move bit-reversing to before MULs in DCT
[openpower-isa.git] / src / openpower / decoder / isa / fastdctlee.py
1 #
2 # Fast discrete cosine transform algorithms (Python)
3 #
4 # Copyright (c) 2020 Project Nayuki. (MIT License)
5 # https://www.nayuki.io/page/fast-discrete-cosine-transform-algorithms
6 #
7 # Permission is hereby granted, free of charge, to any person obtaining a copy of
8 # this software and associated documentation files (the "Software"), to deal in
9 # the Software without restriction, including without limitation the rights to
10 # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 # the Software, and to permit persons to whom the Software is furnished to do so,
12 # subject to the following conditions:
13 # - The above copyright notice and this permission notice shall be included in
14 # all copies or substantial portions of the Software.
15 # - The Software is provided "as is", without warranty of any kind, express or
16 # implied, including but not limited to the warranties of merchantability,
17 # fitness for a particular purpose and noninfringement. In no event shall the
18 # authors or copyright holders be liable for any claim, damages or other
19 # liability, whether in an action of contract, tort or otherwise, arising from,
20 # out of or in connection with the Software or the use or other dealings in the
21 # Software.
22 #
23
24 import math
25 from copy import deepcopy
26
27 # bits of the integer 'val'.
28 def reverse_bits(val, width):
29 result = 0
30 for _ in range(width):
31 result = (result << 1) | (val & 1)
32 val >>= 1
33 return result
34
35
36 # DCT type II, unscaled. Algorithm by Byeong Gi Lee, 1984.
37 # See: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.3056&rep=rep1&type=pdf#page=34
38 def transform(vector, indent=0):
39 idt = " " * indent
40 n = len(vector)
41 if n == 1:
42 return list(vector)
43 elif n == 0 or n % 2 != 0:
44 raise ValueError()
45 else:
46 half = n // 2
47 alpha = [(vector[i] + vector[-(i + 1)]) for i in range(half)]
48 beta = [(vector[i] - vector[-(i + 1)]) /
49 (math.cos((i + 0.5) * math.pi / n) * 2.0)
50 for i in range(half)]
51 alpha = transform(alpha)
52 beta = transform(beta )
53 result = []
54 for i in range(half - 1):
55 result.append(alpha[i])
56 result.append(beta[i] + beta[i + 1])
57 result.append(alpha[-1])
58 result.append(beta [-1])
59 return result
60
61
62 def transform(vector, indent=0):
63 idt = " " * indent
64 n = len(vector)
65 if n == 1:
66 return list(vector)
67 elif n == 0 or n % 2 != 0:
68 raise ValueError()
69 else:
70 half = n // 2
71 alpha = [0] * half
72 beta = [0] * half
73 print (idt, "xf", vector)
74 print (idt, "coeff", n, "->", end=" ")
75 for i in range(half):
76 t1, t2 = vector[i], vector[n-i-1]
77 k = (math.cos((i + 0.5) * math.pi / n) * 2.0)
78 print (i, n-i-1, "i/n", (i+0.5)/n, ":", k, end= " ")
79 alpha[i] = t1 + t2
80 beta[i] = (t1 - t2) * (1/k)
81 print ()
82 print (idt, "n", n, "alpha", end=" ")
83 for i in range(0, n, 2):
84 print (i, i//2, alpha[i//2], end=" ")
85 print()
86 print (idt, "n", n, "beta", end=" ")
87 for i in range(0, n, 2):
88 print (i, beta[i//2], end=" ")
89 print()
90 alpha = transform(alpha, indent+1)
91 beta = transform(beta , indent+1)
92 result = [0] * n
93 for i in range(half):
94 result[i*2] = alpha[i]
95 result[i*2+1] = beta[i]
96 print(idt, "merge", result)
97 for i in range(half - 1):
98 result[i*2+1] += result[i*2+3]
99 print(idt, "result", result)
100 return result
101
102
103 def transform_itersum(vector, indent=0):
104 idt = " " * indent
105 n = len(vector)
106 if n == 1:
107 return list(vector)
108 elif n == 0 or n % 2 != 0:
109 raise ValueError()
110 else:
111 half = n // 2
112 alpha = [0] * half
113 beta = [0] * half
114 for i in range(half):
115 t1, t2 = vector[i], vector[i+half]
116 alpha[i] = t1
