Fix fmvis & fishmv bit handling for d0, add tests for negative fp numbers
[openpower-isa.git] / src / openpower / sv / trans / svp64.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Funded by NLnet http://nlnet.nl
4
5 """SVP64 OpenPOWER v3.0B assembly translator
6
7 This class takes raw svp64 assembly mnemonics (aliases excluded) and creates
8 an EXT001-encoded "svp64 prefix" (as a .long) followed by a v3.0B opcode.
9
10 It is very simple and straightforward, the only weirdness being the
11 extraction of the register information and conversion to v3.0B numbering.
12
13 Encoding format of svp64: https://libre-soc.org/openpower/sv/svp64/
14 Encoding format of arithmetic: https://libre-soc.org/openpower/sv/normal/
15 Encoding format of LDST: https://libre-soc.org/openpower/sv/ldst/
16 **TODO format of branches: https://libre-soc.org/openpower/sv/branches/**
17 **TODO format of CRs: https://libre-soc.org/openpower/sv/cr_ops/**
18 Bugtracker: https://bugs.libre-soc.org/show_bug.cgi?id=578
19 """
20
21 import functools
22 import os
23 import sys
24 from collections import OrderedDict
25
26 from openpower.decoder.isa.caller import (SVP64PrefixFields, SV64P_MAJOR_SIZE,
27 SV64P_PID_SIZE, SVP64RMFields,
28 SVP64RM_EXTRA2_SPEC_SIZE,
29 SVP64RM_EXTRA3_SPEC_SIZE,
30 SVP64RM_MODE_SIZE,
31 SVP64RM_SMASK_SIZE,
32 SVP64RM_MMODE_SIZE,
33 SVP64RM_MASK_SIZE,
34 SVP64RM_SUBVL_SIZE,
35 SVP64RM_EWSRC_SIZE,
36 SVP64RM_ELWIDTH_SIZE)
37 from openpower.decoder.pseudo.pagereader import ISA
38 from openpower.decoder.power_svp64 import SVP64RM, get_regtype, decode_extra
39 from openpower.decoder.selectable_int import SelectableInt
40 from openpower.consts import SVP64MODE
41
42 # for debug logging
43 from openpower.util import log
44
45
46 def instruction(*fields):
47 def instruction(insn, desc):
48 (value, start, end) = desc
49 bits = ((1,) * ((end + 1) - start))
50 mask = 0
51 for bit in bits:
52 mask = ((mask << 1) | bit)
53 return (insn | ((value & mask) << (31 - end)))
54
55 return functools.reduce(instruction, fields, 0)
56
57
58 def setvl(fields, Rc):
59 """
60 setvl is a *32-bit-only* instruction. It controls SVSTATE.
61 It is *not* a 64-bit-prefixed Vector instruction (no sv.setvl, yet),
62 it is a Vector *control* instruction.
63
64 * setvl RT,RA,SVi,vf,vs,ms
65
66 1.6.28 SVL-FORM - from fields.txt
67 |0 |6 |11 |16 |23 |24 |25 |26 |31 |
68 | PO | RT | RA | SVi |ms |vs |vf | XO |Rc |
69 """
70 PO = 22
71 XO = 0b11011
72 # ARRRGH these are in a non-obvious order in openpower/isa/simplev.mdwn
73 # compared to the SVL-Form above. sigh
74 # setvl RT,RA,SVi,vf,vs,ms
75 (RT, RA, SVi, vf, vs, ms) = fields
76 SVi -= 1
77 return instruction(
78 (PO , 0 , 5 ),
79 (RT , 6 , 10),
80 (RA , 11, 15),
81 (SVi, 16, 22),
82 (ms , 23, 23),
83 (vs , 24, 24),
84 (vf , 25, 25),
85 (XO , 26, 30),
86 (Rc , 31, 31),
87 )
88
89
90 def svstep(fields, Rc):
91 """
92 svstep is a 32-bit instruction. It updates SVSTATE.
93 It *can* be SVP64-prefixed, to indicate that its registers
94 are Vectorised.
95
96 * svstep RT,SVi,vf
97
98 # 1.6.28 SVL-FORM - from fields.txt
99 # |0 |6 |11 |16 |23 |24 |25 |26 |31 |
100 # | PO | RT | / | SVi |/ |/ |vf | XO |Rc |
101
102 """
103 PO = 22
104 XO = 0b10011
105 (RT, SVi, vf) = fields
106 SVi -= 1
107 return instruction(
108 (PO , 0 , 5 ),
109 (RT , 6 , 10),
110 (0 , 11, 15),
111 (SVi, 16, 22),
112 (0 , 23, 23),
113 (0 , 24, 24),
114 (vf , 25, 25),
115 (XO , 26, 30),
116 (Rc , 31, 31),
117 )
118
119
120 def svshape(fields):
121 """
122 svshape is a *32-bit-only* instruction. It updates SVSHAPE and SVSTATE.
123 It is *not* a 64-bit-prefixed Vector instruction (no sv.svshape, yet),
124 it is a Vector *control* instruction.
125
126 * svshape SVxd,SVyd,SVzd,SVrm,vf
127
128 # 1.6.33 SVM-FORM from fields.txt
129 # |0 |6 |11 |16 |21 |25 |26 |31 |
130 # | PO | SVxd | SVyd | SVzd | SVrm |vf | XO |
131
132 """
133 PO = 22
134 XO = 0b011001
135 (SVxd, SVyd, SVzd, SVrm, vf) = fields
136 SVxd -= 1
137 SVyd -= 1
138 SVzd -= 1
139 return instruction(
140 (PO , 0 , 5 ),
141 (SVxd, 6 , 10),
142 (SVyd, 11, 15),
143 (SVzd, 16, 20),
144 (SVrm, 21, 24),
145 (vf , 25, 25),
146 (XO , 26, 31),
147 )
148
149
150 def svindex(fields):
151 """
152 svindex is a *32-bit-only* instruction. It is a convenience
153 instruction that reduces instruction count for Indexed REMAP
154 Mode.
155 It is *not* a 64-bit-prefixed Vector instruction (no sv.svindex, yet),
156 it is a Vector *control* instruction.
157
158 1.6.28 SVI-FORM
159 |0 |6 |11 |16 |21 |23|24|25|26 31|
160 | PO | SVG|rmm | SVd |ew |yx|mm|sk| XO |
161 """
162 # note that the dimension field one subtracted
163 PO = 22
164 XO = 0b101001
165 (SVG, rmm, SVd, ew, yx, mm, sk) = fields
166 SVd -= 1
167 return instruction(
168 (PO , 0 , 5 ),
169 (SVG, 6 , 10),
170 (rmm, 11, 15),
171 (SVd, 16, 20),
172 (ew , 21, 22),
173 (yx , 23, 23),
174 (mm , 24, 24),
175 (sk , 25, 25),
176 (XO , 26, 31),
177 )
178
179
180 def svremap(fields):
181 """
182 this is a *32-bit-only* instruction. It updates the SVSHAPE SPR
183 it is *not* a 64-bit-prefixed Vector instruction (no sv.svremap),
184 it is a Vector *control* instruction.
185
186 * svremap SVme,mi0,mi1,mi2,mo0,mo1,pst
187
188 # 1.6.34 SVRM-FORM
189 |0 |6 |11 |13 |15 |17 |19 |21 |22 |26 |31 |
190 | PO | SVme |mi0 | mi1 | mi2 | mo0 | mo1 |pst |/// | XO |
191
192 """
193 PO = 22
194 XO = 0b111001
195 (SVme, mi0, mi1, mi2, mo0, mo1, pst) = fields
196 return instruction(
197 (PO , 0 , 5 ),
198 (SVme, 6 , 10),
199 (mi0 , 11, 12),
200 (mi1 , 13, 14),
201 (mi2 , 15, 16),
202 (mo0 , 17, 18),
203 (mo1 , 19, 20),
204 (pst , 21, 21),
205 (0 , 22, 25),
206 (XO , 26, 31),
207 )
208
209
210 # ok from here-on down these are added as 32-bit instructions
211 # and are here only because binutils (at present) doesn't have
212 # them (that's being fixed!)
