format .../trans/svp64.py
[openpower-isa.git] / src / openpower / sv / trans / svp64.py
1 # SPDX-License-Identifier: LGPLv3+
2 # Copyright (C) 2021 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
3 # Funded by NLnet http://nlnet.nl
4
5 """SVP64 OpenPOWER v3.0B assembly translator
6
7 This class takes raw svp64 assembly mnemonics (aliases excluded) and creates
8 an EXT001-encoded "svp64 prefix" (as a .long) followed by a v3.0B opcode.
9
10 It is very simple and straightforward, the only weirdness being the
11 extraction of the register information and conversion to v3.0B numbering.
12
13 Encoding format of svp64: https://libre-soc.org/openpower/sv/svp64/
14 Encoding format of arithmetic: https://libre-soc.org/openpower/sv/normal/
15 Encoding format of LDST: https://libre-soc.org/openpower/sv/ldst/
16 **TODO format of branches: https://libre-soc.org/openpower/sv/branches/**
17 **TODO format of CRs: https://libre-soc.org/openpower/sv/cr_ops/**
18 Bugtracker: https://bugs.libre-soc.org/show_bug.cgi?id=578
19 """
20
21 import functools
22 import os
23 import sys
24 from collections import OrderedDict
25
26 from openpower.decoder.isa.caller import (SVP64PrefixFields, SV64P_MAJOR_SIZE,
27 SV64P_PID_SIZE, SVP64RMFields,
28 SVP64RM_EXTRA2_SPEC_SIZE,
29 SVP64RM_EXTRA3_SPEC_SIZE,
30 SVP64RM_MODE_SIZE,
31 SVP64RM_SMASK_SIZE,
32 SVP64RM_MMODE_SIZE,
33 SVP64RM_MASK_SIZE,
34 SVP64RM_SUBVL_SIZE,
35 SVP64RM_EWSRC_SIZE,
36 SVP64RM_ELWIDTH_SIZE)
37 from openpower.decoder.pseudo.pagereader import ISA
38 from openpower.decoder.power_svp64 import SVP64RM, get_regtype, decode_extra
39 from openpower.decoder.selectable_int import SelectableInt
40 from openpower.consts import SVP64MODE
41
42 # for debug logging
43 from openpower.util import log
44
45
46 def instruction(*fields):
47 def instruction(insn, desc):
48 (value, start, end) = desc
49 bits = ((1,) * ((end + 1) - start))
50 mask = 0
51 for bit in bits:
52 mask = ((mask << 1) | bit)
53 return (insn | ((value & mask) << (31 - end)))
54
55 return functools.reduce(instruction, fields, 0)
56
57
58 def setvl(fields, Rc):
59 """
60 setvl is a *32-bit-only* instruction. It controls SVSTATE.
61 It is *not* a 64-bit-prefixed Vector instruction (no sv.setvl, yet),
62 it is a Vector *control* instruction.
63
64 * setvl RT,RA,SVi,vf,vs,ms
65
66 1.6.28 SVL-FORM - from fields.txt
67 |0 |6 |11 |16 |23 |24 |25 |26 |31 |
68 | PO | RT | RA | SVi |ms |vs |vf | XO |Rc |
69 """
70 PO = 22
71 XO = 0b11011
72 # ARRRGH these are in a non-obvious order in openpower/isa/simplev.mdwn
73 # compared to the SVL-Form above. sigh
74 # setvl RT,RA,SVi,vf,vs,ms
75 (RT, RA, SVi, vf, vs, ms) = fields
76 SVi -= 1
77 return instruction(
78 (PO, 0, 5),
79 (RT, 6, 10),
80 (RA, 11, 15),
81 (SVi, 16, 22),
82 (ms, 23, 23),
83 (vs, 24, 24),
84 (vf, 25, 25),
85 (XO, 26, 30),
86 (Rc, 31, 31),
87 )
88
89
90 def svstep(fields, Rc):
91 """
92 svstep is a 32-bit instruction. It updates SVSTATE.
93 It *can* be SVP64-prefixed, to indicate that its registers
94 are Vectorised.