117 beta[i] = t2
118 alpha = transform_itersum(alpha, indent+1)
119 beta = transform_itersum(beta , indent+1)
120 result = [0] * n
121 for i in range(half):
122 result[i*2] = alpha[i]
123 result[i*2+1] = beta[i]
124 print(idt, "iter-merge", result)
125 for i in range(half - 1):
126 result[i*2+1] += result[i*2+3]
127 print(idt, "iter-result", result)
128 return result
129
130
131
132 def transform2(vec, reverse=True):
133
134 vec = deepcopy(vec)
135 # Initialization
136 n = len(vec)
137 print ("transform2", n)
138 levels = n.bit_length() - 1
139
140 # reference (read/write) the in-place data in *reverse-bit-order*
141 if reverse:
142 ri = range(n)
143 ri = [ri[reverse_bits(i, levels)] for i in range(n)]
144
145 if reverse:
146 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
147
148 size = n
149 while size >= 2:
150 halfsize = size // 2
151 tablestep = n // size
152 ir = list(range(0, n, size))
153 print (" xform", size, ir)
154 for i in ir:
155 k = 0
156 j = list(range(i, i + halfsize))
157 jr = list(range(i+halfsize, i + size))
158 jr.reverse()
159 print (" xform jr", j, jr)
160 vec2 = deepcopy(vec)
161 for ci, (jl, jh) in enumerate(zip(j, jr)):
162 t1, t2 = vec[ri[jl]], vec[ri[jh]]
163 coeff = (math.cos((ci + 0.5) * math.pi / size) * 2.0)
164 vec2[ri[jl]] = t1 + t2
165 vec2[ri[jl+halfsize]] = (t1 - t2) * (1/coeff)
166 print ("coeff", size, i, k, "jl", jl, "jh", jh,
167 "i/n", (k+0.5)/size, coeff, vec[ri[jl]], vec[ri[jh]])
168 k += tablestep
169 vec = vec2
170 size //= 2
171
172 print("transform2 pre-itersum", vec)
173
174 n = len(vec)
175 size = n // 2
176 while size >= 2:
177 halfsize = size // 2
178 ir = list(range(0, halfsize))
179 print ("itersum", halfsize, size, ir)
180 for i in ir:
181 jr = list(range(i+halfsize, i+n-halfsize, size))
182 print ("itersum jr", i+halfsize, i+size, jr)
183 for jh in jr:
184 vec[jh] += vec[jh+size]
185 print (" itersum", size, i, jh, jh+size)
186 size //= 2
187
188 print("transform2 result", vec)
189
190 return vec
191
192
193 # DCT type III, unscaled. Algorithm by Byeong Gi Lee, 1984.
194 # See: https://www.nayuki.io/res/fast-discrete-cosine-transform-algorithms/lee-new-algo-discrete-cosine-transform.pdf
195 def inverse_transform(vector, root=True, indent=0):
196 idt = " " * indent
197 if root:
198 vector = list(vector)
199 vector[0] /= 2
200 n = len(vector)
201 if n == 1:
202 return vector, [0]
203 elif n == 0 or n % 2 != 0:
204 raise ValueError()
205 else:
206 half = n // 2
207 alpha = [vector[0]]
208 beta = [vector[1]]
209 for i in range(2, n, 2):
210 alpha.append(vector[i])
211 beta.append(vector[i - 1] + vector[i + 1])
212 print (idt, "n", n, "alpha 0", end=" ")
213 for i in range(2, n, 2):
214 print (i, end=" ")
215 print ("beta 1", end=" ")
216 for i in range(2, n, 2):
217 print ("%d+%d" % (i-1, i+1), end=" ")
218 print()
219 inverse_transform(alpha, False, indent+1)
220 inverse_transform(beta , False, indent+1)
221 for i in range(half):
222 x = alpha[i]
223 y = beta[i] / (math.cos((i + 0.5) * math.pi / n) * 2)
224 vector[i] = x + y
225 vector[-(i + 1)] = x - y
226 print (idt, " v[%d] = alpha[%d]+beta[%d]" % (i, i, i))
227 print (idt, " v[%d] = alpha[%d]-beta[%d]" % (n-i-1, i, i))
228 return vector
229
230
231 def inverse_transform2(vector, root=True):
232 n = len(vector)
233 if root:
234 vector = list(vector)
235 if n == 1:
236 return vector
237 elif n == 0 or n % 2 != 0:
238 raise ValueError()
239 else:
240 half = n // 2
241 alpha = [0]
242 beta = [1]
243 for i in range(2, n, 2):
244 alpha.append(i)
245 beta.append(("add", i - 1, i + 1))
246 inverse_transform2(alpha, False)
247 inverse_transform2(beta , False)
248 for i in range(half):
249 x = alpha[i]
250 y = ("cos", beta[i], i)
251 vector[i] = ("add", x, y)
252 vector[-(i + 1)] = ("sub", x, y)
253 return vector
254
255
256 def failllll_transform2(block):
