add recognition of "sv." to pysvp64asm
[openpower-isa.git] / src / openpower / sv / trans / svp64.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Funded by NLnet http://nlnet.nl
4
5 """SVP64 OpenPOWER v3.0B assembly translator
6
7 This class takes raw svp64 assembly mnemonics (aliases excluded) and creates
8 an EXT001-encoded "svp64 prefix" (as a .long) followed by a v3.0B opcode.
9
10 It is very simple and straightforward, the only weirdness being the
11 extraction of the register information and conversion to v3.0B numbering.
12
13 Encoding format of svp64: https://libre-soc.org/openpower/sv/svp64/
14 Encoding format of arithmetic: https://libre-soc.org/openpower/sv/normal/
15 Encoding format of LDST: https://libre-soc.org/openpower/sv/ldst/
16 **TODO format of branches: https://libre-soc.org/openpower/sv/branches/**
17 **TODO format of CRs: https://libre-soc.org/openpower/sv/cr_ops/**
18 Bugtracker: https://bugs.libre-soc.org/show_bug.cgi?id=578
19 """
20
21 import functools
22 import os
23 import sys
24 from collections import OrderedDict
25
26 from openpower.decoder.isa.caller import (SVP64PrefixFields, SV64P_MAJOR_SIZE,
27 SV64P_PID_SIZE, SVP64RMFields,
28 SVP64RM_EXTRA2_SPEC_SIZE,
29 SVP64RM_EXTRA3_SPEC_SIZE,
30 SVP64RM_MODE_SIZE,
31 SVP64RM_SMASK_SIZE,
32 SVP64RM_MMODE_SIZE,
33 SVP64RM_MASK_SIZE,
34 SVP64RM_SUBVL_SIZE,
35 SVP64RM_EWSRC_SIZE,
36 SVP64RM_ELWIDTH_SIZE)
37 from openpower.decoder.pseudo.pagereader import ISA
38 from openpower.decoder.power_svp64 import SVP64RM, get_regtype, decode_extra
39 from openpower.decoder.selectable_int import SelectableInt
40 from openpower.consts import SVP64MODE
41
42 # for debug logging
43 from openpower.util import log
44
45
46 def instruction(*fields):
47 def instruction(insn, desc):
48 (value, start, end) = desc
49 bits = ((1,) * ((end + 1) - start))
50 mask = 0
51 for bit in bits:
52 mask = ((mask << 1) | bit)
53 return (insn | ((value & mask) << (31 - end)))
54
55 return functools.reduce(instruction, fields, 0)
56
57
58 def setvl(fields, Rc):
59 """
60 setvl is a *32-bit-only* instruction. It controls SVSTATE.
61 It is *not* a 64-bit-prefixed Vector instruction (no sv.setvl, yet),
62 it is a Vector *control* instruction.
63
64 * setvl RT,RA,SVi,vf,vs,ms
65
66 1.6.28 SVL-FORM - from fields.txt
67 |0 |6 |11 |16 |23 |24 |25 |26 |31 |
68 | PO | RT | RA | SVi |ms |vs |vf | XO |Rc |
69 """
70 PO = 22
71 XO = 0b11011
72 # ARRRGH these are in a non-obvious order in openpower/isa/simplev.mdwn
73 # compared to the SVL-Form above. sigh
74 # setvl RT,RA,SVi,vf,vs,ms
75 (RT, RA, SVi, vf, vs, ms) = fields
76 SVi -= 1
77 return instruction(
78 (PO , 0 , 5),
79 (RT , 6 , 10),
80 (RA , 11, 15),
81 (SVi, 16, 22),
82 (ms , 23, 23),
83 (vs , 24, 24),
84 (vf , 25, 25),
85 (XO , 26, 30),
86 (Rc , 31, 31),
87 )
88
89
90 def svstep(fields, Rc):
91 """
92 svstep is a 32-bit instruction. It updates SVSTATE.
93 It *can* be SVP64-prefixed, to indicate that its registers
94 are Vectorised.
95
96 * svstep RT,SVi,vf
97
98 # 1.6.28 SVL-FORM - from fields.txt
99 # |0 |6 |11 |16 |23 |24 |25 |26 |31 |
100 # | PO | RT | / | SVi |/ |/ |vf | XO |Rc |
101
102 """
103 PO = 22
104 XO = 0b10011
105 (RT, SVi, vf) = fields
106 SVi -= 1
107 return instruction(
108 (PO , 0 , 5),
109 (RT , 6 , 10),
110 (0 , 11, 15),
111 (SVi, 16, 22),
112 (0 , 23, 23),
113 (0 , 24, 24),
114 (vf , 25, 25),
115 (XO , 26, 30),
116 (Rc , 31, 31),
117 )
118
119
120 def svshape(fields):
121 """
122 svshape is a *32-bit-only* instruction. It updates SVSHAPE and SVSTATE.
123 It is *not* a 64-bit-prefixed Vector instruction (no sv.svshape, yet),
124 it is a Vector *control* instruction.
125
126 * svshape SVxd,SVyd,SVzd,SVrm,vf
127
128 # 1.6.33 SVM-FORM from fields.txt
129 # |0 |6 |11 |16 |21 |25 |26 |31 |
130 # | PO | SVxd | SVyd | SVzd | SVrm |vf | XO |
131
132 """
133 PO = 22
134 XO = 0b011001
135 (SVxd, SVyd, SVzd, SVrm, vf) = fields
136 SVxd -= 1
137 SVyd -= 1
138 SVzd -= 1
139 return instruction(
140 (PO , 0 , 5),
141 (SVxd, 6 , 10),
142 (SVyd, 11, 15),
143 (SVzd, 16, 20),
144 (SVrm, 21, 24),
145 (vf , 25, 25),
146 (XO , 26, 31),
147 )
148
149
150 def svindex(fields):
151 """
152 svindex is a *32-bit-only* instruction. It is a convenience
153 instruction that reduces instruction count for Indexed REMAP
154 Mode.
155 It is *not* a 64-bit-prefixed Vector instruction (no sv.svindex, yet),
156 it is a Vector *control* instruction.
157
158 1.6.28 SVI-FORM
159 |0 |6 |11 |16 |21 |23|24|25|26 31|
160 | PO | RS |rmm | SVd |ew |yx|mm|sk| XO |
161 """
162 # note that the dimension field one subtracted
163 PO = 22
164 XO = 0b101001
165 (RS, rmm, SVd, ew, yx, mm, sk) = fields
166 SVd -= 1
167 return instruction(
168 (PO , 0 , 5),
169 (RS , 6 , 10),
170 (rmm, 11 , 15),
171 (SVd, 16 , 20),
172 (ew , 21 , 22),
173 (yx , 23 , 23),
174 (mm , 24 , 24),
175 (sk , 25 , 25),
176 (XO , 26 , 31),
177 )
178
179
180 def svremap(fields):
181 """
182 this is a *32-bit-only* instruction. It updates the SVSHAPE SPR
183 it is *not* a 64-bit-prefixed Vector instruction (no sv.svremap),
184 it is a Vector *control* instruction.