213 # they can - if implementations then choose - be Vectorised
214 # because they are general-purpose scalar instructions
215 def bmask(fields):
216 """
217 1.6.2.2 BM2-FORM
218 |0 |6 |11 |16 |21 |26 |27 31|
219 | PO | RT | RA | RB |bm |L | XO |
220 """
221 PO = 22
222 XO = 0b010001
223 (RT, RA, RB, bm, L) = fields
224 return instruction(
225 (PO, 0 , 5 ),
226 (RT, 6 , 10),
227 (RA, 11, 15),
228 (RB, 16, 20),
229 (bm, 21, 25),
230 (L , 26, 26),
231 (XO, 27, 31),
232 )
233
234
235 def fsins(fields, Rc):
236 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
237 # however we are out of space with opcode 22
238 # 1.6.7 X-FORM
239 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
240 # | PO | FRT | /// | FRB | XO |Rc |
241 PO = 59
242 XO = 0b1000001110
243 (FRT, FRB) = fields
244 return instruction(
245 (PO , 0 , 5 ),
246 (FRT, 6 , 10),
247 (0 , 11, 15),
248 (FRB, 16, 20),
249 (XO , 21, 30),
250 (Rc , 31, 31),
251 )
252
253
254 def fcoss(fields, Rc):
255 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
256 # however we are out of space with opcode 22
257 # 1.6.7 X-FORM
258 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
259 # | PO | FRT | /// | FRB | XO |Rc |
260 PO = 59
261 XO = 0b1000101110
262 (FRT, FRB) = fields
263 return instruction(
264 (PO , 0 , 5 ),
265 (FRT, 6 , 10),
266 (0 , 11, 15),
267 (FRB, 16, 20),
268 (XO , 21, 30),
269 (Rc , 31, 31),
270 )
271
272
273 def ternlogi(fields, Rc):
274 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
275 # however we are out of space with opcode 22
276 # 1.6.34 TLI-FORM
277 # |0 |6 |11 |16 |21 |29 |31 |
278 # | PO | RT | RA | RB | TLI | XO |Rc |
279 PO = 5
280 XO = 0
281 (RT, RA, RB, TLI) = fields
282 return instruction(
283 (PO , 0 , 5 ),
284 (RT , 6 , 10),
285 (RA , 11, 15),
286 (RB , 16, 20),
287 (TLI, 21, 28),
288 (XO , 29, 30),
289 (Rc , 31, 31),
290 )
291
292
293 def grev(fields, Rc, imm, wide):
294 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
295 # however we are out of space with opcode 22
296 insn = PO = 5
297 # _ matches fields in table at:
298 # https://libre-soc.org/openPOwer/sv/bitmanip/
299 XO = 0b1_0010_110
300 if wide:
301 XO |= 0b100_000
302 if imm:
303 XO |= 0b1000_000
304 (RT, RA, XBI) = fields
305 insn = (insn << 5) | RT
306 insn = (insn << 5) | RA
307 if imm and not wide:
308 assert 0 <= XBI < 64
309 insn = (insn << 6) | XBI
310 insn = (insn << 9) | XO
311 else:
312 assert 0 <= XBI < 32
313 insn = (insn << 5) | XBI
314 insn = (insn << 10) | XO
315 insn = (insn << 1) | Rc
316 return insn
317
318
319 def av(fields, XO, Rc):
320 # 1.6.7 X-FORM
321 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
322 # | PO | RT | RA | RB | XO |Rc |
323 PO = 22
324 (RT, RA, RB) = fields
325 return instruction(
326 (PO, 0 , 5 ),
327 (RT, 6 , 10),
328 (RA, 11, 15),
329 (RB, 16, 20),
330 (XO, 21, 30),
331 (Rc, 31, 31),
332 )
333
334
335 def fmvis(fields):
336 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
337 # V3.0B 1.6.6 DX-FORM
338 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |26|27 |31 |
339 # | PO | FRS | d1 | d0 | XO |d2 |
340 PO = 22
341 XO = 0b00011
342 (FRS, imm) = fields
343 # first split imm into d1, d0 and d2. sigh
344 d2 = (imm & 1) # LSB (0)
345 d1 = (imm >> 1) & 0b11111 # bits 1-5
346 d0 = (imm >> 6) # MSBs 6-15
347 return instruction(
348 (PO , 0 , 5),
349 (FRS, 6 , 10),
350 (d1, 11, 15),
351 (d0, 16, 25),
352 (XO , 26, 30),
353 (d2 , 31, 31),
354 )
355
356
357 def fishmv(fields):
358 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
359 # V3.0B 1.6.6 DX-FORM
360 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |26|27 |31 |
361 # | PO | FRS | d1 | d0 | XO |d2 |
362 PO = 22
363 XO = 0b01011
364 (FRS, imm) = fields
365 # first split imm into d1, d0 and d2. sigh
366 d2 = (imm & 1) # LSB (0)
367 d1 = (imm >> 1) & 0b11111 # bits 1-5
368 d0 = (imm >> 6) # MSBs 6-15
369 return instruction(
370 (PO , 0 , 5),
371 (FRS, 6 , 10),
372 (d1, 11, 15),
373 (d0, 16, 25),
374 (XO , 26, 30),
375 (d2 , 31, 31),
376 )
377
378
379 CUSTOM_INSNS = {}
380 for (name, hook) in (
381 ("setvl", setvl),
382 ("svstep", svstep),
383 ("fsins", fsins),
384 ("fcoss", fcoss),
385 ("ternlogi", ternlogi),
386 ):
387 CUSTOM_INSNS[name] = functools.partial(hook, Rc=False)
388 CUSTOM_INSNS[f"{name}."] = functools.partial(hook, Rc=True)
389 CUSTOM_INSNS["bmask"] = bmask
390 CUSTOM_INSNS["svshape"] = svshape
391 CUSTOM_INSNS["svindex"] = svindex
392 CUSTOM_INSNS["svremap"] = svremap
393 CUSTOM_INSNS["fmvis"] = fmvis
394 CUSTOM_INSNS["fishmv"] = fishmv
395
396 for (name, imm, wide) in (
397 ("grev", False, False),
398 ("grevi", True, False),
399 ("grevw", False, True),
400 ("grevwi", True, True),
401 ):
402 CUSTOM_INSNS[name] = functools.partial(grev,
403 imm=("i" in name), wide=("w" in name), Rc=False)
404 CUSTOM_INSNS[f"{name}."] = functools.partial(grev,
405 imm=("i" in name), wide=("w" in name), Rc=True)
406
407 for (name, XO) in (
408 ("maxs" , 0b0111001110),
409 ("maxu" , 0b0011001110),
410 ("minu" , 0b0001001110),
411 ("mins" , 0b0101001110),
412 ("absdu" , 0b1011110110),
413 ("absds" , 0b1001110110),
414 ("avgadd" , 0b1101001110),
415 ("absdacu", 0b1111110110),
416 ("absdacs", 0b0111110110),
417 ("cprop" , 0b0110001110),
418 ):
419 CUSTOM_INSNS[name] = functools.partial(av, XO=XO, Rc=False)
420 CUSTOM_INSNS[f"{name}."] = functools.partial(av, XO=XO, Rc=True)
421
422
423 # decode GPR into sv extra
424 def get_extra_gpr(etype, regmode, field):
425 if regmode == 'scalar':
426 # cut into 2-bits 5-bits SS FFFFF
427 sv_extra = field >> 5
428 field = field & 0b11111
429 else:
430 # cut into 5-bits 2-bits FFFFF SS
431 sv_extra = field & 0b11
432 field = field >> 2
433 return sv_extra, field
434
435
436 # decode 3-bit CR into sv extra
437 def get_extra_cr_3bit(etype, regmode, field):
438 if regmode == 'scalar':
439 # cut into 2-bits 3-bits SS FFF
440 sv_extra = field >> 3
441 field = field & 0b111
442 else:
443 # cut into 3-bits 4-bits FFF SSSS but will cut 2 zeros off later
444 sv_extra = field & 0b1111
445 field = field >> 4
446 return sv_extra, field
447
448
449 # decodes SUBVL
450 def decode_subvl(encoding):
451 pmap = {'2': 0b01, '3': 0b10, '4': 0b11}
452 assert encoding in pmap, \
453 "encoding %s for SUBVL not recognised" % encoding
454 return pmap[encoding]
455
456
457 # decodes elwidth
458 def decode_elwidth(encoding):