257 N = len(block)
258 cos = [0.0] * (N>>1)
259
260 front = deepcopy(block)
261 back = deepcopy(block)
262
263 step = 1
264 j = N *2
265 half_N = N
266 prev_half_N = N
267
268 while j > 1: #// Cycle of iterations Input Butterfly
269 half_N = half_N >> 1
270 current_PI_half_By_N = (math.pi / 2) / prev_half_N
271 current_PI_By_N = 0.0
272 step_Phase = current_PI_half_By_N * 2.0
273 print ("n", N, "cos", end=" ")
274 for i in range(half_N):
275 #Precompute Cosine's coefficients
276 a = current_PI_By_N + current_PI_half_By_N
277 print (i, a / (math.pi), math.cos(a) * 2, end=" ")
278 cos[i] = 0.5 / math.cos(a)
279 current_PI_By_N += step_Phase
280 print()
281 k = 0
282 for x in range(step):
283 for i in range(half_N):
284 shift = k + prev_half_N - i - 1
285 back[k + i] = front[k + i] + front[shift]
286 back[k + half_N + i] = (front[k + i] - front[shift]) * cos[i]
287 print ("xf coeff", N, j, i, x, "k/kh", k+i, k+half_N+i)
288 k += prev_half_N
289 temp = front
290 front = back
291 back = temp
292 j = j >> 1
293 step = step << 1
294 prev_half_N = half_N
295
296 half_N = 2
297 prev_half_N = 2
298 j = 2
299
300 print("xform intermediate", front)
301
302 while j < N: # Cycle of Out ButterFly
303 k = 0
304 print ("out", j, N, step, half_N)
305 for x in range(step):
306 for i in range(half_N - 1):
307 back[k + (i << 1)] = front[k + i]
308 back[k + (i << 1) + 1] = (front[k + half_N + i] +
309 front[k + half_N + i + 1])
310 print (" out", j, x, i, "k", k,
311 "k+i<<1", k+(i<<1), "hh1", k+half_N+i)
312 back[k + ((half_N - 1) << 1)] = front[k + half_N - 1]
313 back[k + (half_N << 1) - 1] = front[k + (half_N << 1) - 1]
314 k += prev_half_N
315
316 temp = front
317 front = back
318 back = temp
319 j = j << 1
320 step = step >> 1
321 half_N = prev_half_N
322 prev_half_N = prev_half_N << 1
323
324 for i in range(N):
325 block[i] = front[i] #// Unload DCT coefficients
326 dN = 2.0
327 #block[0] = block[0] / dN #// Compute DC.
328
329 print("transform2 result", block)
330 return block
331
332
333 def itersum_explore(vector, indent=0):
334 idt = " " * indent
335 n = len(vector)
336 if n == 1:
337 return list(vector)
338 elif n == 0 or n % 2 != 0:
339 raise ValueError()
340 else:
341 half = n // 2
342 alpha = [0] * half
343 beta = [0] * half
344 for i in range(half):
345 t1, t2 = vector[i], vector[i+half]
346 alpha[i] = t1
347 beta[i] = t2
348 alpha = itersum_explore(alpha, indent+1)
349 beta = itersum_explore(beta , indent+1)
350 result = [0] * n
351 for i in range(half):
352 result[i*2] = alpha[i]
353 result[i*2+1] = beta[i]
354 print(idt, "iter-merge", result)
355 for i in range(half - 1):
356 result[i*2+1] = ("add", result[i*2+1], result[i*2+3])
357 print(idt, "iter-result", result)
358 return result
359
360
361 def itersum_explore2(vec, indent=0):
362 n = len(vec)
363 size = n // 2
364 while size >= 2:
365 halfsize = size // 2
366 ir = list(range(0, halfsize))
367 #ir.reverse()
368 print ("itersum", halfsize, size, ir)
369 for i in ir:
370 jr = list(range(i+halfsize, i+n-halfsize, size))
371 print ("itersum jr", i+halfsize, i+size, jr)
372 for jh in jr:
373 vec[jh] = ("add", vec[jh], vec[jh+size])
374 print (" itersum", size, i, jh, jh+size)
375 size //= 2
376
377 #if reverse:
378 # vec = [vec[reverse_bits(i, levels)] for i in range(n)]
379
380 return vec
381
382 if __name__ == '__main__':
383 n = 16
384 vec = list(range(n))
385 levels = n.bit_length() - 1
386 vec = [vec[reverse_bits(i, levels)] for i in range(n)]
387 ops = itersum_explore(vec)
388 #ops = [ops[reverse_bits(i, levels)] for i in range(n)]
389 for i, x in enumerate(ops):
390 print (i, x)
391
392 n = 16
393 vec = list(range(n))
394 levels = n.bit_length() - 1
395 #vec = [vec[reverse_bits(i, levels)] for i in range(n)]
396 ops = itersum_explore2(vec)
397 for i, x in enumerate(ops):
398 print (i, x)