back[k + half_N + i] = (front[k + i] - front[shift]) * cos[i]
319 print ("xf coeff", N, j, i, x, "k/kh", k+i, k+half_N+i)
320 k += prev_half_N
321 temp = front
322 front = back
323 back = temp
324 j = j >> 1
325 step = step << 1
326 prev_half_N = half_N
327
328 half_N = 2
329 prev_half_N = 2
330 j = 2
331
332 print("xform intermediate", front)
333
334 while j < N: # Cycle of Out ButterFly
335 k = 0
336 print ("out", j, N, step, half_N)
337 for x in range(step):
338 for i in range(half_N - 1):
339 back[k + (i << 1)] = front[k + i]
340 back[k + (i << 1) + 1] = (front[k + half_N + i] +
341 front[k + half_N + i + 1])
342 print (" out", j, x, i, "k", k,
343 "k+i<<1", k+(i<<1), "hh1", k+half_N+i)
344 back[k + ((half_N - 1) << 1)] = front[k + half_N - 1]
345 back[k + (half_N << 1) - 1] = front[k + (half_N << 1) - 1]
346 k += prev_half_N
347
348 temp = front
349 front = back
350 back = temp
351 j = j << 1
352 step = step >> 1
353 half_N = prev_half_N
354 prev_half_N = prev_half_N << 1
355
356 for i in range(N):
357 block[i] = front[i] #// Unload DCT coefficients
358 dN = 2.0
359 #block[0] = block[0] / dN #// Compute DC.
360
361 print("transform2 result", block)
362 return block
363
364
365 def itersum_explore(vector, indent=0):
366 idt = " " * indent
367 n = len(vector)
368 if n == 1:
369 return list(vector)
370 elif n == 0 or n % 2 != 0:
371 raise ValueError()
372 else:
373 half = n // 2
374 alpha = [0] * half
375 beta = [0] * half
376 for i in range(half):
377 t1, t2 = vector[i], vector[i+half]
378 alpha[i] = t1
379 beta[i] = t2
380 alpha = itersum_explore(alpha, indent+1)
381 beta = itersum_explore(beta , indent+1)
382 result = [0] * n
383 for i in range(half):
384 result[i*2] = alpha[i]
385 result[i*2+1] = beta[i]
386 print(idt, "iter-merge", result)
387 for i in range(half - 1):
388 result[i*2+1] = ("add", result[i*2+1], result[i*2+3])
389 print(idt, "iter-result", result)
390 return result
391
392
393 def itersum_explore2(vec, indent=0):
394 n = len(vec)
395 size = n // 2
396 while size >= 2:
397 halfsize = size // 2
398 ir = list(range(0, halfsize))
399 #ir.reverse()
400 print ("itersum", halfsize, size, ir)
401 for i in ir:
402 jr = list(range(i+halfsize, i+n-halfsize, size))
403 print ("itersum jr", i+halfsize, i+size, jr)
404 for jh in jr:
405 vec[jh] = ("add", vec[jh], vec[jh+size])
406 print (" itersum", size, i, jh, jh+size)
407 size //= 2
408
409 #if reverse:
410 # vec = [vec[reverse_bits(i, levels)] for i in range(n)]
411
412 return vec
413
414 if __name__ == '__main__':
415 n = 16
416 vec = list(range(n))
417 levels = n.bit_length() - 1
418 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
419 ops = itersum_explore(vec)
420 #ops = [ops[reverse_bits(i, levels)] for i in range(n)]
421 for i, x in enumerate(ops):
422 print (i, x)
423
424 n = 16
425 vec = list(range(n))
426 levels = n.bit_length() - 1
427 #vec = [vec[reverse_bits(i, levels)] for i in range(n)]
428 ops = itersum_explore2(vec)
429 for i, x in enumerate(ops):
430 print (i, x)