185
186 * svremap SVme,mi0,mi1,mi2,mo0,mo1,pst
187
188 # 1.6.34 SVRM-FORM
189 |0 |6 |11 |13 |15 |17 |19 |21 |22 |26 |31 |
190 | PO | SVme |mi0 | mi1 | mi2 | mo0 | mo1 |pst |/// | XO |
191
192 """
193 PO = 22
194 XO = 0b111001
195 (SVme, mi0, mi1, mi2, mo0, mo1, pst) = fields
196 return instruction(
197 (PO , 0 , 5),
198 (SVme, 6 , 10),
199 (mi0 , 11, 12),
200 (mi1 , 13, 14),
201 (mi2 , 15, 16),
202 (mo0 , 17, 18),
203 (mo1 , 19, 20),
204 (pst , 21, 21),
205 (0 , 22, 25),
206 (XO , 26, 31),
207 )
208
209
210 # ok from here-on down these are added as 32-bit instructions
211 # and are here only because binutils (at present) doesn't have
212 # them (that's being fixed!)
213 # they can - if implementations then choose - be Vectorised
214 # because they are general-purpose scalar instructions
215 def bmask(fields):
216 """
217 1.6.2.2 BM2-FORM
218 |0 |6 |11 |16 |21 |26 |27 31|
219 | PO | RT | RA | RB |bm |L | XO |
220 """
221 PO = 22
222 XO = 0b010001
223 (RT, RA, RB, bm, L) = fields
224 return instruction(
225 (PO, 0 , 5),
226 (RT, 6 , 10),
227 (RA, 11, 15),
228 (RB, 16, 20),
229 (bm, 21, 25),
230 (L , 26, 26),
231 (XO, 27, 31),
232 )
233
234
235 def fsins(fields, Rc):
236 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
237 # however we are out of space with opcode 22
238 # 1.6.7 X-FORM
239 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
240 # | PO | FRT | /// | FRB | XO |Rc |
241 PO = 59
242 XO = 0b1000001110
243 (FRT, FRB) = fields
244 return instruction(
245 (PO , 0 , 5),
246 (FRT, 6 , 10),
247 (0 , 11, 15),
248 (FRB, 16, 20),
249 (XO , 21, 30),
250 (Rc , 31, 31),
251 )
252
253
254 def fcoss(fields, Rc):
255 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
256 # however we are out of space with opcode 22
257 # 1.6.7 X-FORM
258 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
259 # | PO | FRT | /// | FRB | XO |Rc |
260 PO = 59
261 XO = 0b1000101110
262 (FRT, FRB) = fields
263 return instruction(
264 (PO , 0 , 5),
265 (FRT, 6 , 10),
266 (0 , 11, 15),
267 (FRB, 16, 20),
268 (XO , 21, 30),
269 (Rc , 31, 31),
270 )
271
272
273 def ternlogi(fields, Rc):
274 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
275 # however we are out of space with opcode 22
276 # 1.6.34 TLI-FORM
277 # |0 |6 |11 |16 |21 |29 |31 |
278 # | PO | RT | RA | RB | TLI | XO |Rc |
279 PO = 5
280 XO = 0
281 (RT, RA, RB, TLI) = fields
282 return instruction(
283 (PO , 0 , 5),
284 (RT , 6 , 10),
285 (RA , 11, 15),
286 (RB , 16, 20),
287 (TLI, 21, 28),
288 (XO , 29, 30),
289 (Rc , 31, 31),
290 )
291
292
293 def grev(fields, Rc, imm, wide):
294 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
295 # however we are out of space with opcode 22
296 PO = 5
297 # _ matches fields in table at:
298 # https://libre-soc.org/openPOwer/sv/bitmanip/
299 XO = 0b1_0010_110
300 if wide:
301 XO |= 0b100_000
302 if imm:
303 XO |= 0b1000_000
304 (RT, RA, XBI) = fields
305 insn = (insn << 5) | RT
306 insn = (insn << 5) | RA
307 if imm and not wide:
308 assert 0 <= XBI < 64
309 insn = (insn << 6) | XBI
310 insn = (insn << 9) | XO
311 else:
312 assert 0 <= XBI < 32
313 insn = (insn << 5) | XBI
314 insn = (insn << 10) | XO
315 insn = (insn << 1) | Rc
316 return insn
317
318
319 def av(fields, XO, Rc):
320 # 1.6.7 X-FORM
321 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
322 # | PO | RT | RA | RB | XO |Rc |
323 PO = 22
324 (RT, RA, RB) = fields
325 return instruction(
326 (PO, 0 , 5),
327 (RT, 6 , 10),
328 (RA, 11, 15),
329 (RB, 16, 20),
330 (XO, 21, 30),
331 (Rc, 31, 31),
332 )
333
334
335 CUSTOM_INSNS = {}
336 for (name, hook) in (
337 ("setvl", setvl),
338 ("svstep", svstep),
339 ("fsins", fsins),
340 ("fcoss", fcoss),
341 ("ternlogi", ternlogi),
342 ):
343 CUSTOM_INSNS[name] = functools.partial(hook, Rc=False)
344 CUSTOM_INSNS[f"{name}."] = functools.partial(hook, Rc=True)
345 CUSTOM_INSNS["bmask"] = bmask
346 CUSTOM_INSNS["svshape"] = svshape
347 CUSTOM_INSNS["svindex"] = svindex
348 CUSTOM_INSNS["svremap"] = svremap
349
350 for (name, imm, wide) in (
351 ("grev", False, False),
352 ("grevi", True, False),
353 ("grevw", False, True),
354 ("grevwi", True, True),
355 ):
356 CUSTOM_INSNS[name] = functools.partial(grev,
357 imm=("i" in name), wide=("w" in name), Rc=False)
358 CUSTOM_INSNS[f"{name}."] = functools.partial(grev,
359 imm=("i" in name), wide=("w" in name), Rc=True)
360
361 for (name, XO) in (
362 ("maxs" , 0b0111001110),
363 ("maxu" , 0b0011001110),
364 ("minu" , 0b0001001110),
365 ("mins" , 0b0101001110),
366 ("absdu" , 0b1011110110),
367 ("absds" , 0b1001110110),
368 ("avgadd" , 0b1101001110),
369 ("absdacu", 0b1111110110),
370 ("absdacs", 0b0111110110),
371 ("cprop" , 0b0110001110),
372 ):
373 CUSTOM_INSNS[name] = functools.partial(av, XO=XO, Rc=False)
374 CUSTOM_INSNS[f"{name}."] = functools.partial(av, XO=XO, Rc=True)
375
376
377 # decode GPR into sv extra
378 def get_extra_gpr(etype, regmode, field):
379 if regmode == 'scalar':
380 # cut into 2-bits 5-bits SS FFFFF
381 sv_extra = field >> 5
382 field = field & 0b11111
383 else:
384 # cut into 5-bits 2-bits FFFFF SS
385 sv_extra = field & 0b11
386 field = field >> 2
387 return sv_extra, field
388
389
390 # decode 3-bit CR into sv extra
391 def get_extra_cr_3bit(etype, regmode, field):
392 if regmode == 'scalar':
393 # cut into 2-bits 3-bits SS FFF
394 sv_extra = field >> 3
395 field = field & 0b111
396 else:
397 # cut into 3-bits 4-bits FFF SSSS but will cut 2 zeros off later
398 sv_extra = field & 0b1111
399 field = field >> 4
400 return sv_extra, field
401
402
403 # decodes SUBVL
404 def decode_subvl(encoding):
405 pmap = {'2': 0b01, '3': 0b10, '4': 0b11}
406 assert encoding in pmap, \
407 "encoding %s for SUBVL not recognised" % encoding
408 return pmap[encoding]
409
410
411 # decodes elwidth