459 pmap = {'8': 0b11, '16': 0b10, '32': 0b01}
460 assert encoding in pmap, \
461 "encoding %s for elwidth not recognised" % encoding
462 return pmap[encoding]
463
464
465 # decodes predicate register encoding
466 def decode_predicate(encoding):
467 pmap = { # integer
468 '1<<r3': (0, 0b001),
469 'r3': (0, 0b010),
470 '~r3': (0, 0b011),
471 'r10': (0, 0b100),
472 '~r10': (0, 0b101),
473 'r30': (0, 0b110),
474 '~r30': (0, 0b111),
475 # CR
476 'lt': (1, 0b000),
477 'nl': (1, 0b001), 'ge': (1, 0b001), # same value
478 'gt': (1, 0b010),
479 'ng': (1, 0b011), 'le': (1, 0b011), # same value
480 'eq': (1, 0b100),
481 'ne': (1, 0b101),
482 'so': (1, 0b110), 'un': (1, 0b110), # same value
483 'ns': (1, 0b111), 'nu': (1, 0b111), # same value
484 }
485 assert encoding in pmap, \
486 "encoding %s for predicate not recognised" % encoding
487 return pmap[encoding]
488
489
490 # decodes "Mode" in similar way to BO field (supposed to, anyway)
491 def decode_bo(encoding):
492 pmap = { # TODO: double-check that these are the same as Branch BO
493 'lt': 0b000,
494 'nl': 0b001, 'ge': 0b001, # same value
495 'gt': 0b010,
496 'ng': 0b011, 'le': 0b011, # same value
497 'eq': 0b100,
498 'ne': 0b101,
499 'so': 0b110, 'un': 0b110, # same value
500 'ns': 0b111, 'nu': 0b111, # same value
501 }
502 assert encoding in pmap, \
503 "encoding %s for BO Mode not recognised" % encoding
504 return pmap[encoding]
505
506 # partial-decode fail-first mode
507
508
509 def decode_ffirst(encoding):
510 if encoding in ['RC1', '~RC1']:
511 return encoding
512 return decode_bo(encoding)
513
514
515 def decode_reg(field, macros=None):
516 if macros is None:
517 macros = {}
518 # decode the field number. "5.v" or "3.s" or "9"
519 # and now also "*0", and "*%0". note: *NOT* to add "*%rNNN" etc.
520 # https://bugs.libre-soc.org/show_bug.cgi?id=884#c0
521 if field.startswith(("*%", "*")):
522 if field.startswith("*%"):
523 field = field[2:]
524 else:
525 field = field[1:]
526 while field in macros:
527 field = macros[field]
528 return int(field), "vector" # actual register number
529
530 # try old convention (to be retired)
531 field = field.split(".")
532 regmode = 'scalar' # default
533 if len(field) == 2:
534 if field[1] == 's':
535 regmode = 'scalar'
536 elif field[1] == 'v':
537 regmode = 'vector'
538 field = int(field[0]) # actual register number
539 return field, regmode
540
541
542 def decode_imm(field):
543 ldst_imm = "(" in field and field[-1] == ')'
544 if ldst_imm:
545 return field[:-1].split("(")
546 else:
547 return None, field
548
549
550 def crf_extra(etype, regmode, field, extras):
551 """takes a CR Field number (CR0-CR127), splits into EXTRA2/3 and v3.0
552 the scalar/vector mode (crNN.v or crNN.s) changes both the format
553 of the EXTRA2/3 encoding as well as what range of registers is possible.
554 this function can be used for both BF/BFA and BA/BB/BT by first removing
555 the bottom 2 bits of BA/BB/BT then re-instating them after encoding.
556 see https://libre-soc.org/openpower/sv/svp64/appendix/#cr_extra
557 for specification
558 """
559 sv_extra, field = get_extra_cr_3bit(etype, regmode, field)
560 # now sanity-check (and shrink afterwards)
561 if etype == 'EXTRA2':
562 # 3-bit CR Field (BF, BFA) EXTRA2 encoding
563 if regmode == 'scalar':
564 # range is CR0-CR15 in increments of 1
565 assert (sv_extra >> 1) == 0, \
566 "scalar CR %s cannot fit into EXTRA2 %s" % \
567 (rname, str(extras[extra_idx]))
568 # all good: encode as scalar
569 sv_extra = sv_extra & 0b01
570 else: # vector
571 # range is CR0-CR127 in increments of 16
572 assert sv_extra & 0b111 == 0, \
573 "vector CR %s cannot fit into EXTRA2 %s" % \
574 (rname, str(extras[extra_idx]))
575 # all good: encode as vector (bit 2 set)
576 sv_extra = 0b10 | (sv_extra >> 3)
577 else:
578 # 3-bit CR Field (BF, BFA) EXTRA3 encoding
579 if regmode == 'scalar':
580 # range is CR0-CR31 in increments of 1
581 assert (sv_extra >> 2) == 0, \
582 "scalar CR %s cannot fit into EXTRA3 %s" % \
583 (rname, str(extras[extra_idx]))
584 # all good: encode as scalar
585 sv_extra = sv_extra & 0b11
586 else: # vector
587 # range is CR0-CR127 in increments of 8
588 assert sv_extra & 0b11 == 0, \
589 "vector CR %s cannot fit into EXTRA3 %s" % \
590 (rname, str(extras[extra_idx]))
591 # all good: encode as vector (bit 3 set)
592 sv_extra = 0b100 | (sv_extra >> 2)
593 return sv_extra, field
594
595
596 def to_number(field):
597 if field.startswith("0x"):
598 return eval(field)
599 if field.startswith("0b"):
600 return eval(field)
601 return int(field)
602
603
604 # decodes svp64 assembly listings and creates EXT001 svp64 prefixes
605 class SVP64Asm:
606 def __init__(self, lst, bigendian=False, macros=None):
607 if macros is None:
608 macros = {}
609 self.macros = macros
610 self.lst = lst
611 self.trans = self.translate(lst)
612 self.isa = ISA() # reads the v3.0B pseudo-code markdown files
613 self.svp64 = SVP64RM() # reads the svp64 Remap entries for registers
614 assert bigendian == False, "error, bigendian not supported yet"
615
616 def __iter__(self):
617 yield from self.trans
618
619 def translate_one(self, insn, macros=None):
620 if macros is None:
621 macros = {}
622 macros.update(self.macros)
623 isa = self.isa
624 svp64 = self.svp64
625 # find first space, to get opcode
626 ls = insn.split(' ')
627 opcode = ls[0]
628 # now find opcode fields
629 fields = ''.join(ls[1:]).split(',')
630 mfields = list(map(str.strip, fields))
631 log("opcode, fields", ls, opcode, mfields)
632 fields = []
633 # macro substitution
634 for field in mfields:
635 fields.append(macro_subst(macros, field))
636 log("opcode, fields substed", ls, opcode, fields)
637
638 # identify if it is a special instruction
639 custom_insn_hook = CUSTOM_INSNS.get(opcode)
640 if custom_insn_hook is not None:
641 fields = tuple(map(to_number, fields))
642 insn = custom_insn_hook(fields)
643 log(opcode, bin(insn))
644 yield ".long 0x%x" % insn
645 return
646
647 # identify if is a svp64 mnemonic
648 if not opcode.startswith('sv.'):
649 yield insn # unaltered
650 return
651 opcode = opcode[3:] # strip leading "sv"
652
653 # start working on decoding the svp64 op: sv.basev30Bop/vec2/mode
654 opmodes = opcode.split("/") # split at "/"
655 v30b_op = opmodes.pop(0) # first is the v3.0B
656 # check instruction ends with dot
657 rc_mode = v30b_op.endswith('.')
