remove unneeded code
[openpower-isa.git] / src / openpower / decoder / isa / fastdctlee.py
1 #
2 # Fast discrete cosine transform algorithms (Python)
3 #
4 # Copyright (c) 2020 Project Nayuki. (MIT License)
5 # https://www.nayuki.io/page/fast-discrete-cosine-transform-algorithms
6 #
7 # Permission is hereby granted, free of charge, to any person obtaining a copy of
8 # this software and associated documentation files (the "Software"), to deal in
9 # the Software without restriction, including without limitation the rights to
10 # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 # the Software, and to permit persons to whom the Software is furnished to do so,
12 # subject to the following conditions:
13 # - The above copyright notice and this permission notice shall be included in
14 # all copies or substantial portions of the Software.
15 # - The Software is provided "as is", without warranty of any kind, express or
16 # implied, including but not limited to the warranties of merchantability,
17 # fitness for a particular purpose and noninfringement. In no event shall the
18 # authors or copyright holders be liable for any claim, damages or other
19 # liability, whether in an action of contract, tort or otherwise, arising from,
20 # out of or in connection with the Software or the use or other dealings in the
21 # Software.
22 #
23
24 import math
25 from copy import deepcopy
26
27 # bits of the integer 'val'.
28 def reverse_bits(val, width):
29 result = 0
30 for _ in range(width):
31 result = (result << 1) | (val & 1)
32 val >>= 1
33 return result
34
35
36 # DCT type II, unscaled. Algorithm by Byeong Gi Lee, 1984.
37 # See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.3056&rep=rep1&type=pdf#page=34
38 def transform(vector, indent=0):
39 idt = " " * indent
40 n = len(vector)
41 if n == 1:
42 return list(vector)
43 elif n == 0 or n % 2 != 0:
44 raise ValueError()
45 else:
46 half = n // 2
47 alpha = [(vector[i] + vector[-(i + 1)]) for i in range(half)]
48 beta = [(vector[i] - vector[-(i + 1)]) /
49 (math.cos((i + 0.5) * math.pi / n) * 2.0)
50 for i in range(half)]
51 alpha = transform(alpha)
52 beta = transform(beta )
53 result = []
54 for i in range(half - 1):
55 result.append(alpha[i])
56 result.append(beta[i] + beta[i + 1])
57 result.append(alpha[-1])
58 result.append(beta [-1])
59 return result
60
61
62 def transform(vector, indent=0):
63 idt = " " * indent
64 n = len(vector)
65 if n == 1:
66 return list(vector)
67 elif n == 0 or n % 2 != 0:
68 raise ValueError()
69 else:
70 half = n // 2
71 alpha = [0] * half
72 beta = [0] * half
73 print (idt, "xf", vector)
74 print (idt, "coeff", n, "->", end=" ")
75 for i in range(half):
76 t1, t2 = vector[i], vector[n-i-1]
77 k = (math.cos((i + 0.5) * math.pi / n) * 2.0)
78 print (i, n-i-1, "i/n", (i+0.5)/n, ":", k, end= " ")
79 alpha[i] = t1 + t2
80 beta[i] = (t1 - t2) * (1/k)
81 print ()
82 print (idt, "n", n, "alpha", end=" ")
83 for i in range(0, n, 2):
84 print (i, i//2, alpha[i//2], end=" ")
85 print()
86 print (idt, "n", n, "beta", end=" ")
87 for i in range(0, n, 2):
88 print (i, beta[i//2], end=" ")
89 print()
90 alpha = transform(alpha, indent+1)
91 beta = transform(beta , indent+1)
92 result = [0] * n
93 for i in range(half):
94 result[i*2] = alpha[i]
95 result[i*2+1] = beta[i]
96 print(idt, "merge", result)
97 for i in range(half - 1):
98 result[i*2+1] += result[i*2+3]
99 print(idt, "result", result)
100 return result
101
102
103 def transform_itersum(vector, indent=0):
104 idt = " " * indent
105 n = len(vector)
106 if n == 1:
107 return list(vector)
108 elif n == 0 or n % 2 != 0:
109 raise ValueError()
110 else:
111 half = n // 2
112 alpha = [0] * half
113 beta = [0] * half
114 for i in range(half):
115 t1, t2 = vector[i], vector[i+half]
116 alpha[i] = t1
117 beta[i] = t2
118 alpha = transform_itersum(alpha, indent+1)
119 beta = transform_itersum(beta , indent+1)
120 result = [0] * n
121 for i in range(half):
122 result[i*2] = alpha[i]
123 result[i*2+1] = beta[i]
124 print(idt, "iter-merge", result)
125 for i in range(half - 1):
126 result[i*2+1] += result[i*2+3]
127 print(idt, "iter-result", result)
128 return result
129
130
131
132 def transform2(vec):
133
134 vec = deepcopy(vec)
135 # Initialization
136 n = len(vec)
137 print ()
138 print ("transform2", n)
139 levels = n.bit_length() - 1
140
141 # reference (read/write) the in-place data in *reverse-bit-order*
142 ri = list(range(n))
143 ri = [ri[reverse_bits(i, levels)] for i in range(n)]
144
145 # and pretend we LDed the data in bit-reversed order as well
146 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
147
148 size = n
149 while size >= 2:
150 halfsize = size // 2
151 tablestep = n // size
152 ir = list(range(0, n, size))
153 print (" xform", size, ir)
154 for i in ir:
155 k = 0
156 j = list(range(i, i + halfsize))
157 jr = list(range(i+halfsize, i + size))
158 jr.reverse()
159 print (" xform jr", j, jr)
160 for ci, (jl, jh) in enumerate(zip(j, jr)):
161 t1, t2 = vec[ri[jl]], vec[ri[jh]]
162 coeff = (math.cos((ci + 0.5) * math.pi / size) * 2.0)
163 # normally DCT would use jl+halfsize not jh, here.
