reverse bit-order of in-place outer DCT butterfly
[openpower-isa.git] / src / openpower / decoder / isa / fastdctlee.py
1 #
2 # Fast discrete cosine transform algorithms (Python)
3 #
4 # Copyright (c) 2020 Project Nayuki. (MIT License)
5 # https://www.nayuki.io/page/fast-discrete-cosine-transform-algorithms
6 #
7 # Permission is hereby granted, free of charge, to any person obtaining a copy of
8 # this software and associated documentation files (the "Software"), to deal in
9 # the Software without restriction, including without limitation the rights to
10 # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 # the Software, and to permit persons to whom the Software is furnished to do so,
12 # subject to the following conditions:
13 # - The above copyright notice and this permission notice shall be included in
14 # all copies or substantial portions of the Software.
15 # - The Software is provided "as is", without warranty of any kind, express or
16 # implied, including but not limited to the warranties of merchantability,
17 # fitness for a particular purpose and noninfringement. In no event shall the
18 # authors or copyright holders be liable for any claim, damages or other
19 # liability, whether in an action of contract, tort or otherwise, arising from,
20 # out of or in connection with the Software or the use or other dealings in the
21 # Software.
22 #
23
24 import math
25 from copy import deepcopy
26
27 # bits of the integer 'val'.
28 def reverse_bits(val, width):
29 result = 0
30 for _ in range(width):
31 result = (result << 1) | (val & 1)
32 val >>= 1
33 return result
34
35
36 # DCT type II, unscaled. Algorithm by Byeong Gi Lee, 1984.
37 # See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.3056&rep=rep1&type=pdf#page=34
38 def transform(vector, indent=0):
39 idt = " " * indent
40 n = len(vector)
41 if n == 1:
42 return list(vector)
43 elif n == 0 or n % 2 != 0:
44 raise ValueError()
45 else:
46 half = n // 2
47 alpha = [(vector[i] + vector[-(i + 1)]) for i in range(half)]
48 beta = [(vector[i] - vector[-(i + 1)]) /
49 (math.cos((i + 0.5) * math.pi / n) * 2.0)
50 for i in range(half)]
51 alpha = transform(alpha)
52 beta = transform(beta )
53 result = []
54 for i in range(half - 1):
55 result.append(alpha[i])
56 result.append(beta[i] + beta[i + 1])
57 result.append(alpha[-1])
58 result.append(beta [-1])
59 return result
60
61
62 def transform(vector, indent=0):
63 idt = " " * indent
64 n = len(vector)
65 if n == 1:
66 return list(vector)
67 elif n == 0 or n % 2 != 0:
68 raise ValueError()
69 else:
70 half = n // 2
71 alpha = [0] * half
72 beta = [0] * half
73 print (idt, "xf", vector)
74 print (idt, "coeff", n, "->", end=" ")
75 for i in range(half):
76 t1, t2 = vector[i], vector[n-i-1]
77 k = (math.cos((i + 0.5) * math.pi / n) * 2.0)
78 print (i, n-i-1, "i/n", (i+0.5)/n, ":", k, end= " ")
79 alpha[i] = t1 + t2
80 beta[i] = (t1 - t2) * (1/k)
81 print ()
82 print (idt, "n", n, "alpha", end=" ")
83 for i in range(0, n, 2):
84 print (i, i//2, alpha[i//2], end=" ")
85 print()
86 print (idt, "n", n, "beta", end=" ")
87 for i in range(0, n, 2):
88 print (i, beta[i//2], end=" ")
89 print()
90 alpha = transform(alpha, indent+1)
91 beta = transform(beta , indent+1)
92 result = [0] * n
93 for i in range(half):
94 result[i*2] = alpha[i]
95 result[i*2+1] = beta[i]
96 print(idt, "merge", result)
97 for i in range(half - 1):
98 result[i*2+1] += result[i*2+3]
99 print(idt, "result", result)
100 return result
101
102
103 def transform_itersum(vector, indent=0):
104 idt = " " * indent
105 n = len(vector)
106 if n == 1:
107 return list(vector)
108 elif n == 0 or n % 2 != 0:
109 raise ValueError()
110 else:
111 half = n // 2
112 alpha = [0] * half
113 beta = [0] * half
114 for i in range(half):
115 t1, t2 = vector[i], vector[i+half]
116 alpha[i] = t1
117 beta[i] = t2