658 if rc_mode:
659 v30b_op = v30b_op[:-1]
660
661 # sigh again, have to recognised LD/ST bit-reverse instructions
662 # this has to be "processed" to fit into a v3.0B without the "sh"
663 # e.g. ldsh is actually ld
664 ldst_shift = v30b_op.startswith("l") and v30b_op.endswith("sh")
665
666 if v30b_op not in isa.instr:
667 raise Exception("opcode %s of '%s' not supported" %
668 (v30b_op, insn))
669
670 if ldst_shift:
671 # okaay we need to process the fields and make this:
672 # ldsh RT, SVD(RA), RC - 11 bits for SVD, 5 for RC
673 # into this:
674 # ld RT, D(RA) - 16 bits
675 # likewise same for SVDS (9 bits for SVDS, 5 for RC, 14 bits for DS)
676 form = isa.instr[v30b_op].form # get form (SVD-Form, SVDS-Form)
677
678 newfields = []
679 for field in fields:
680 # identify if this is a ld/st immediate(reg) thing
681 ldst_imm = "(" in field and field[-1] == ')'
682 if ldst_imm:
683 newfields.append(field[:-1].split("("))
684 else:
685 newfields.append(field)
686
687 immed, RA = newfields[1]
688 immed = int(immed)
689 RC = int(newfields.pop(2)) # better be an integer number!
690 if form == 'SVD': # 16 bit: immed 11 bits, RC shift up 11
691 immed = (immed & 0b11111111111) | (RC << 11)
692 if immed & (1 << 15): # should be negative
693 immed -= 1 << 16
694 if form == 'SVDS': # 14 bit: immed 9 bits, RC shift up 9
695 immed = (immed & 0b111111111) | (RC << 9)
696 if immed & (1 << 13): # should be negative
697 immed -= 1 << 14
698 newfields[1] = "%d(%s)" % (immed, RA)
699 fields = newfields
700
701 # and strip off "sh" from end, and add "sh" to opmodes, instead
702 v30b_op = v30b_op[:-2]
703 opmodes.append("sh")
704 log("rewritten", v30b_op, opmodes, fields)
705
706 if v30b_op not in svp64.instrs:
707 raise Exception("opcode %s of '%s' not an svp64 instruction" %
708 (v30b_op, insn))
709 v30b_regs = isa.instr[v30b_op].regs[0] # get regs info "RT, RA, RB"
710 rm = svp64.instrs[v30b_op] # one row of the svp64 RM CSV
711 log("v3.0B op", v30b_op, "Rc=1" if rc_mode else '')
712 log("v3.0B regs", opcode, v30b_regs)
713 log("RM", rm)
714
715 # right. the first thing to do is identify the ordering of
716 # the registers, by name. the EXTRA2/3 ordering is in
717 # rm['0']..rm['3'] but those fields contain the names RA, BB
718 # etc. we have to read the pseudocode to understand which
719 # reg is which in our instruction. sigh.
720
721 # first turn the svp64 rm into a "by name" dict, recording
722 # which position in the RM EXTRA it goes into
723 # also: record if the src or dest was a CR, for sanity-checking
724 # (elwidth overrides on CRs are banned)
725 decode = decode_extra(rm)
726 dest_reg_cr, src_reg_cr, svp64_src, svp64_dest = decode
727
728 log("EXTRA field index, src", svp64_src)
729 log("EXTRA field index, dest", svp64_dest)
730
731 # okaaay now we identify the field value (opcode N,N,N) with
732 # the pseudo-code info (opcode RT, RA, RB)
733 assert len(fields) == len(v30b_regs), \
734 "length of fields %s must match insn `%s` fields %s" % \
735 (str(v30b_regs), insn, str(fields))
736 opregfields = zip(fields, v30b_regs) # err that was easy
737
738 # now for each of those find its place in the EXTRA encoding
739 # note there is the possibility (for LD/ST-with-update) of
740 # RA occurring **TWICE**. to avoid it getting added to the
741 # v3.0B suffix twice, we spot it as a duplicate, here
742 extras = OrderedDict()
743 for idx, (field, regname) in enumerate(opregfields):
744 imm, regname = decode_imm(regname)
745 rtype = get_regtype(regname)
746 log(" idx find", rtype, idx, field, regname, imm)
747 if rtype is None:
748 # probably an immediate field, append it straight
749 extras[('imm', idx, False)] = (idx, field, None, None, None)
750 continue
751 extra = svp64_src.get(regname, None)
752 if extra is not None:
753 extra = ('s', extra, False) # not a duplicate
754 extras[extra] = (idx, field, regname, rtype, imm)
755 log(" idx src", idx, extra, extras[extra])
756 dextra = svp64_dest.get(regname, None)
757 log("regname in", regname, dextra)
758 if dextra is not None:
759 is_a_duplicate = extra is not None # duplicate spotted
760 dextra = ('d', dextra, is_a_duplicate)
761 extras[dextra] = (idx, field, regname, rtype, imm)
762 log(" idx dst", idx, extra, extras[dextra])
763
764 # great! got the extra fields in their associated positions:
765 # also we know the register type. now to create the EXTRA encodings
766 etype = rm['Etype'] # Extra type: EXTRA3/EXTRA2
767 ptype = rm['Ptype'] # Predication type: Twin / Single
768 extra_bits = 0
769 v30b_newfields = []
770 for extra_idx, (idx, field, rname, rtype, iname) in extras.items():
771 # is it a field we don't alter/examine? if so just put it
772 # into newfields
773 if rtype is None:
774 v30b_newfields.append(field)
775 continue
776
777 # identify if this is a ld/st immediate(reg) thing
778 ldst_imm = "(" in field and field[-1] == ')'
779 if ldst_imm:
780 immed, field = field[:-1].split("(")
781
782 field, regmode = decode_reg(field, macros=macros)
783 log(" ", extra_idx, rname, rtype,
784 regmode, iname, field, end=" ")
785
786 # see Mode field https://libre-soc.org/openpower/sv/svp64/
787 # XXX TODO: the following is a bit of a laborious repeated
788 # mess, which could (and should) easily be parameterised.
789 # XXX also TODO: the LD/ST modes which are different
790 # https://libre-soc.org/openpower/sv/ldst/
791
792 # rright. SVP64 register numbering is from 0 to 127
793 # for GPRs, FPRs *and* CR Fields, where for v3.0 the GPRs and RPFs
794 # are 0-31 and CR Fields are only 0-7. the SVP64 RM "Extra"
795 # area is used to extend the numbering from the 32-bit
796 # instruction, and also to record whether the register
797 # is scalar or vector. on a per-operand basis. this
798 # results in a slightly finnicky encoding: here we go...