95
96 * svstep RT,SVi,vf
97
98 # 1.6.28 SVL-FORM - from fields.txt
99 # |0 |6 |11 |16 |23 |24 |25 |26 |31 |
100 # | PO | RT | / | SVi |/ |/ |vf | XO |Rc |
101
102 """
103 PO = 22
104 XO = 0b10011
105 (RT, SVi, vf) = fields
106 SVi -= 1
107 return instruction(
108 (PO, 0, 5),
109 (RT, 6, 10),
110 (0, 11, 15),
111 (SVi, 16, 22),
112 (0, 23, 23),
113 (0, 24, 24),
114 (vf, 25, 25),
115 (XO, 26, 30),
116 (Rc, 31, 31),
117 )
118
119
120 def svshape(fields):
121 """
122 svshape is a *32-bit-only* instruction. It updates SVSHAPE and SVSTATE.
123 It is *not* a 64-bit-prefixed Vector instruction (no sv.svshape, yet),
124 it is a Vector *control* instruction.
125
126 * svshape SVxd,SVyd,SVzd,SVrm,vf
127
128 # 1.6.33 SVM-FORM from fields.txt
129 # |0 |6 |11 |16 |21 |25 |26 |31 |
130 # | PO | SVxd | SVyd | SVzd | SVrm |vf | XO |
131
132 """
133 PO = 22
134 XO = 0b011001
135 (SVxd, SVyd, SVzd, SVrm, vf) = fields
136 SVxd -= 1
137 SVyd -= 1
138 SVzd -= 1
139 return instruction(
140 (PO, 0, 5),
141 (SVxd, 6, 10),
142 (SVyd, 11, 15),
143 (SVzd, 16, 20),
144 (SVrm, 21, 24),
145 (vf, 25, 25),
146 (XO, 26, 31),
147 )
148
149
150 def svindex(fields):
151 """
152 svindex is a *32-bit-only* instruction. It is a convenience
153 instruction that reduces instruction count for Indexed REMAP
154 Mode.
155 It is *not* a 64-bit-prefixed Vector instruction (no sv.svindex, yet),
156 it is a Vector *control* instruction.
157
158 1.6.28 SVI-FORM
159 |0 |6 |11 |16 |21 |23|24|25|26 31|
160 | PO | SVG|rmm | SVd |ew |yx|mm|sk| XO |
161 """
162 # note that the dimension field one subtracted
163 PO = 22
164 XO = 0b101001
165 (SVG, rmm, SVd, ew, yx, mm, sk) = fields
166 SVd -= 1
167 return instruction(
168 (PO, 0, 5),
169 (SVG, 6, 10),
170 (rmm, 11, 15),
171 (SVd, 16, 20),
172 (ew, 21, 22),
173 (yx, 23, 23),
174 (mm, 24, 24),
175 (sk, 25, 25),
176 (XO, 26, 31),
177 )
178
179
180 def svremap(fields):
181 """
182 this is a *32-bit-only* instruction. It updates the SVSHAPE SPR
183 it is *not* a 64-bit-prefixed Vector instruction (no sv.svremap),
184 it is a Vector *control* instruction.
185
186 * svremap SVme,mi0,mi1,mi2,mo0,mo1,pst
187
188 # 1.6.34 SVRM-FORM
189 |0 |6 |11 |13 |15 |17 |19 |21 |22 |26 |31 |
190 | PO | SVme |mi0 | mi1 | mi2 | mo0 | mo1 |pst |/// | XO |
191
192 """
193 PO = 22
194 XO = 0b111001
195 (SVme, mi0, mi1, mi2, mo0, mo1, pst) = fields
196 return instruction(
197 (PO, 0, 5),
198 (SVme, 6, 10),
199 (mi0, 11, 12),
200 (mi1, 13, 14),
201 (mi2, 15, 16),
202 (mo0, 17, 18),
203 (mo1, 19, 20),
204 (pst, 21, 21),
205 (0, 22, 25),
206 (XO, 26, 31),
207 )
208
209
210 # ok from here-on down these are added as 32-bit instructions
211 # and are here only because binutils (at present) doesn't have
212 # them (that's being fixed!)