412 def decode_elwidth(encoding):
413 pmap = {'8': 0b11, '16': 0b10, '32': 0b01}
414 assert encoding in pmap, \
415 "encoding %s for elwidth not recognised" % encoding
416 return pmap[encoding]
417
418
419 # decodes predicate register encoding
420 def decode_predicate(encoding):
421 pmap = { # integer
422 '1<<r3': (0, 0b001),
423 'r3': (0, 0b010),
424 '~r3': (0, 0b011),
425 'r10': (0, 0b100),
426 '~r10': (0, 0b101),
427 'r30': (0, 0b110),
428 '~r30': (0, 0b111),
429 # CR
430 'lt': (1, 0b000),
431 'nl': (1, 0b001), 'ge': (1, 0b001), # same value
432 'gt': (1, 0b010),
433 'ng': (1, 0b011), 'le': (1, 0b011), # same value
434 'eq': (1, 0b100),
435 'ne': (1, 0b101),
436 'so': (1, 0b110), 'un': (1, 0b110), # same value
437 'ns': (1, 0b111), 'nu': (1, 0b111), # same value
438 }
439 assert encoding in pmap, \
440 "encoding %s for predicate not recognised" % encoding
441 return pmap[encoding]
442
443
444 # decodes "Mode" in similar way to BO field (supposed to, anyway)
445 def decode_bo(encoding):
446 pmap = { # TODO: double-check that these are the same as Branch BO
447 'lt': 0b000,
448 'nl': 0b001, 'ge': 0b001, # same value
449 'gt': 0b010,
450 'ng': 0b011, 'le': 0b011, # same value
451 'eq': 0b100,
452 'ne': 0b101,
453 'so': 0b110, 'un': 0b110, # same value
454 'ns': 0b111, 'nu': 0b111, # same value
455 }
456 assert encoding in pmap, \
457 "encoding %s for BO Mode not recognised" % encoding
458 return pmap[encoding]
459
460 # partial-decode fail-first mode
461
462
463 def decode_ffirst(encoding):
464 if encoding in ['RC1', '~RC1']:
465 return encoding
466 return decode_bo(encoding)
467
468
469 def decode_reg(field):
470 # decode the field number. "5.v" or "3.s" or "9"
471 field = field.split(".")
472 regmode = 'scalar' # default
473 if len(field) == 2:
474 if field[1] == 's':
475 regmode = 'scalar'
476 elif field[1] == 'v':
477 regmode = 'vector'
478 field = int(field[0]) # actual register number
479 return field, regmode
480
481
482 def decode_imm(field):
483 ldst_imm = "(" in field and field[-1] == ')'
484 if ldst_imm:
485 return field[:-1].split("(")
486 else:
487 return None, field
488
489
490 def crf_extra(etype, regmode, field, extras):
491 """takes a CR Field number (CR0-CR127), splits into EXTRA2/3 and v3.0
492 the scalar/vector mode (crNN.v or crNN.s) changes both the format
493 of the EXTRA2/3 encoding as well as what range of registers is possible.
494 this function can be used for both BF/BFA and BA/BB/BT by first removing
495 the bottom 2 bits of BA/BB/BT then re-instating them after encoding.
496 see https://libre-soc.org/openpower/sv/svp64/appendix/#cr_extra
497 for specification
498 """
499 sv_extra, field = get_extra_cr_3bit(etype, regmode, field)
500 # now sanity-check (and shrink afterwards)
501 if etype == 'EXTRA2':
502 # 3-bit CR Field (BF, BFA) EXTRA2 encoding
503 if regmode == 'scalar':
504 # range is CR0-CR15 in increments of 1
505 assert (sv_extra >> 1) == 0, \
506 "scalar CR %s cannot fit into EXTRA2 %s" % \
507 (rname, str(extras[extra_idx]))
508 # all good: encode as scalar
509 sv_extra = sv_extra & 0b01
510 else: # vector
511 # range is CR0-CR127 in increments of 16
512 assert sv_extra & 0b111 == 0, \
513 "vector CR %s cannot fit into EXTRA2 %s" % \
514 (rname, str(extras[extra_idx]))
515 # all good: encode as vector (bit 2 set)
516 sv_extra = 0b10 | (sv_extra >> 3)
517 else:
518 # 3-bit CR Field (BF, BFA) EXTRA3 encoding
519 if regmode == 'scalar':
520 # range is CR0-CR31 in increments of 1
521 assert (sv_extra >> 2) == 0, \
522 "scalar CR %s cannot fit into EXTRA3 %s" % \
523 (rname, str(extras[extra_idx]))
524 # all good: encode as scalar
525 sv_extra = sv_extra & 0b11
526 else: # vector
527 # range is CR0-CR127 in increments of 8
528 assert sv_extra & 0b11 == 0, \
529 "vector CR %s cannot fit into EXTRA3 %s" % \
530 (rname, str(extras[extra_idx]))
531 # all good: encode as vector (bit 3 set)
532 sv_extra = 0b100 | (sv_extra >> 2)
533 return sv_extra, field
534
535
536 # decodes svp64 assembly listings and creates EXT001 svp64 prefixes
537 class SVP64Asm:
538 def __init__(self, lst, bigendian=False, macros=None):
539 if macros is None:
540 macros = {}
541 self.macros = macros
542 self.lst = lst
543 self.trans = self.translate(lst)
544 self.isa = ISA() # reads the v3.0B pseudo-code markdown files
545 self.svp64 = SVP64RM() # reads the svp64 Remap entries for registers
546 assert bigendian == False, "error, bigendian not supported yet"
547
548 def __iter__(self):
549 yield from self.trans
550
551 def translate_one(self, insn, macros=None):
552 if macros is None:
553 macros = {}
554 macros.update(self.macros)
555 isa = self.isa
556 svp64 = self.svp64
557 # find first space, to get opcode
558 ls = insn.split(' ')
559 opcode = ls[0]
560 # now find opcode fields
561 fields = ''.join(ls[1:]).split(',')
562 mfields = list(map(str.strip, fields))
563 log("opcode, fields", ls, opcode, mfields)
564 fields = []
565 # macro substitution
566 for field in mfields:
567 fields.append(macro_subst(macros, field))
568 log("opcode, fields substed", ls, opcode, fields)
569
570 # identify if it is a special instruction
571 custom_insn_hook = CUSTOM_INSNS.get(opcode)
572 if custom_insn_hook is not None:
573 fields = tuple(map(int, fields))
574 insn = custom_insn_hook(fields)
575 log(opcode, bin(insn))
576 yield ".long 0x%x" % insn
577 return
578
579 # identify if is a svp64 mnemonic
580 if not opcode.startswith('sv.'):
581 yield insn # unaltered
582 return
583 opcode = opcode[3:] # strip leading "sv"
584
585 # start working on decoding the svp64 op: sv.basev30Bop/vec2/mode
586 opmodes = opcode.split("/") # split at "/"
587 v30b_op = opmodes.pop(0) # first is the v3.0B
588 # check instruction ends with dot
589 rc_mode = v30b_op.endswith('.')