164 # to be able to work in-place, the idea is to perform a
165 # swap afterwards. however actually we swap the *indices*
166 vec[ri[jl]] = t1 + t2
167 vec[ri[jh]] = (t1 - t2) * (1/coeff)
168 print ("coeff", size, i, k, "jl", jl, "jh", jh,
169 "i/n", (k+0.5)/size, coeff, vec[ri[jl]], vec[ri[jh]])
170 k += tablestep
171 # instead of using jl+halfsize, perform a swap here.
172 # use half of j/jr because actually jl+halfsize = reverse(j)
173 # actually: swap the *indices*... not the actual data.
174 # incredibly... bizarrely... this works *without* having
175 # to do anything else.
176 if len(j) > 1:
177 hz2 = halfsize // 2
178 for ci, (jl, jh) in enumerate(zip(j[:hz2], jr[:hz2])):
179 tmp = ri[jl+halfsize]
180 ri[jl+halfsize] = ri[jh]
181 ri[jh] = tmp
182 print (" swap", size, i, ri[jl+halfsize], ri[jh])
183 size //= 2
184
185 print("post-swapped", ri)
186 print("transform2 pre-itersum", vec)
187
188 n = len(vec)
189 size = n // 2
190 while size >= 2:
191 halfsize = size // 2
192 ir = list(range(0, halfsize))
193 print ("itersum", halfsize, size, ir)
194 for i in ir:
195 jr = list(range(i+halfsize, i+n-halfsize, size))
196 print ("itersum jr", i+halfsize, i+size, jr)
197 for jh in jr:
198 vec[jh] += vec[jh+size]
199 print (" itersum", size, i, jh, jh+size)
200 size //= 2
201
202 print("transform2 result", vec)
203
204 return vec
205
206
207 # DCT type III, unscaled. Algorithm by Byeong Gi Lee, 1984.
208 # See: https://www.nayuki.io/res/fast-discrete-cosine-transform-algorithms/lee-new-algo-discrete-cosine-transform.pdf
209 def inverse_transform(vector, root=True, indent=0):
210 idt = " " * indent
211 if root:
212 vector = list(vector)
213 vector[0] /= 2
214 n = len(vector)
215 if n == 1:
216 return vector, [0]
217 elif n == 0 or n % 2 != 0:
218 raise ValueError()
219 else:
220 half = n // 2
221 alpha = [vector[0]]
222 beta = [vector[1]]
223 for i in range(2, n, 2):
224 alpha.append(vector[i])
225 beta.append(vector[i - 1] + vector[i + 1])
226 print (idt, "n", n, "alpha 0", end=" ")
227 for i in range(2, n, 2):
228 print (i, end=" ")
229 print ("beta 1", end=" ")
230 for i in range(2, n, 2):
231 print ("%d+%d" % (i-1, i+1), end=" ")
232 print()
233 inverse_transform(alpha, False, indent+1)
234 inverse_transform(beta , False, indent+1)
235 for i in range(half):
236 x = alpha[i]
237 y = beta[i] / (math.cos((i + 0.5) * math.pi / n) * 2)
238 vector[i] = x + y
239 vector[-(i + 1)] = x - y
240 print (idt, " v[%d] = alpha[%d]+beta[%d]" % (i, i, i))
241 print (idt, " v[%d] = alpha[%d]-beta[%d]" % (n-i-1, i, i))
242 return vector
243
244
245 def inverse_transform2(vector, root=True):
246 n = len(vector)
247 if root:
248 vector = list(vector)
249 if n == 1:
250 return vector
251 elif n == 0 or n % 2 != 0:
252 raise ValueError()
253 else:
254 half = n // 2
255 alpha = [0]
256 beta = [1]
257 for i in range(2, n, 2):
258 alpha.append(i)
259 beta.append(("add", i - 1, i + 1))
260 inverse_transform2(alpha, False)
261 inverse_transform2(beta , False)
262 for i in range(half):
263 x = alpha[i]
264 y = ("cos", beta[i], i)
265 vector[i] = ("add", x, y)
266 vector[-(i + 1)] = ("sub", x, y)
267 return vector
268
269
270 def failllll_transform2(block):
271 N = len(block)
272 cos = [0.0] * (N>>1)
273
274 front = deepcopy(block)
275 back = deepcopy(block)
276
277 step = 1
278 j = N *2
279 half_N = N
280 prev_half_N = N
281
282 while j > 1: #// Cycle of iterations Input Butterfly
283 half_N = half_N >> 1
284 current_PI_half_By_N = (math.pi / 2) / prev_half_N