118 alpha = transform_itersum(alpha, indent+1)
119 beta = transform_itersum(beta , indent+1)
120 result = [0] * n
121 for i in range(half):
122 result[i*2] = alpha[i]
123 result[i*2+1] = beta[i]
124 print(idt, "iter-merge", result)
125 for i in range(half - 1):
126 result[i*2+1] += result[i*2+3]
127 print(idt, "iter-result", result)
128 return result
129
130
131
132 def transform2(vec, reverse=True):
133
134 vec = deepcopy(vec)
135 # Initialization
136 n = len(vec)
137 print ("transform2", n)
138 levels = n.bit_length() - 1
139
140 # reference (read/write) the in-place data in *reverse-bit-order*
141 if reverse:
142 ri = range(n)
143 ri = [ri[reverse_bits(i, levels)] for i in range(n)]
144
145 size = n
146 while size >= 2:
147 halfsize = size // 2
148 tablestep = n // size
149 ir = list(range(0, n, size))
150 print (" xform", size, ir)
151 for i in ir:
152 k = 0
153 j = list(range(i, i + halfsize))
154 jr = list(range(i+halfsize, i + size))
155 jr.reverse()
156 print (" xform jr", j, jr)
157 vec2 = deepcopy(vec)
158 for ci, (jl, jh) in enumerate(zip(j, jr)):
159 t1, t2 = vec[jl], vec[jh]
160 coeff = (math.cos((ci + 0.5) * math.pi / size) * 2.0)
161 vec2[jl] = t1 + t2
162 vec2[jl+halfsize] = (t1 - t2) * (1/coeff)
163 print ("coeff", size, i, k, "jl", jl, "jh", jh,
164 "i/n", (k+0.5)/size, coeff, vec[jl], vec[jh])
165 k += tablestep
166 vec = vec2
167 size //= 2
168
169 print("transform2 pre-itersum", vec)
170 # Copy with bit-reversed permutation
171
172 print("transform2 intermediate", vec)
173
174 n = len(vec)
175 size = n // 2
176 while size >= 2:
177 halfsize = size // 2
178 ir = list(range(0, halfsize))
179 #ir.reverse()
180 print ("itersum", halfsize, size, ir)
181 for i in ir:
182 jr = list(range(i+halfsize, i+n-halfsize, size))
183 print ("itersum jr", i+halfsize, i+size, jr)
184 for jh in jr:
185 vec[ri[jh]] += vec[ri[jh+size]]
186 print (" itersum", size, i, jh, jh+size)
187 size //= 2
188
189 if reverse:
190 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
191
192 print("transform2 result", vec)
193
194 return vec
195
196
197 # DCT type III, unscaled. Algorithm by Byeong Gi Lee, 1984.
198 # See: https://www.nayuki.io/res/fast-discrete-cosine-transform-algorithms/lee-new-algo-discrete-cosine-transform.pdf
199 def inverse_transform(vector, root=True, indent=0):
200 idt = " " * indent
201 if root:
202 vector = list(vector)
203 vector[0] /= 2
204 n = len(vector)
205 if n == 1:
206 return vector, [0]
207 elif n == 0 or n % 2 != 0:
208 raise ValueError()
209 else:
210 half = n // 2
211 alpha = [vector[0]]
212 beta = [vector[1]]
213 for i in range(2, n, 2):
214 alpha.append(vector[i])
215 beta.append(vector[i - 1] + vector[i + 1])
216 print (idt, "n", n, "alpha 0", end=" ")
217 for i in range(2, n, 2):
218 print (i, end=" ")
219 print ("beta 1", end=" ")
220 for i in range(2, n, 2):
221 print ("%d+%d" % (i-1, i+1), end=" ")
222 print()
223 inverse_transform(alpha, False, indent+1)
224 inverse_transform(beta , False, indent+1)
225 for i in range(half):
226 x = alpha[i]
227 y = beta[i] / (math.cos((i + 0.5) * math.pi / n) * 2)
228 vector[i] = x + y
229 vector[-(i + 1)] = x - y
230 print (idt, " v[%d] = alpha[%d]+beta[%d]" % (i, i, i))
231 print (idt, " v[%d] = alpha[%d]-beta[%d]" % (n-i-1, i, i))
232 return vector
233
234
235 def inverse_transform2(vector, root=True):
236 n = len(vector)
237 if root:
238 vector = list(vector)
239 if n == 1:
240 return vector
241 elif n == 0 or n % 2 != 0:
242 raise ValueError()
243 else:
244 half = n // 2
245 alpha = [0]
246 beta = [1]
247 for i in range(2, n, 2):
248 alpha.append(i)
249 beta.append(("add", i - 1, i + 1))
250 inverse_transform2(alpha, False)
251 inverse_transform2(beta , False)
252 for i in range(half):
253 x = alpha[i]
254 y = ("cos", beta[i], i)
255 vector[i] = ("add", x, y)
256 vector[-(i + 1)] = ("sub", x, y)
257 return vector
258