590 if rc_mode:
591 v30b_op = v30b_op[:-1]
592
593 # sigh again, have to recognised LD/ST bit-reverse instructions
594 # this has to be "processed" to fit into a v3.0B without the "sh"
595 # e.g. ldsh is actually ld
596 ldst_shift = v30b_op.startswith("l") and v30b_op.endswith("sh")
597
598 if v30b_op not in isa.instr:
599 raise Exception("opcode %s of '%s' not supported" %
600 (v30b_op, insn))
601
602 if ldst_shift:
603 # okaay we need to process the fields and make this:
604 # ldsh RT, SVD(RA), RC - 11 bits for SVD, 5 for RC
605 # into this:
606 # ld RT, D(RA) - 16 bits
607 # likewise same for SVDS (9 bits for SVDS, 5 for RC, 14 bits for DS)
608 form = isa.instr[v30b_op].form # get form (SVD-Form, SVDS-Form)
609
610 newfields = []
611 for field in fields:
612 # identify if this is a ld/st immediate(reg) thing
613 ldst_imm = "(" in field and field[-1] == ')'
614 if ldst_imm:
615 newfields.append(field[:-1].split("("))
616 else:
617 newfields.append(field)
618
619 immed, RA = newfields[1]
620 immed = int(immed)
621 RC = int(newfields.pop(2)) # better be an integer number!
622 if form == 'SVD': # 16 bit: immed 11 bits, RC shift up 11
623 immed = (immed & 0b11111111111) | (RC << 11)
624 if immed & (1 << 15): # should be negative
625 immed -= 1 << 16
626 if form == 'SVDS': # 14 bit: immed 9 bits, RC shift up 9
627 immed = (immed & 0b111111111) | (RC << 9)
628 if immed & (1 << 13): # should be negative
629 immed -= 1 << 14
630 newfields[1] = "%d(%s)" % (immed, RA)
631 fields = newfields
632
633 # and strip off "sh" from end, and add "sh" to opmodes, instead
634 v30b_op = v30b_op[:-2]
635 opmodes.append("sh")
636 log("rewritten", v30b_op, opmodes, fields)
637
638 if v30b_op not in svp64.instrs:
639 raise Exception("opcode %s of '%s' not an svp64 instruction" %
640 (v30b_op, insn))
641 v30b_regs = isa.instr[v30b_op].regs[0] # get regs info "RT, RA, RB"
642 rm = svp64.instrs[v30b_op] # one row of the svp64 RM CSV
643 log("v3.0B op", v30b_op, "Rc=1" if rc_mode else '')
644 log("v3.0B regs", opcode, v30b_regs)
645 log("RM", rm)
646
647 # right. the first thing to do is identify the ordering of
648 # the registers, by name. the EXTRA2/3 ordering is in
649 # rm['0']..rm['3'] but those fields contain the names RA, BB
650 # etc. we have to read the pseudocode to understand which
651 # reg is which in our instruction. sigh.
652
653 # first turn the svp64 rm into a "by name" dict, recording
654 # which position in the RM EXTRA it goes into
655 # also: record if the src or dest was a CR, for sanity-checking
656 # (elwidth overrides on CRs are banned)
657 decode = decode_extra(rm)
658 dest_reg_cr, src_reg_cr, svp64_src, svp64_dest = decode
659
660 log("EXTRA field index, src", svp64_src)
661 log("EXTRA field index, dest", svp64_dest)
662
663 # okaaay now we identify the field value (opcode N,N,N) with
664 # the pseudo-code info (opcode RT, RA, RB)
665 assert len(fields) == len(v30b_regs), \
666 "length of fields %s must match insn `%s` fields %s" % \
667 (str(v30b_regs), insn, str(fields))
668 opregfields = zip(fields, v30b_regs) # err that was easy
669
670 # now for each of those find its place in the EXTRA encoding
671 # note there is the possibility (for LD/ST-with-update) of
672 # RA occurring **TWICE**. to avoid it getting added to the
673 # v3.0B suffix twice, we spot it as a duplicate, here
674 extras = OrderedDict()
675 for idx, (field, regname) in enumerate(opregfields):
676 imm, regname = decode_imm(regname)
677 rtype = get_regtype(regname)
678 log(" idx find", rtype, idx, field, regname, imm)
679 if rtype is None:
680 # probably an immediate field, append it straight
681 extras[('imm', idx, False)] = (idx, field, None, None, None)
682 continue
683 extra = svp64_src.get(regname, None)
684 if extra is not None:
685 extra = ('s', extra, False) # not a duplicate
686 extras[extra] = (idx, field, regname, rtype, imm)
687 log(" idx src", idx, extra, extras[extra])
688 dextra = svp64_dest.get(regname, None)
689 log("regname in", regname, dextra)
690 if dextra is not None:
691 is_a_duplicate = extra is not None # duplicate spotted
692 dextra = ('d', dextra, is_a_duplicate)
693 extras[dextra] = (idx, field, regname, rtype, imm)
694 log(" idx dst", idx, extra, extras[dextra])
695
696 # great! got the extra fields in their associated positions:
697 # also we know the register type. now to create the EXTRA encodings
698 etype = rm['Etype'] # Extra type: EXTRA3/EXTRA2
699 ptype = rm['Ptype'] # Predication type: Twin / Single
700 extra_bits = 0
701 v30b_newfields = []
702 for extra_idx, (idx, field, rname, rtype, iname) in extras.items():
703 # is it a field we don't alter/examine? if so just put it
704 # into newfields
705 if rtype is None:
706 v30b_newfields.append(field)
707 continue
708
709 # identify if this is a ld/st immediate(reg) thing
710 ldst_imm = "(" in field and field[-1] == ')'
711 if ldst_imm:
712 immed, field = field[:-1].split("(")
713
714 field, regmode = decode_reg(field)
715 log(" ", extra_idx, rname, rtype,
716 regmode, iname, field, end=" ")
717
718 # see Mode field https://libre-soc.org/openpower/sv/svp64/
719 # XXX TODO: the following is a bit of a laborious repeated
720 # mess, which could (and should) easily be parameterised.
721 # XXX also TODO: the LD/ST modes which are different
722 # https://libre-soc.org/openpower/sv/ldst/
723
724 # rright. SVP64 register numbering is from 0 to 127
725 # for GPRs, FPRs *and* CR Fields, where for v3.0 the GPRs and RPFs
726 # are 0-31 and CR Fields are only 0-7. the SVP64 RM "Extra"
727 # area is used to extend the numbering from the 32-bit
728 # instruction, and also to record whether the register
729 # is scalar or vector. on a per-operand basis. this
730 # results in a slightly finnicky encoding: here we go...
731
732 # encode SV-GPR and SV-FPR field into extra, v3.0field
733 if rtype in ['GPR', 'FPR']:
734 sv_extra, field = get_extra_gpr(etype, regmode, field)
735 # now sanity-check. EXTRA3 is ok, EXTRA2 has limits
736 # (and shrink to a single bit if ok)
737 if etype == 'EXTRA2':
738 if regmode == 'scalar':
739 # range is r0-r63 in increments of 1
740 assert (sv_extra >> 1) == 0, \
741 "scalar GPR %s cannot fit into EXTRA2 %s" % \
742 (rname, str(extras[extra_idx]))
743 # all good: encode as scalar
744 sv_extra = sv_extra & 0b01
745 else:
746 # range is r0-r127 in increments of 2 (r0 r2 ... r126)
747 assert sv_extra & 0b01 == 0, \
748 "%s: vector field %s cannot fit " \
749 "into EXTRA2 %s" % \
750 (insn, rname, str(extras[extra_idx]))
751 # all good: encode as vector (bit 2 set)
752 sv_extra = 0b10 | (sv_extra >> 1)
753 elif regmode == 'vector':
754 # EXTRA3 vector bit needs marking
755 sv_extra |= 0b100
756
757 # encode SV-CR 3-bit field into extra, v3.0field.