799
800 # encode SV-GPR and SV-FPR field into extra, v3.0field
801 if rtype in ['GPR', 'FPR']:
802 sv_extra, field = get_extra_gpr(etype, regmode, field)
803 # now sanity-check. EXTRA3 is ok, EXTRA2 has limits
804 # (and shrink to a single bit if ok)
805 if etype == 'EXTRA2':
806 if regmode == 'scalar':
807 # range is r0-r63 in increments of 1
808 assert (sv_extra >> 1) == 0, \
809 "scalar GPR %s cannot fit into EXTRA2 %s" % \
810 (rname, str(extras[extra_idx]))
811 # all good: encode as scalar
812 sv_extra = sv_extra & 0b01
813 else:
814 # range is r0-r127 in increments of 2 (r0 r2 ... r126)
815 assert sv_extra & 0b01 == 0, \
816 "%s: vector field %s cannot fit " \
817 "into EXTRA2 %s" % \
818 (insn, rname, str(extras[extra_idx]))
819 # all good: encode as vector (bit 2 set)
820 sv_extra = 0b10 | (sv_extra >> 1)
821 elif regmode == 'vector':
822 # EXTRA3 vector bit needs marking
823 sv_extra |= 0b100
824
825 # encode SV-CR 3-bit field into extra, v3.0field.
826 # 3-bit is for things like BF and BFA
827 elif rtype == 'CR_3bit':
828 sv_extra, field = crf_extra(etype, regmode, field, extras)
829
830 # encode SV-CR 5-bit field into extra, v3.0field
831 # 5-bit is for things like BA BB BC BT etc.
832 # *sigh* this is the same as 3-bit except the 2 LSBs of the
833 # 5-bit field are passed through unaltered.
834 elif rtype == 'CR_5bit':
835 cr_subfield = field & 0b11 # record bottom 2 bits for later
836 field = field >> 2 # strip bottom 2 bits
837 # use the exact same 3-bit function for the top 3 bits
838 sv_extra, field = crf_extra(etype, regmode, field, extras)
839 # reconstruct the actual 5-bit CR field (preserving the
840 # bottom 2 bits, unaltered)
841 field = (field << 2) | cr_subfield
842
843 else:
844 raise Exception("no type match: %s" % rtype)
845
846 # capture the extra field info
847 log("=>", "%5s" % bin(sv_extra), field)
848 extras[extra_idx] = sv_extra
849
850 # append altered field value to v3.0b, differs for LDST
851 # note that duplicates are skipped e.g. EXTRA2 contains
852 # *BOTH* s:RA *AND* d:RA which happens on LD/ST-with-update
853 srcdest, idx, duplicate = extra_idx
854 if duplicate: # skip adding to v3.0b fields, already added
855 continue
856 if ldst_imm:
857 v30b_newfields.append(("%s(%s)" % (immed, str(field))))
858 else:
859 v30b_newfields.append(str(field))
860
861 log("new v3.0B fields", v30b_op, v30b_newfields)
862 log("extras", extras)
863
864 # rright. now we have all the info. start creating SVP64 RM
865 svp64_rm = SVP64RMFields()
866
867 # begin with EXTRA fields
868 for idx, sv_extra in extras.items():
869 log(idx)
870 if idx is None:
871 continue
872 if idx[0] == 'imm':
873 continue
874 srcdest, idx, duplicate = idx
875 if etype == 'EXTRA2':
876 svp64_rm.extra2[idx].eq(
877 SelectableInt(sv_extra, SVP64RM_EXTRA2_SPEC_SIZE))
878 else:
879 svp64_rm.extra3[idx].eq(
880 SelectableInt(sv_extra, SVP64RM_EXTRA3_SPEC_SIZE))
881
882 # identify if the op is a LD/ST. the "blegh" way. copied
883 # from power_enums. TODO, split the list _insns down.
884 is_ld = v30b_op in [
885 "lbarx", "lbz", "lbzu", "lbzux", "lbzx", # load byte
886 "ld", "ldarx", "ldbrx", "ldu", "ldux", "ldx", # load double
887 "lfs", "lfsx", "lfsu", "lfsux", # FP load single
888 "lfd", "lfdx", "lfdu", "lfdux", "lfiwzx", "lfiwax", # FP load dbl
889 "lha", "lharx", "lhau", "lhaux", "lhax", # load half
890 "lhbrx", "lhz", "lhzu", "lhzux", "lhzx", # more load half
891 "lwa", "lwarx", "lwaux", "lwax", "lwbrx", # load word
892 "lwz", "lwzcix", "lwzu", "lwzux", "lwzx", # more load word
893 ]
894 is_st = v30b_op in [
895 "stb", "stbcix", "stbcx", "stbu", "stbux", "stbx",
896 "std", "stdbrx", "stdcx", "stdu", "stdux", "stdx",
897 "stfs", "stfsx", "stfsu", "stfux", # FP store sgl
898 "stfd", "stfdx", "stfdu", "stfdux", "stfiwx", # FP store dbl
899 "sth", "sthbrx", "sthcx", "sthu", "sthux", "sthx",
900 "stw", "stwbrx", "stwcx", "stwu", "stwux", "stwx",
901 ]
902 # use this to determine if the SVP64 RM format is different.