259
260 def failllll_transform2(block):
261 N = len(block)
262 cos = [0.0] * (N>>1)
263
264 front = deepcopy(block)
265 back = deepcopy(block)
266
267 step = 1
268 j = N *2
269 half_N = N
270 prev_half_N = N
271
272 while j > 1: #// Cycle of iterations Input Butterfly
273 half_N = half_N >> 1
274 current_PI_half_By_N = (math.pi / 2) / prev_half_N
275 current_PI_By_N = 0.0
276 step_Phase = current_PI_half_By_N * 2.0
277 print ("n", N, "cos", end=" ")
278 for i in range(half_N):
279 #Precompute Cosine's coefficients
280 a = current_PI_By_N + current_PI_half_By_N
281 print (i, a / (math.pi), math.cos(a) * 2, end=" ")
282 cos[i] = 0.5 / math.cos(a)
283 current_PI_By_N += step_Phase
284 print()
285 k = 0
286 for x in range(step):
287 for i in range(half_N):
288 shift = k + prev_half_N - i - 1
289 back[k + i] = front[k + i] + front[shift]
290 back[k + half_N + i] = (front[k + i] - front[shift]) * cos[i]
291 print ("xf coeff", N, j, i, x, "k/kh", k+i, k+half_N+i)
292 k += prev_half_N
293 temp = front
294 front = back
295 back = temp
296 j = j >> 1
297 step = step << 1
298 prev_half_N = half_N
299
300 half_N = 2
301 prev_half_N = 2
302 j = 2
303
304 print("xform intermediate", front)
305
306 while j < N: # Cycle of Out ButterFly
307 k = 0
308 print ("out", j, N, step, half_N)
309 for x in range(step):
310 for i in range(half_N - 1):
311 back[k + (i << 1)] = front[k + i]
312 back[k + (i << 1) + 1] = (front[k + half_N + i] +
313 front[k + half_N + i + 1])
314 print (" out", j, x, i, "k", k,
315 "k+i<<1", k+(i<<1), "hh1", k+half_N+i)
316 back[k + ((half_N - 1) << 1)] = front[k + half_N - 1]
317 back[k + (half_N << 1) - 1] = front[k + (half_N << 1) - 1]
318 k += prev_half_N
319
320 temp = front
321 front = back
322 back = temp
323 j = j << 1
324 step = step >> 1
325 half_N = prev_half_N
326 prev_half_N = prev_half_N << 1
327
328 for i in range(N):
329 block[i] = front[i] #// Unload DCT coefficients
330 dN = 2.0
331 #block[0] = block[0] / dN #// Compute DC.
332
333 print("transform2 result", block)
334 return block
335
336
337 def itersum_explore(vector, indent=0):
338 idt = " " * indent
339 n = len(vector)
340 if n == 1:
341 return list(vector)
342 elif n == 0 or n % 2 != 0:
343 raise ValueError()
344 else:
345 half = n // 2
346 alpha = [0] * half
347 beta = [0] * half
348 for i in range(half):
349 t1, t2 = vector[i], vector[i+half]
350 alpha[i] = t1
351 beta[i] = t2
352 alpha = itersum_explore(alpha, indent+1)
353 beta = itersum_explore(beta , indent+1)
354 result = [0] * n
355 for i in range(half):
356 result[i*2] = alpha[i]
357 result[i*2+1] = beta[i]
358 print(idt, "iter-merge", result)
359 for i in range(half - 1):
360 result[i*2+1] = ("add", result[i*2+1], result[i*2+3])
361 print(idt, "iter-result", result)
362 return result
363
364
365 def itersum_explore2(vec, indent=0):
366 n = len(vec)
367 size = n // 2
368 while size >= 2:
369 halfsize = size // 2
370 ir = list(range(0, halfsize))
371 #ir.reverse()
372 print ("itersum", halfsize, size, ir)
373 for i in ir:
374 jr = list(range(i+halfsize, i+n-halfsize, size))
375 print ("itersum jr", i+halfsize, i+size, jr)
376 for jh in jr:
377 vec[jh] = ("add", vec[jh], vec[jh+size])
378 print (" itersum", size, i, jh, jh+size)
379 size //= 2
380
381 #if reverse:
382 # vec = [vec[reverse_bits(i, levels)] for i in range(n)]
383
384 return vec
385
386 if __name__ == '__main__':
387 n = 16
388 vec = list(range(n))
389 levels = n.bit_length() - 1
390 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
391 ops = itersum_explore(vec)
392 #ops = [ops[reverse_bits(i, levels)] for i in range(n)]
393 for i, x in enumerate(ops):
394 print (i, x)
395
396 n = 16
397 vec = list(range(n))
398 levels = n.bit_length() - 1
399 #vec = [vec[reverse_bits(i, levels)] for i in range(n)]
400 ops = itersum_explore2(vec)
401 for i, x in enumerate(ops):
402 print (i, x)