758 # 3-bit is for things like BF and BFA
759 elif rtype == 'CR_3bit':
760 sv_extra, field = crf_extra(etype, regmode, field, extras)
761
762 # encode SV-CR 5-bit field into extra, v3.0field
763 # 5-bit is for things like BA BB BC BT etc.
764 # *sigh* this is the same as 3-bit except the 2 LSBs of the
765 # 5-bit field are passed through unaltered.
766 elif rtype == 'CR_5bit':
767 cr_subfield = field & 0b11 # record bottom 2 bits for later
768 field = field >> 2 # strip bottom 2 bits
769 # use the exact same 3-bit function for the top 3 bits
770 sv_extra, field = crf_extra(etype, regmode, field, extras)
771 # reconstruct the actual 5-bit CR field (preserving the
772 # bottom 2 bits, unaltered)
773 field = (field << 2) | cr_subfield
774
775 else:
776 raise Exception("no type match: %s" % rtype)
777
778 # capture the extra field info
779 log("=>", "%5s" % bin(sv_extra), field)
780 extras[extra_idx] = sv_extra
781
782 # append altered field value to v3.0b, differs for LDST
783 # note that duplicates are skipped e.g. EXTRA2 contains
784 # *BOTH* s:RA *AND* d:RA which happens on LD/ST-with-update
785 srcdest, idx, duplicate = extra_idx
786 if duplicate: # skip adding to v3.0b fields, already added
787 continue
788 if ldst_imm:
789 v30b_newfields.append(("%s(%s)" % (immed, str(field))))
790 else:
791 v30b_newfields.append(str(field))
792
793 log("new v3.0B fields", v30b_op, v30b_newfields)
794 log("extras", extras)
795
796 # rright. now we have all the info. start creating SVP64 RM
797 svp64_rm = SVP64RMFields()
798
799 # begin with EXTRA fields
800 for idx, sv_extra in extras.items():
801 log(idx)
802 if idx is None:
803 continue
804 if idx[0] == 'imm':
805 continue
806 srcdest, idx, duplicate = idx
807 if etype == 'EXTRA2':
808 svp64_rm.extra2[idx].eq(
809 SelectableInt(sv_extra, SVP64RM_EXTRA2_SPEC_SIZE))
810 else:
811 svp64_rm.extra3[idx].eq(
812 SelectableInt(sv_extra, SVP64RM_EXTRA3_SPEC_SIZE))
813
814 # identify if the op is a LD/ST. the "blegh" way. copied
815 # from power_enums. TODO, split the list _insns down.
816 is_ld = v30b_op in [
817 "lbarx", "lbz", "lbzu", "lbzux", "lbzx", # load byte
818 "ld", "ldarx", "ldbrx", "ldu", "ldux", "ldx", # load double
819 "lfs", "lfsx", "lfsu", "lfsux", # FP load single
820 "lfd", "lfdx", "lfdu", "lfdux", "lfiwzx", "lfiwax", # FP load dbl
821 "lha", "lharx", "lhau", "lhaux", "lhax", # load half
822 "lhbrx", "lhz", "lhzu", "lhzux", "lhzx", # more load half
823 "lwa", "lwarx", "lwaux", "lwax", "lwbrx", # load word
824 "lwz", "lwzcix", "lwzu", "lwzux", "lwzx", # more load word
825 ]
826 is_st = v30b_op in [
827 "stb", "stbcix", "stbcx", "stbu", "stbux", "stbx",
828 "std", "stdbrx", "stdcx", "stdu", "stdux", "stdx",
829 "stfs", "stfsx", "stfsu", "stfux", # FP store sgl
830 "stfd", "stfdx", "stfdu", "stfdux", "stfiwx", # FP store dbl
831 "sth", "sthbrx", "sthcx", "sthu", "sthux", "sthx",
832 "stw", "stwbrx", "stwcx", "stwu", "stwux", "stwx",
833 ]
834 # use this to determine if the SVP64 RM format is different.
835 # see https://libre-soc.org/openpower/sv/ldst/
836 is_ldst = is_ld or is_st
837
838 # branch-conditional detection
839 is_bc = v30b_op in [
840 "bc", "bclr",
841 ]
842
843 # parts of svp64_rm
844 mmode = 0 # bit 0
845 pmask = 0 # bits 1-3
846 destwid = 0 # bits 4-5
847 srcwid = 0 # bits 6-7
848 subvl = 0 # bits 8-9
849 smask = 0 # bits 16-18 but only for twin-predication
850 mode = 0 # bits 19-23
851
852 mask_m_specified = False
853 has_pmask = False
854 has_smask = False
855
856 saturation = None
857 src_zero = 0
858 dst_zero = 0
859 sv_mode = None
860
861 mapreduce = False
862 reverse_gear = False
863 mapreduce_crm = False
864 mapreduce_svm = False
865
866 predresult = False
867 failfirst = False
868 ldst_elstride = 0
869
870 # branch-conditional bits
871 bc_all = 0
872 bc_lru = 0
873 bc_brc = 0
874 bc_svstep = 0
875 bc_vsb = 0
876 bc_vlset = 0
877 bc_vli = 0
878 bc_snz = 0
879
880 # ok let's start identifying opcode augmentation fields
881 for encmode in opmodes:
882 # predicate mask (src and dest)
883 if encmode.startswith("m="):
884 pme = encmode
885 pmmode, pmask = decode_predicate(encmode[2:])
886 smmode, smask = pmmode, pmask
887 mmode = pmmode
888 mask_m_specified = True
889 # predicate mask (dest)
890 elif encmode.startswith("dm="):
891 pme = encmode
892 pmmode, pmask = decode_predicate(encmode[3:])
893 mmode = pmmode
894 has_pmask = True
895 # predicate mask (src, twin-pred)
896 elif encmode.startswith("sm="):
897 sme = encmode
898 smmode, smask = decode_predicate(encmode[3:])
899 mmode = smmode
900 has_smask = True
901 # shifted LD/ST
902 elif encmode.startswith("sh"):
903 ldst_shift = True
904 # vec2/3/4
905 elif encmode.startswith("vec"):
906 subvl = decode_subvl(encmode[3:])
907 # elwidth
908 elif encmode.startswith("ew="):
909 destwid = decode_elwidth(encmode[3:])
910 elif encmode.startswith("sw="):
911 srcwid = decode_elwidth(encmode[3:])
912 # element-strided LD/ST
913 elif encmode == 'els':
914 ldst_elstride = 1
915 # saturation
916 elif encmode == 'sats':
917 assert sv_mode is None
918 saturation = 1
919 sv_mode = 0b10
920 elif encmode == 'satu':
921 assert sv_mode is None
922 sv_mode = 0b10
923 saturation = 0
924 # predicate zeroing
925 elif encmode == 'sz':
926 src_zero = 1
927 elif encmode == 'dz':
928 dst_zero = 1
929 # failfirst
930 elif encmode.startswith("ff="):
931 assert sv_mode is None
932 sv_mode = 0b01
933 failfirst = decode_ffirst(encmode[3:])
934 # predicate-result, interestingly same as fail-first
935 elif encmode.startswith("pr="):
936 assert sv_mode is None
937 sv_mode = 0b11
938 predresult = decode_ffirst(encmode[3:])
939 # map-reduce mode, reverse-gear
940 elif encmode == 'mrr':