903 # see https://libre-soc.org/openpower/sv/ldst/
904 is_ldst = is_ld or is_st
905
906 # branch-conditional detection
907 is_bc = v30b_op in [
908 "bc", "bclr",
909 ]
910
911 # parts of svp64_rm
912 mmode = 0 # bit 0
913 pmask = 0 # bits 1-3
914 destwid = 0 # bits 4-5
915 srcwid = 0 # bits 6-7
916 subvl = 0 # bits 8-9
917 smask = 0 # bits 16-18 but only for twin-predication
918 mode = 0 # bits 19-23
919
920 mask_m_specified = False
921 has_pmask = False
922 has_smask = False
923
924 saturation = None
925 src_zero = 0
926 dst_zero = 0
927 sv_mode = None
928
929 mapreduce = False
930 reverse_gear = False
931 mapreduce_crm = False
932 mapreduce_svm = False
933
934 predresult = False
935 failfirst = False
936 ldst_elstride = 0
937
938 # branch-conditional bits
939 bc_all = 0
940 bc_lru = 0
941 bc_brc = 0
942 bc_svstep = 0
943 bc_vsb = 0
944 bc_vlset = 0
945 bc_vli = 0
946 bc_snz = 0
947
948 # ok let's start identifying opcode augmentation fields
949 for encmode in opmodes:
950 # predicate mask (src and dest)
951 if encmode.startswith("m="):
952 pme = encmode
953 pmmode, pmask = decode_predicate(encmode[2:])
954 smmode, smask = pmmode, pmask
955 mmode = pmmode
956 mask_m_specified = True
957 # predicate mask (dest)
958 elif encmode.startswith("dm="):
959 pme = encmode
960 pmmode, pmask = decode_predicate(encmode[3:])
961 mmode = pmmode
962 has_pmask = True
963 # predicate mask (src, twin-pred)
964 elif encmode.startswith("sm="):
965 sme = encmode
966 smmode, smask = decode_predicate(encmode[3:])
967 mmode = smmode
968 has_smask = True
969 # shifted LD/ST
970 elif encmode.startswith("sh"):
971 ldst_shift = True
972 # vec2/3/4
973 elif encmode.startswith("vec"):
974 subvl = decode_subvl(encmode[3:])
975 # elwidth
976 elif encmode.startswith("ew="):
977 destwid = decode_elwidth(encmode[3:])
978 elif encmode.startswith("sw="):
979 srcwid = decode_elwidth(encmode[3:])
980 # element-strided LD/ST
981 elif encmode == 'els':
982 ldst_elstride = 1
983 # saturation
984 elif encmode == 'sats':
985 assert sv_mode is None
986 saturation = 1
987 sv_mode = 0b10
988 elif encmode == 'satu':
989 assert sv_mode is None
990 sv_mode = 0b10
991 saturation = 0
992 # predicate zeroing
993 elif encmode == 'sz':
994 src_zero = 1
995 elif encmode == 'dz':
996 dst_zero = 1
997 # failfirst
998 elif encmode.startswith("ff="):
999 assert sv_mode is None
1000 sv_mode = 0b01
1001 failfirst = decode_ffirst(encmode[3:])
1002 # predicate-result, interestingly same as fail-first
1003 elif encmode.startswith("pr="):
1004 assert sv_mode is None
1005 sv_mode = 0b11
1006 predresult = decode_ffirst(encmode[3:])
1007 # map-reduce mode, reverse-gear
1008 elif encmode == 'mrr':
1009 assert sv_mode is None
1010 sv_mode = 0b00
1011 mapreduce = True
1012 reverse_gear = True
1013 # map-reduce mode
1014 elif encmode == 'mr':
1015 assert sv_mode is None
1016 sv_mode = 0b00
1017 mapreduce = True
1018 elif encmode == 'crm': # CR on map-reduce
1019 assert sv_mode is None
1020 sv_mode = 0b00
1021 mapreduce_crm = True
1022 elif encmode == 'svm': # sub-vector mode
1023 mapreduce_svm = True
1024 elif is_bc:
1025 if encmode == 'all':
1026 bc_all = 1
1027 elif encmode == 'st': # svstep mode
1028 bc_step = 1
1029 elif encmode == 'sr': # svstep BRc mode
1030 bc_step = 1
1031 bc_brc = 1
1032 elif encmode == 'vs': # VLSET mode
1033 bc_vlset = 1
1034 elif encmode == 'vsi': # VLSET mode with VLI (VL inclusives)
1035 bc_vlset = 1
1036 bc_vli = 1
1037 elif encmode == 'vsb': # VLSET mode with VSb
1038 bc_vlset = 1
1039 bc_vsb = 1
1040 elif encmode == 'vsbi': # VLSET mode with VLI and VSb
1041 bc_vlset = 1
1042 bc_vli = 1
1043 bc_vsb = 1
1044 elif encmode == 'snz': # sz (only) already set above
1045 src_zero = 1
1046 bc_snz = 1
1047 elif encmode == 'lu': # LR update mode
1048 bc_lru = 1
1049 else:
1050 raise AssertionError("unknown encmode %s" % encmode)
1051 else:
1052 raise AssertionError("unknown encmode %s" % encmode)
1053
1054 if ptype == '2P':
1055 # since m=xx takes precedence (overrides) sm=xx and dm=xx,
1056 # treat them as mutually exclusive
1057 if mask_m_specified:
1058 assert not has_smask,\
1059 "cannot have both source-mask and predicate mask"
1060 assert not has_pmask,\
1061 "cannot have both dest-mask and predicate mask"
1062 # since the default is INT predication (ALWAYS), if you
1063 # specify one CR mask, you must specify both, to avoid
1064 # mixing INT and CR reg types
1065 if has_pmask and pmmode == 1:
1066 assert has_smask, \
1067 "need explicit source-mask in CR twin predication"
1068 if has_smask and smmode == 1:
1069 assert has_pmask, \
1070 "need explicit dest-mask in CR twin predication"
1071 # sanity-check that 2Pred mask is same mode
1072 if has_pmask and has_smask:
1073 assert smmode == pmmode, \
1074 "predicate masks %s and %s must be same reg type" % \
1075 (pme, sme)
1076
1077 # sanity-check that twin-predication mask only specified in 2P mode
1078 if ptype == '1P':
1079 assert not has_smask, \
1080 "source-mask can only be specified on Twin-predicate ops"
1081 assert not has_pmask, \
1082 "dest-mask can only be specified on Twin-predicate ops"
1083
1084 # construct the mode field, doing sanity-checking along the way
1085 if mapreduce_svm:
1086 assert sv_mode == 0b00, "sub-vector mode in mapreduce only"
1087 assert subvl != 0, "sub-vector mode not possible on SUBVL=1"
1088
1089 if src_zero:
1090 assert has_smask or mask_m_specified, \
1091 "src zeroing requires a source predicate"
1092 if dst_zero:
1093 assert has_pmask or mask_m_specified, \
1094 "dest zeroing requires a dest predicate"
1095
1096 # check LDST shifted, only available in "normal" mode
1097 if is_ldst and ldst_shift:
1098 assert sv_mode is None, \
1099 "LD shift cannot have modes (%s) applied" % sv_mode
1100
1101 # okaaay, so there are 4 different modes, here, which will be
1102 # partly-merged-in: is_ldst is merged in with "normal", but
1103 # is_bc is so different it's done separately. likewise is_cr
1104 # (when it is done). here are the maps:
1105
1106 # for "normal" arithmetic: https://libre-soc.org/openpower/sv/normal/
1107 """
1108 | 0-1 | 2 | 3 4 | description |
1109 | --- | --- |---------|-------------------------- |
1110 | 00 | 0 | dz sz | normal mode |
1111 | 00 | 1 | 0 RG | scalar reduce mode (mapreduce), SUBVL=1 |
1112 | 00 | 1 | 1 / | parallel reduce mode (mapreduce), SUBVL=1 |
1113 | 00 | 1 | SVM RG | subvector reduce mode, SUBVL>1 |
1114 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1115 | 01 | inv | VLi RC1 | Rc=0: ffirst z/nonz |
1116 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1117 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1118 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1119 """
1120
1121 # https://libre-soc.org/openpower/sv/ldst/
1122 # for LD/ST-immediate:
1123 """
1124 | 0-1 | 2 | 3 4 | description |
1125 | --- | --- |---------|--------------------------- |
1126 | 00 | 0 | dz els | normal mode |
1127 | 00 | 1 | dz shf | shift mode |
1128 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1129 | 01 | inv | els RC1 | Rc=0: ffirst z/nonz |
1130 | 10 | N | dz els | sat mode: N=0/1 u/s |
1131 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1132 | 11 | inv | els RC1 | Rc=0: pred-result z/nonz |
1133 """
1134
1135 # for LD/ST-indexed (RA+RB):
1136 """
1137 | 0-1 | 2 | 3 4 | description |
1138 | --- | --- |---------|-------------------------- |
1139 | 00 | SEA | dz sz | normal mode |
1140 | 01 | SEA | dz sz | Strided (scalar only source) |
1141 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1142 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1143 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1144 """
1145
1146 # and leaving out branches and cr_ops for now because they're
1147 # under development
1148 """ TODO branches and cr_ops
1149 """
1150
1151 # now create mode and (overridden) src/dst widths
1152 # XXX TODO: sanity-check bc modes
1153 if is_bc:
1154 sv_mode = ((bc_svstep << SVP64MODE.MOD2_MSB) |
1155 (bc_vlset << SVP64MODE.MOD2_LSB) |
1156 (bc_snz << SVP64MODE.BC_SNZ))
1157 srcwid = (bc_vsb << 1) | bc_lru
1158 destwid = (bc_lru << 1) | bc_all
1159
1160 else:
1161
1162 ######################################
1163 # "normal" mode
1164 if sv_mode is None:
1165 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1166 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1167 if is_ldst:
1168 # TODO: for now, LD/ST-indexed is ignored.