285 current_PI_By_N = 0.0
286 step_Phase = current_PI_half_By_N * 2.0
287 print ("n", N, "cos", end=" ")
288 for i in range(half_N):
289 #Precompute Cosine's coefficients
290 a = current_PI_By_N + current_PI_half_By_N
291 print (i, a / (math.pi), math.cos(a) * 2, end=" ")
292 cos[i] = 0.5 / math.cos(a)
293 current_PI_By_N += step_Phase
294 print()
295 k = 0
296 for x in range(step):
297 for i in range(half_N):
298 shift = k + prev_half_N - i - 1
299 back[k + i] = front[k + i] + front[shift]
300 back[k + half_N + i] = (front[k + i] - front[shift]) * cos[i]
301 print ("xf coeff", N, j, i, x, "k/kh", k+i, k+half_N+i)
302 k += prev_half_N
303 temp = front
304 front = back
305 back = temp
306 j = j >> 1
307 step = step << 1
308 prev_half_N = half_N
309
310 half_N = 2
311 prev_half_N = 2
312 j = 2
313
314 print("xform intermediate", front)
315
316 while j < N: # Cycle of Out ButterFly
317 k = 0
318 print ("out", j, N, step, half_N)
319 for x in range(step):
320 for i in range(half_N - 1):
321 back[k + (i << 1)] = front[k + i]
322 back[k + (i << 1) + 1] = (front[k + half_N + i] +
323 front[k + half_N + i + 1])
324 print (" out", j, x, i, "k", k,
325 "k+i<<1", k+(i<<1), "hh1", k+half_N+i)
326 back[k + ((half_N - 1) << 1)] = front[k + half_N - 1]
327 back[k + (half_N << 1) - 1] = front[k + (half_N << 1) - 1]
328 k += prev_half_N
329
330 temp = front
331 front = back
332 back = temp
333 j = j << 1
334 step = step >> 1
335 half_N = prev_half_N
336 prev_half_N = prev_half_N << 1
337
338 for i in range(N):
339 block[i] = front[i] #// Unload DCT coefficients
340 dN = 2.0
341 #block[0] = block[0] / dN #// Compute DC.
342
343 print("transform2 result", block)
344 return block
345
346
347 def itersum_explore(vector, indent=0):
348 idt = " " * indent
349 n = len(vector)
350 if n == 1:
351 return list(vector)
352 elif n == 0 or n % 2 != 0:
353 raise ValueError()
354 else:
355 half = n // 2
356 alpha = [0] * half
357 beta = [0] * half
358 for i in range(half):
359 t1, t2 = vector[i], vector[i+half]
360 alpha[i] = t1
361 beta[i] = t2
362 alpha = itersum_explore(alpha, indent+1)
363 beta = itersum_explore(beta , indent+1)
364 result = [0] * n
365 for i in range(half):
366 result[i*2] = alpha[i]
367 result[i*2+1] = beta[i]
368 print(idt, "iter-merge", result)
369 for i in range(half - 1):
370 result[i*2+1] = ("add", result[i*2+1], result[i*2+3])
371 print(idt, "iter-result", result)
372 return result
373
374
375 def itersum_explore2(vec, indent=0):
376 n = len(vec)
377 size = n // 2
378 while size >= 2:
379 halfsize = size // 2
380 ir = list(range(0, halfsize))
381 #ir.reverse()
382 print ("itersum", halfsize, size, ir)
383 for i in ir:
384 jr = list(range(i+halfsize, i+n-halfsize, size))
385 print ("itersum jr", i+halfsize, i+size, jr)
386 for jh in jr:
387 vec[jh] = ("add", vec[jh], vec[jh+size])
388 print (" itersum", size, i, jh, jh+size)
389 size //= 2
390
391 #if reverse:
392 # vec = [vec[reverse_bits(i, levels)] for i in range(n)]
393
394 return vec
395
396 if __name__ == '__main__':
397 n = 16
398 vec = list(range(n))
399 levels = n.bit_length() - 1
400 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
401 ops = itersum_explore(vec)
402 #ops = [ops[reverse_bits(i, levels)] for i in range(n)]
403 for i, x in enumerate(ops):
404 print (i, x)
405
406 n = 16
407 vec = list(range(n))
408 levels = n.bit_length() - 1
409 #vec = [vec[reverse_bits(i, levels)] for i in range(n)]
410 ops = itersum_explore2(vec)
411 for i, x in enumerate(ops):
412 print (i, x)