941 assert sv_mode is None
942 sv_mode = 0b00
943 mapreduce = True
944 reverse_gear = True
945 # map-reduce mode
946 elif encmode == 'mr':
947 assert sv_mode is None
948 sv_mode = 0b00
949 mapreduce = True
950 elif encmode == 'crm': # CR on map-reduce
951 assert sv_mode is None
952 sv_mode = 0b00
953 mapreduce_crm = True
954 elif encmode == 'svm': # sub-vector mode
955 mapreduce_svm = True
956 elif is_bc:
957 if encmode == 'all':
958 bc_all = 1
959 elif encmode == 'st': # svstep mode
960 bc_step = 1
961 elif encmode == 'sr': # svstep BRc mode
962 bc_step = 1
963 bc_brc = 1
964 elif encmode == 'vs': # VLSET mode
965 bc_vlset = 1
966 elif encmode == 'vsi': # VLSET mode with VLI (VL inclusives)
967 bc_vlset = 1
968 bc_vli = 1
969 elif encmode == 'vsb': # VLSET mode with VSb
970 bc_vlset = 1
971 bc_vsb = 1
972 elif encmode == 'vsbi': # VLSET mode with VLI and VSb
973 bc_vlset = 1
974 bc_vli = 1
975 bc_vsb = 1
976 elif encmode == 'snz': # sz (only) already set above
977 src_zero = 1
978 bc_snz = 1
979 elif encmode == 'lu': # LR update mode
980 bc_lru = 1
981 else:
982 raise AssertionError("unknown encmode %s" % encmode)
983 else:
984 raise AssertionError("unknown encmode %s" % encmode)
985
986 if ptype == '2P':
987 # since m=xx takes precedence (overrides) sm=xx and dm=xx,
988 # treat them as mutually exclusive
989 if mask_m_specified:
990 assert not has_smask,\
991 "cannot have both source-mask and predicate mask"
992 assert not has_pmask,\
993 "cannot have both dest-mask and predicate mask"
994 # since the default is INT predication (ALWAYS), if you
995 # specify one CR mask, you must specify both, to avoid
996 # mixing INT and CR reg types
997 if has_pmask and pmmode == 1:
998 assert has_smask, \
999 "need explicit source-mask in CR twin predication"
1000 if has_smask and smmode == 1:
1001 assert has_pmask, \
1002 "need explicit dest-mask in CR twin predication"
1003 # sanity-check that 2Pred mask is same mode
1004 if has_pmask and has_smask:
1005 assert smmode == pmmode, \
1006 "predicate masks %s and %s must be same reg type" % \
1007 (pme, sme)
1008
1009 # sanity-check that twin-predication mask only specified in 2P mode
1010 if ptype == '1P':
1011 assert not has_smask, \
1012 "source-mask can only be specified on Twin-predicate ops"
1013 assert not has_pmask, \
1014 "dest-mask can only be specified on Twin-predicate ops"
1015
1016 # construct the mode field, doing sanity-checking along the way
1017 if mapreduce_svm:
1018 assert sv_mode == 0b00, "sub-vector mode in mapreduce only"
1019 assert subvl != 0, "sub-vector mode not possible on SUBVL=1"
1020
1021 if src_zero:
1022 assert has_smask or mask_m_specified, \
1023 "src zeroing requires a source predicate"
1024 if dst_zero:
1025 assert has_pmask or mask_m_specified, \
1026 "dest zeroing requires a dest predicate"
1027
1028 # check LDST shifted, only available in "normal" mode
1029 if is_ldst and ldst_shift:
1030 assert sv_mode is None, \
1031 "LD shift cannot have modes (%s) applied" % sv_mode
1032
1033 # okaaay, so there are 4 different modes, here, which will be
1034 # partly-merged-in: is_ldst is merged in with "normal", but
1035 # is_bc is so different it's done separately. likewise is_cr
1036 # (when it is done). here are the maps:
1037
1038 # for "normal" arithmetic: https://libre-soc.org/openpower/sv/normal/
1039 """
1040 | 0-1 | 2 | 3 4 | description |
1041 | --- | --- |---------|-------------------------- |
1042 | 00 | 0 | dz sz | normal mode |
1043 | 00 | 1 | 0 RG | scalar reduce mode (mapreduce), SUBVL=1 |
1044 | 00 | 1 | 1 / | parallel reduce mode (mapreduce), SUBVL=1 |
1045 | 00 | 1 | SVM RG | subvector reduce mode, SUBVL>1 |
1046 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1047 | 01 | inv | VLi RC1 | Rc=0: ffirst z/nonz |
1048 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1049 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1050 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1051 """
1052
1053 # https://libre-soc.org/openpower/sv/ldst/
1054 # for LD/ST-immediate:
1055 """
1056 | 0-1 | 2 | 3 4 | description |
1057 | --- | --- |---------|--------------------------- |
1058 | 00 | 0 | dz els | normal mode |
1059 | 00 | 1 | dz shf | shift mode |
1060 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1061 | 01 | inv | els RC1 | Rc=0: ffirst z/nonz |
1062 | 10 | N | dz els | sat mode: N=0/1 u/s |
1063 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1064 | 11 | inv | els RC1 | Rc=0: pred-result z/nonz |
1065 """
1066
1067 # for LD/ST-indexed (RA+RB):
1068 """
1069 | 0-1 | 2 | 3 4 | description |
1070 | --- | --- |---------|-------------------------- |
1071 | 00 | SEA | dz sz | normal mode |
1072 | 01 | SEA | dz sz | Strided (scalar only source) |
1073 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1074 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1075 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1076 """
1077
1078 # and leaving out branches and cr_ops for now because they're
1079 # under development
1080 """ TODO branches and cr_ops
1081 """
1082
1083 # now create mode and (overridden) src/dst widths
1084 # XXX TODO: sanity-check bc modes
1085 if is_bc:
1086 sv_mode = ((bc_svstep << SVP64MODE.MOD2_MSB) |
1087 (bc_vlset << SVP64MODE.MOD2_LSB) |
1088 (bc_snz << SVP64MODE.BC_SNZ))
1089 srcwid = (bc_vsb << 1) | bc_lru
1090 destwid = (bc_lru << 1) | bc_all
1091
1092 else:
1093
1094 ######################################
1095 # "normal" mode
1096 if sv_mode is None:
1097 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1098 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1099 if is_ldst:
1100 # TODO: for now, LD/ST-indexed is ignored.