1169 mode |= ldst_elstride << SVP64MODE.ELS_NORMAL # el-strided
1170 # shifted mode
1171 if ldst_shift:
1172 mode |= 1 << SVP64MODE.LDST_SHIFT
1173 else:
1174 # TODO, reduce and subvector mode
1175 # 00 1 dz CRM reduce mode (mapreduce), SUBVL=1
1176 # 00 1 SVM CRM subvector reduce mode, SUBVL>1
1177 pass
1178 sv_mode = 0b00
1179
1180 ######################################
1181 # "mapreduce" modes
1182 elif sv_mode == 0b00:
1183 mode |= (0b1 << SVP64MODE.REDUCE) # sets mapreduce
1184 assert dst_zero == 0, "dest-zero not allowed in mapreduce mode"
1185 if reverse_gear:
1186 mode |= (0b1 << SVP64MODE.RG) # sets Reverse-gear mode
1187 if mapreduce_crm:
1188 mode |= (0b1 << SVP64MODE.CRM) # sets CRM mode
1189 assert rc_mode, "CRM only allowed when Rc=1"
1190 # bit of weird encoding to jam zero-pred or SVM mode in.
1191 # SVM mode can be enabled only when SUBVL=2/3/4 (vec2/3/4)
1192 if subvl == 0:
1193 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1194 elif mapreduce_svm:
1195 mode |= (0b1 << SVP64MODE.SVM) # sets SVM mode
1196
1197 ######################################
1198 # "failfirst" modes
1199 elif sv_mode == 0b01:
1200 assert src_zero == 0, "dest-zero not allowed in failfirst mode"
1201 if failfirst == 'RC1':
1202 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1203 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1204 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1205 elif failfirst == '~RC1':
1206 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1207 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1208 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1209 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1210 else:
1211 assert dst_zero == 0, "dst-zero not allowed in ffirst BO"
1212 assert rc_mode, "ffirst BO only possible when Rc=1"
1213 mode |= (failfirst << SVP64MODE.BO_LSB) # set BO
1214
1215 ######################################
1216 # "saturation" modes
1217 elif sv_mode == 0b10:
1218 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1219 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1220 mode |= (saturation << SVP64MODE.N) # signed/us saturation
1221
1222 ######################################
1223 # "predicate-result" modes. err... code-duplication from ffirst
1224 elif sv_mode == 0b11:
1225 assert src_zero == 0, "dest-zero not allowed in predresult mode"
1226 if predresult == 'RC1':
1227 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1228 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1229 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1230 elif predresult == '~RC1':
1231 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1232 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1233 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1234 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1235 else:
1236 assert dst_zero == 0, "dst-zero not allowed in pr-mode BO"
1237 assert rc_mode, "pr-mode BO only possible when Rc=1"
1238 mode |= (predresult << SVP64MODE.BO_LSB) # set BO
1239
1240 # whewww.... modes all done :)
1241 # now put into svp64_rm
1242 mode |= sv_mode
1243 # mode: bits 19-23
1244 svp64_rm.mode.eq(SelectableInt(mode, SVP64RM_MODE_SIZE))
1245
1246 # put in predicate masks into svp64_rm
1247 if ptype == '2P':
1248 # source pred: bits 16-18
1249 svp64_rm.smask.eq(SelectableInt(smask, SVP64RM_SMASK_SIZE))
1250 # mask mode: bit 0
1251 svp64_rm.mmode.eq(SelectableInt(mmode, SVP64RM_MMODE_SIZE))
1252 # 1-pred: bits 1-3
1253 svp64_rm.mask.eq(SelectableInt(pmask, SVP64RM_MASK_SIZE))
1254
1255 # and subvl: bits 8-9
1256 svp64_rm.subvl.eq(SelectableInt(subvl, SVP64RM_SUBVL_SIZE))
1257
1258 # put in elwidths
1259 # srcwid: bits 6-7
1260 svp64_rm.ewsrc.eq(SelectableInt(srcwid, SVP64RM_EWSRC_SIZE))
1261 # destwid: bits 4-5
1262 svp64_rm.elwidth.eq(SelectableInt(destwid, SVP64RM_ELWIDTH_SIZE))
1263
1264 # nice debug printout. (and now for something completely different)
1265 # https://youtu.be/u0WOIwlXE9g?t=146
1266 svp64_rm_value = svp64_rm.spr.value
1267 log("svp64_rm", hex(svp64_rm_value), bin(svp64_rm_value))
1268 log(" mmode 0 :", bin(mmode))
1269 log(" pmask 1-3 :", bin(pmask))
1270 log(" dstwid 4-5 :", bin(destwid))
1271 log(" srcwid 6-7 :", bin(srcwid))
1272 log(" subvl 8-9 :", bin(subvl))
1273 log(" mode 19-23:", bin(mode))
1274 offs = 2 if etype == 'EXTRA2' else 3 # 2 or 3 bits
1275 for idx, sv_extra in extras.items():
1276 if idx is None:
1277 continue
1278 if idx[0] == 'imm':
1279 continue
1280 srcdest, idx, duplicate = idx
1281 start = (10+idx*offs)
1282 end = start + offs-1
1283 log(" extra%d %2d-%2d:" % (idx, start, end),
1284 bin(sv_extra))
1285 if ptype == '2P':
1286 log(" smask 16-17:", bin(smask))
1287 log()
1288
1289 # first, construct the prefix from its subfields
1290 svp64_prefix = SVP64PrefixFields()
1291 svp64_prefix.major.eq(SelectableInt(0x1, SV64P_MAJOR_SIZE))
1292 svp64_prefix.pid.eq(SelectableInt(0b11, SV64P_PID_SIZE))
1293 svp64_prefix.rm.eq(svp64_rm.spr)
1294
1295 # fiinally yield the svp64 prefix and the thingy. v3.0b opcode
1296 rc = '.' if rc_mode else ''
1297 yield ".long 0x%08x" % svp64_prefix.insn.value
1298 log(v30b_op, v30b_newfields)
1299 # argh, sv.fmadds etc. need to be done manually
1300 if v30b_op == 'ffmadds':
1301 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1302 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1303 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1304 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1305 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1306 opcode |= 0b00101 << (32-31) # bits 26-30
1307 if rc:
1308 opcode |= 1 # Rc, bit 31.
1309 yield ".long 0x%x" % opcode
1310 # argh, sv.fdmadds need to be done manually
1311 elif v30b_op == 'fdmadds':
1312 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1313 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1314 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1315 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1316 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1317 opcode |= 0b01111 << (32-31) # bits 26-30
1318 if rc:
1319 opcode |= 1 # Rc, bit 31.
1320 yield ".long 0x%x" % opcode
1321 # argh, sv.ffadds etc. need to be done manually
1322 elif v30b_op == 'ffadds':
1323 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1324 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1325 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1326 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1327 opcode |= 0b01101 << (32-31) # bits 26-30
1328 if rc:
1329 opcode |= 1 # Rc, bit 31.
1330 yield ".long 0x%x" % opcode
1331 # sigh have to do svstep here manually for now...