1101 mode |= ldst_elstride << SVP64MODE.ELS_NORMAL # el-strided
1102 # shifted mode
1103 if ldst_shift:
1104 mode |= 1 << SVP64MODE.LDST_SHIFT
1105 else:
1106 # TODO, reduce and subvector mode
1107 # 00 1 dz CRM reduce mode (mapreduce), SUBVL=1
1108 # 00 1 SVM CRM subvector reduce mode, SUBVL>1
1109 pass
1110 sv_mode = 0b00
1111
1112 ######################################
1113 # "mapreduce" modes
1114 elif sv_mode == 0b00:
1115 mode |= (0b1 << SVP64MODE.REDUCE) # sets mapreduce
1116 assert dst_zero == 0, "dest-zero not allowed in mapreduce mode"
1117 if reverse_gear:
1118 mode |= (0b1 << SVP64MODE.RG) # sets Reverse-gear mode
1119 if mapreduce_crm:
1120 mode |= (0b1 << SVP64MODE.CRM) # sets CRM mode
1121 assert rc_mode, "CRM only allowed when Rc=1"
1122 # bit of weird encoding to jam zero-pred or SVM mode in.
1123 # SVM mode can be enabled only when SUBVL=2/3/4 (vec2/3/4)
1124 if subvl == 0:
1125 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1126 elif mapreduce_svm:
1127 mode |= (0b1 << SVP64MODE.SVM) # sets SVM mode
1128
1129 ######################################
1130 # "failfirst" modes
1131 elif sv_mode == 0b01:
1132 assert src_zero == 0, "dest-zero not allowed in failfirst mode"
1133 if failfirst == 'RC1':
1134 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1135 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1136 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1137 elif failfirst == '~RC1':
1138 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1139 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1140 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1141 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1142 else:
1143 assert dst_zero == 0, "dst-zero not allowed in ffirst BO"
1144 assert rc_mode, "ffirst BO only possible when Rc=1"
1145 mode |= (failfirst << SVP64MODE.BO_LSB) # set BO
1146
1147 ######################################
1148 # "saturation" modes
1149 elif sv_mode == 0b10:
1150 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1151 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1152 mode |= (saturation << SVP64MODE.N) # signed/us saturation
1153
1154 ######################################
1155 # "predicate-result" modes. err... code-duplication from ffirst
1156 elif sv_mode == 0b11:
1157 assert src_zero == 0, "dest-zero not allowed in predresult mode"
1158 if predresult == 'RC1':
1159 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1160 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1161 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1162 elif predresult == '~RC1':
1163 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1164 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1165 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1166 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1167 else:
1168 assert dst_zero == 0, "dst-zero not allowed in pr-mode BO"
1169 assert rc_mode, "pr-mode BO only possible when Rc=1"
1170 mode |= (predresult << SVP64MODE.BO_LSB) # set BO
1171
1172 # whewww.... modes all done :)
1173 # now put into svp64_rm
1174 mode |= sv_mode
1175 # mode: bits 19-23
1176 svp64_rm.mode.eq(SelectableInt(mode, SVP64RM_MODE_SIZE))
1177
1178 # put in predicate masks into svp64_rm
1179 if ptype == '2P':
1180 # source pred: bits 16-18
1181 svp64_rm.smask.eq(SelectableInt(smask, SVP64RM_SMASK_SIZE))
1182 # mask mode: bit 0
1183 svp64_rm.mmode.eq(SelectableInt(mmode, SVP64RM_MMODE_SIZE))
1184 # 1-pred: bits 1-3
1185 svp64_rm.mask.eq(SelectableInt(pmask, SVP64RM_MASK_SIZE))
1186
1187 # and subvl: bits 8-9
1188 svp64_rm.subvl.eq(SelectableInt(subvl, SVP64RM_SUBVL_SIZE))
1189
1190 # put in elwidths
1191 # srcwid: bits 6-7
1192 svp64_rm.ewsrc.eq(SelectableInt(srcwid, SVP64RM_EWSRC_SIZE))
1193 # destwid: bits 4-5
1194 svp64_rm.elwidth.eq(SelectableInt(destwid, SVP64RM_ELWIDTH_SIZE))
1195
1196 # nice debug printout. (and now for something completely different)
1197 # https://youtu.be/u0WOIwlXE9g?t=146
1198 svp64_rm_value = svp64_rm.spr.value
1199 log("svp64_rm", hex(svp64_rm_value), bin(svp64_rm_value))
1200 log(" mmode 0 :", bin(mmode))
1201 log(" pmask 1-3 :", bin(pmask))
1202 log(" dstwid 4-5 :", bin(destwid))
1203 log(" srcwid 6-7 :", bin(srcwid))
1204 log(" subvl 8-9 :", bin(subvl))
1205 log(" mode 19-23:", bin(mode))
1206 offs = 2 if etype == 'EXTRA2' else 3 # 2 or 3 bits
1207 for idx, sv_extra in extras.items():
1208 if idx is None:
1209 continue
1210 if idx[0] == 'imm':
1211 continue
1212 srcdest, idx, duplicate = idx
1213 start = (10+idx*offs)
1214 end = start + offs-1
1215 log(" extra%d %2d-%2d:" % (idx, start, end),
1216 bin(sv_extra))
1217 if ptype == '2P':
1218 log(" smask 16-17:", bin(smask))
1219 log()
1220
1221 # first, construct the prefix from its subfields
1222 svp64_prefix = SVP64PrefixFields()
1223 svp64_prefix.major.eq(SelectableInt(0x1, SV64P_MAJOR_SIZE))
1224 svp64_prefix.pid.eq(SelectableInt(0b11, SV64P_PID_SIZE))
1225 svp64_prefix.rm.eq(svp64_rm.spr)
1226
1227 # fiinally yield the svp64 prefix and the thingy. v3.0b opcode
1228 rc = '.' if rc_mode else ''
1229 yield ".long 0x%08x" % svp64_prefix.insn.value
1230 log(v30b_op, v30b_newfields)
1231 # argh, sv.fmadds etc. need to be done manually
1232 if v30b_op == 'ffmadds':
1233 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1234 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1235 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1236 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1237 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1238 opcode |= 0b00101 << (32-31) # bits 26-30
1239 if rc:
1240 opcode |= 1 # Rc, bit 31.
1241 yield ".long 0x%x" % opcode
1242 # argh, sv.fdmadds need to be done manually
1243 elif v30b_op == 'fdmadds':
1244 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1245 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1246 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1247 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1248 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1249 opcode |= 0b01111 << (32-31) # bits 26-30
1250 if rc:
1251 opcode |= 1 # Rc, bit 31.
1252 yield ".long 0x%x" % opcode
1253 # argh, sv.ffadds etc. need to be done manually
1254 elif v30b_op == 'ffadds':
1255 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1256 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1257 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1258 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1259 opcode |= 0b01101 << (32-31) # bits 26-30
1260 if rc:
1261 opcode |= 1 # Rc, bit 31.
1262 yield ".long 0x%x" % opcode
1263 # sigh have to do svstep here manually for now...
1264 elif v30b_op in ["svstep", "svstep."]:
1265 insn = 22 << (31-5) # opcode 22, bits 0-5
1266 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1267 insn |= int(v30b_newfields[1]) << (31-22) # SVi , bits 16-22
1268 insn |= int(v30b_newfields[2]) << (31-25) # vf , bit 25
1269 insn |= 0b10011 << (31-30) # XO , bits 26..30
1270 if opcode == 'svstep.':
1271 insn |= 1 << (31-31) # Rc=1 , bit 31
1272 log("svstep", bin(insn))
1273 yield ".long 0x%x" % insn
1274 # argh, sv.fcoss etc. need to be done manually
1275 elif v30b_op in ["fcoss", "fcoss."]:
1276 insn = 59 << (31-5) # opcode 59, bits 0-5
1277 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1278 insn |= int(v30b_newfields[1]) << (31-20) # RB , bits 16-20
1279 insn |= 0b1000101110 << (31-30) # XO , bits 21..30
1280 if opcode == 'fcoss.':
1281 insn |= 1 << (31-31) # Rc=1 , bit 31
1282 log("fcoss", bin(insn))
1283 yield ".long 0x%x" % insn
1284
1285 else:
1286 yield "%s %s" % (v30b_op+rc, ", ".join(v30b_newfields))
1287 log("new v3.0B fields", v30b_op, v30b_newfields)
1288
1289 def translate(self, lst):
1290 for insn in lst:
1291 yield from self.translate_one(insn)
1292
1293
1294 def macro_subst(macros, txt):
1295 again = True
1296 log("subst", txt, macros)
1297 while again:
1298 again = False
1299 for macro, value in macros.items():
1300 if macro == txt:
1301 again = True
1302 replaced = txt.replace(macro, value)
1303 log("macro", txt, "replaced", replaced, macro, value)
1304 txt = replaced
1305 continue
1306 toreplace = '%s.s' % macro
1307 if toreplace == txt:
1308 again = True
1309 replaced = txt.replace(toreplace, "%s.s" % value)
1310 log("macro", txt, "replaced", replaced, toreplace, value)
1311 txt = replaced
1312 continue
1313 toreplace = '%s.v' % macro
1314 if toreplace == txt:
1315 again = True
1316 replaced = txt.replace(toreplace, "%s.v" % value)
1317 log("macro", txt, "replaced", replaced, toreplace, value)
1318 txt = replaced
1319 continue
1320 toreplace = '(%s)' % macro
1321 if toreplace in txt:
1322 again = True
1323 replaced = txt.replace(toreplace, '(%s)' % value)
1324 log("macro", txt, "replaced", replaced, toreplace, value)
1325 txt = replaced
1326 continue
1327 log(" processed", txt)
1328 return txt
1329
1330
1331 def get_ws(line):
1332 # find whitespace
1333 ws = ''
1334 while line:
1335 if not line[0].isspace():
1336 break
1337 ws += line[0]
1338 line = line[1:]
1339 return ws, line
1340
1341
1342 def asm_process():
1343 # get an input file and an output file
1344 args = sys.argv[1:]
1345 if len(args) == 0:
1346 infile = sys.stdin
1347 outfile = sys.stdout
1348 # read the whole lot in advance in case of in-place
1349 lines = list(infile.readlines())
1350 elif len(args) != 2:
1351 print("pysvp64asm [infile | -] [outfile | -]", file=sys.stderr)
1352 exit(0)
1353 else:
1354 if args[0] == '--':
1355 infile = sys.stdin
1356 else:
1357 infile = open(args[0], "r")
1358 # read the whole lot in advance in case of in-place overwrite
1359 lines = list(infile.readlines())
1360
1361 if args[1] == '--':
1362 outfile = sys.stdout
1363 else:
1364 outfile = open(args[1], "w")
1365
1366 # read the line, look for custom insn, process it
1367 macros = {} # macros which start ".set"
1368 isa = SVP64Asm([])
1369 for line in lines:
1370 op = line.split("#")[0].strip()
1371 # identify macros
1372 if op.startswith(".set"):
1373 macro = op[4:].split(",")
1374 (macro, value) = map(str.strip, macro)
1375 macros[macro] = value
1376 if not op.startswith('sv.') and not op.startswith(tuple(CUSTOM_INSNS)):
1377 outfile.write(line)
1378 continue
1379
1380 (ws, line) = get_ws(line)
1381 lst = isa.translate_one(op, macros)
1382 lst = '; '.join(lst)
1383 outfile.write("%s%s # %s\n" % (ws, lst, op))
1384
1385
1386 if __name__ == '__main__':
1387 lst = ['slw 3, 1, 4',
1388 'extsw 5, 3',
1389 'sv.extsw 5, 3',
1390 'sv.cmpi 5, 1, 3, 2',
1391 'sv.setb 5, 31',
1392 'sv.isel 64.v, 3, 2, 65.v',
1393 'sv.setb/dm=r3/sm=1<<r3 5, 31',
1394 'sv.setb/m=r3 5, 31',
1395 'sv.setb/vec2 5, 31',
1396 'sv.setb/sw=8/ew=16 5, 31',
1397 'sv.extsw./ff=eq 5, 31',
1398 'sv.extsw./satu/sz/dz/sm=r3/dm=r3 5, 31',
1399 'sv.extsw./pr=eq 5.v, 31',
1400 'sv.add. 5.v, 2.v, 1.v',
1401 'sv.add./m=r3 5.v, 2.v, 1.v',
1402 ]
1403 lst += [
1404 'sv.stw 5.v, 4(1.v)',
1405 'sv.ld 5.v, 4(1.v)',
1406 'setvl. 2, 3, 4, 0, 1, 1',
1407 'sv.setvl. 2, 3, 4, 0, 1, 1',
1408 ]
1409 lst = [
1410 "sv.stfsu 0.v, 16(4.v)",
1411 ]
1412 lst = [
1413 "sv.stfsu/els 0.v, 16(4)",
1414 ]
1415 lst = [
1416 'sv.add./mr 5.v, 2.v, 1.v',
1417 ]
1418 macros = {'win2': '50', 'win': '60'}
1419 lst = [
1420 'sv.addi win2.v, win.v, -1',
1421 'sv.add./mrr 5.v, 2.v, 1.v',
1422 #'sv.lhzsh 5.v, 11(9.v), 15',
1423 #'sv.lwzsh 5.v, 11(9.v), 15',
1424 'sv.ffmadds 6.v, 2.v, 4.v, 6.v',
1425 ]
1426 lst = [
1427 #'sv.fmadds 0.v, 8.v, 16.v, 4.v',
1428 #'sv.ffadds 0.v, 8.v, 4.v',
1429 'svremap 11, 0, 1, 2, 3, 2, 1',
1430 'svshape 8, 1, 1, 1, 0',
1431 'svshape 8, 1, 1, 1, 1',
1432 ]
1433 lst = [
1434 #'sv.lfssh 4.v, 11(8.v), 15',
1435 #'sv.lwzsh 4.v, 11(8.v), 15',
1436 #'sv.svstep. 2.v, 4, 0',
1437 #'sv.fcfids. 48.v, 64.v',
1438 'sv.fcoss. 80.v, 0.v',
1439 'sv.fcoss. 20.v, 0.v',
1440 ]
1441 lst = [
1442 'sv.bc/all 3,12,192',
1443 'sv.bclr/vsbi 3,81.v,192',
1444 'sv.ld 5.v, 4(1.v)',
1445 'sv.svstep. 2.v, 4, 0',
1446 ]
1447 lst = [
1448 'maxs 3,12,5',
1449 'maxs. 3,12,5',
1450 'avgadd 3,12,5',
1451 'absdu 3,12,5',
1452 'absds 3,12,5',
1453 'absdacu 3,12,5',
1454 'absdacs 3,12,5',
1455 'cprop 3,12,5',
1456 'svindex 0,0,1,0,0,0,0',
1457 ]
1458 lst = [
1459 'sv.svstep./m=r3 2.v, 4, 0',
1460 ]
1461 isa = SVP64Asm(lst, macros=macros)
1462 log("list", list(isa))
1463 asm_process()