1332 elif v30b_op in ["svstep", "svstep."]:
1333 insn = 22 << (31-5) # opcode 22, bits 0-5
1334 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1335 insn |= int(v30b_newfields[1]) << (31-22) # SVi , bits 16-22
1336 insn |= int(v30b_newfields[2]) << (31-25) # vf , bit 25
1337 insn |= 0b10011 << (31-30) # XO , bits 26..30
1338 if opcode == 'svstep.':
1339 insn |= 1 << (31-31) # Rc=1 , bit 31
1340 log("svstep", bin(insn))
1341 yield ".long 0x%x" % insn
1342 # argh, sv.fcoss etc. need to be done manually
1343 elif v30b_op in ["fcoss", "fcoss."]:
1344 insn = 59 << (31-5) # opcode 59, bits 0-5
1345 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1346 insn |= int(v30b_newfields[1]) << (31-20) # RB , bits 16-20
1347 insn |= 0b1000101110 << (31-30) # XO , bits 21..30
1348 if opcode == 'fcoss.':
1349 insn |= 1 << (31-31) # Rc=1 , bit 31
1350 log("fcoss", bin(insn))
1351 yield ".long 0x%x" % insn
1352 else:
1353 yield "%s %s" % (v30b_op+rc, ", ".join(v30b_newfields))
1354 log("new v3.0B fields", v30b_op, v30b_newfields)
1355
1356 def translate(self, lst):
1357 for insn in lst:
1358 yield from self.translate_one(insn)
1359
1360
1361 def macro_subst(macros, txt):
1362 again = True
1363 log("subst", txt, macros)
1364 while again:
1365 again = False
1366 for macro, value in macros.items():
1367 if macro == txt:
1368 again = True
1369 replaced = txt.replace(macro, value)
1370 log("macro", txt, "replaced", replaced, macro, value)
1371 txt = replaced
1372 continue
1373 toreplace = '%s.s' % macro
1374 if toreplace == txt:
1375 again = True
1376 replaced = txt.replace(toreplace, "%s.s" % value)
1377 log("macro", txt, "replaced", replaced, toreplace, value)
1378 txt = replaced
1379 continue
1380 toreplace = '%s.v' % macro
1381 if toreplace == txt:
1382 again = True
1383 replaced = txt.replace(toreplace, "%s.v" % value)
1384 log("macro", txt, "replaced", replaced, toreplace, value)
1385 txt = replaced
1386 continue
1387 toreplace = '(%s)' % macro
1388 if toreplace in txt:
1389 again = True
1390 replaced = txt.replace(toreplace, '(%s)' % value)
1391 log("macro", txt, "replaced", replaced, toreplace, value)
1392 txt = replaced
1393 continue
1394 log(" processed", txt)
1395 return txt
1396
1397
1398 def get_ws(line):
1399 # find whitespace
1400 ws = ''
1401 while line:
1402 if not line[0].isspace():
1403 break
1404 ws += line[0]
1405 line = line[1:]
1406 return ws, line
1407
1408
1409 def asm_process():
1410 # get an input file and an output file
1411 args = sys.argv[1:]
1412 if len(args) == 0:
1413 infile = sys.stdin
1414 outfile = sys.stdout
1415 # read the whole lot in advance in case of in-place
1416 lines = list(infile.readlines())
1417 elif len(args) != 2:
1418 print("pysvp64asm [infile | -] [outfile | -]", file=sys.stderr)
1419 exit(0)
1420 else:
1421 if args[0] == '--':
1422 infile = sys.stdin
1423 else:
1424 infile = open(args[0], "r")
1425 # read the whole lot in advance in case of in-place overwrite
1426 lines = list(infile.readlines())
1427
1428 if args[1] == '--':
1429 outfile = sys.stdout
1430 else:
1431 outfile = open(args[1], "w")
1432
1433 # read the line, look for custom insn, process it
1434 macros = {} # macros which start ".set"
1435 isa = SVP64Asm([])
1436 for line in lines:
1437 op = line.split("#")[0].strip()
1438 # identify macros
1439 if op.startswith(".set"):
1440 macro = op[4:].split(",")
1441 (macro, value) = map(str.strip, macro)
1442 macros[macro] = value
1443 if not op.startswith('sv.') and not op.startswith(tuple(CUSTOM_INSNS)):
1444 outfile.write(line)
1445 continue
1446
1447 (ws, line) = get_ws(line)
1448 lst = isa.translate_one(op, macros)
1449 lst = '; '.join(lst)
1450 outfile.write("%s%s # %s\n" % (ws, lst, op))
1451
1452
1453 if __name__ == '__main__':
1454 lst = ['slw 3, 1, 4',
1455 'extsw 5, 3',
1456 'sv.extsw 5, 3',
1457 'sv.cmpi 5, 1, 3, 2',
1458 'sv.setb 5, 31',
1459 'sv.isel 64.v, 3, 2, 65.v',
1460 'sv.setb/dm=r3/sm=1<<r3 5, 31',
1461 'sv.setb/m=r3 5, 31',
1462 'sv.setb/vec2 5, 31',
1463 'sv.setb/sw=8/ew=16 5, 31',
1464 'sv.extsw./ff=eq 5, 31',
1465 'sv.extsw./satu/sz/dz/sm=r3/dm=r3 5, 31',
1466 'sv.extsw./pr=eq 5.v, 31',
1467 'sv.add. 5.v, 2.v, 1.v',
1468 'sv.add./m=r3 5.v, 2.v, 1.v',
1469 ]
1470 lst += [
1471 'sv.stw 5.v, 4(1.v)',
1472 'sv.ld 5.v, 4(1.v)',
1473 'setvl. 2, 3, 4, 0, 1, 1',
1474 'sv.setvl. 2, 3, 4, 0, 1, 1',
1475 ]
1476 lst = [
1477 "sv.stfsu 0.v, 16(4.v)",
1478 ]
1479 lst = [
1480 "sv.stfsu/els 0.v, 16(4)",
1481 ]
1482 lst = [
1483 'sv.add./mr 5.v, 2.v, 1.v',
1484 ]
1485 macros = {'win2': '50', 'win': '60'}
1486 lst = [
1487 'sv.addi win2.v, win.v, -1',
1488 'sv.add./mrr 5.v, 2.v, 1.v',
1489 #'sv.lhzsh 5.v, 11(9.v), 15',
1490 #'sv.lwzsh 5.v, 11(9.v), 15',
1491 'sv.ffmadds 6.v, 2.v, 4.v, 6.v',
1492 ]
1493 lst = [
1494 #'sv.fmadds 0.v, 8.v, 16.v, 4.v',
1495 #'sv.ffadds 0.v, 8.v, 4.v',
1496 'svremap 11, 0, 1, 2, 3, 2, 1',
1497 'svshape 8, 1, 1, 1, 0',
1498 'svshape 8, 1, 1, 1, 1',
1499 ]
1500 lst = [
1501 #'sv.lfssh 4.v, 11(8.v), 15',
1502 #'sv.lwzsh 4.v, 11(8.v), 15',
1503 #'sv.svstep. 2.v, 4, 0',
1504 #'sv.fcfids. 48.v, 64.v',
1505 'sv.fcoss. 80.v, 0.v',
1506 'sv.fcoss. 20.v, 0.v',
1507 ]
1508 lst = [
1509 'sv.bc/all 3,12,192',
1510 'sv.bclr/vsbi 3,81.v,192',
1511 'sv.ld 5.v, 4(1.v)',
1512 'sv.svstep. 2.v, 4, 0',
1513 ]
1514 lst = [
1515 'maxs 3,12,5',
1516 'maxs. 3,12,5',
1517 'avgadd 3,12,5',
1518 'absdu 3,12,5',
1519 'absds 3,12,5',
1520 'absdacu 3,12,5',
1521 'absdacs 3,12,5',
1522 'cprop 3,12,5',
1523 'svindex 0,0,1,0,0,0,0',
1524 ]
1525 lst = [
1526 'sv.svstep./m=r3 2.v, 4, 0',
1527 'ternlogi 0,0,0,0x5',
1528 'fmvis 5,65535',
1529 'fmvis 5,1',
1530 'fmvis 5,32768',
1531 ]
1532 isa = SVP64Asm(lst, macros=macros)
1533 log("list", list(isa))
1534 asm_process()