213 # they can - if implementations then choose - be Vectorised
214 # because they are general-purpose scalar instructions
215 def bmask(fields):
216 """
217 1.6.2.2 BM2-FORM
218 |0 |6 |11 |16 |21 |26 |27 31|
219 | PO | RT | RA | RB |bm |L | XO |
220 """
221 PO = 22
222 XO = 0b010001
223 (RT, RA, RB, bm, L) = fields
224 return instruction(
225 (PO, 0, 5),
226 (RT, 6, 10),
227 (RA, 11, 15),
228 (RB, 16, 20),
229 (bm, 21, 25),
230 (L, 26, 26),
231 (XO, 27, 31),
232 )
233
234
235 def fsins(fields, Rc):
236 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
237 # however we are out of space with opcode 22
238 # 1.6.7 X-FORM
239 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
240 # | PO | FRT | /// | FRB | XO |Rc |
241 PO = 59
242 XO = 0b1000001110
243 (FRT, FRB) = fields
244 return instruction(
245 (PO, 0, 5),
246 (FRT, 6, 10),
247 (0, 11, 15),
248 (FRB, 16, 20),
249 (XO, 21, 30),
250 (Rc, 31, 31),
251 )
252
253
254 def fcoss(fields, Rc):
255 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
256 # however we are out of space with opcode 22
257 # 1.6.7 X-FORM
258 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
259 # | PO | FRT | /// | FRB | XO |Rc |
260 PO = 59
261 XO = 0b1000101110
262 (FRT, FRB) = fields
263 return instruction(
264 (PO, 0, 5),
265 (FRT, 6, 10),
266 (0, 11, 15),
267 (FRB, 16, 20),
268 (XO, 21, 30),
269 (Rc, 31, 31),
270 )
271
272
273 def ternlogi(fields, Rc):
274 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
275 # however we are out of space with opcode 22
276 # 1.6.34 TLI-FORM
277 # |0 |6 |11 |16 |21 |29 |31 |
278 # | PO | RT | RA | RB | TLI | XO |Rc |
279 PO = 5
280 XO = 0
281 (RT, RA, RB, TLI) = fields
282 return instruction(
283 (PO, 0, 5),
284 (RT, 6, 10),
285 (RA, 11, 15),
286 (RB, 16, 20),
287 (TLI, 21, 28),
288 (XO, 29, 30),
289 (Rc, 31, 31),
290 )
291
292
293 def grev(fields, Rc, imm, wide):
294 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
295 # however we are out of space with opcode 22
296 insn = PO = 5
297 # _ matches fields in table at:
298 # https://libre-soc.org/openPOwer/sv/bitmanip/
299 XO = 0b1_0010_110
300 if wide:
301 XO |= 0b100_000
302 if imm:
303 XO |= 0b1000_000
304 (RT, RA, XBI) = fields
305 insn = (insn << 5) | RT
306 insn = (insn << 5) | RA
307 if imm and not wide:
308 assert 0 <= XBI < 64
309 insn = (insn << 6) | XBI
310 insn = (insn << 9) | XO
311 else:
312 assert 0 <= XBI < 32
313 insn = (insn << 5) | XBI
314 insn = (insn << 10) | XO
315 insn = (insn << 1) | Rc
316 return insn
317
318
319 def av(fields, XO, Rc):
320 # 1.6.7 X-FORM
321 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |20|21 |31 |
322 # | PO | RT | RA | RB | XO |Rc |
323 PO = 22
324 (RT, RA, RB) = fields
325 return instruction(
326 (PO, 0, 5),
327 (RT, 6, 10),
328 (RA, 11, 15),
329 (RB, 16, 20),
330 (XO, 21, 30),
331 (Rc, 31, 31),
332 )
333
334
335 def fmvis(fields):
336 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
337 # V3.0B 1.6.6 DX-FORM
338 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |26|27 |31 |
339 # | PO | FRS | d1 | d0 | XO |d2 |
340 PO = 22
341 XO = 0b00011
342 (FRS, imm) = fields
343 # first split imm into d1, d0 and d2. sigh
344 d2 = (imm & 1) # LSB (0)
345 d1 = (imm >> 1) & 0b11111 # bits 1-5
346 d0 = (imm >> 6) # MSBs 6-15
347 return instruction(
348 (PO, 0, 5),
349 (FRS, 6, 10),
350 (d1, 11, 15),
351 (d0, 16, 25),
352 (XO, 26, 30),
353 (d2, 31, 31),
354 )
355
356
357 def fishmv(fields):
358 # XXX WARNING THESE ARE NOT APPROVED BY OPF ISA WG
359 # V3.0B 1.6.6 DX-FORM
360 # |0 |6 |7|8|9 |10 |11|12|13 |15|16|17 |26|27 |31 |
361 # | PO | FRS | d1 | d0 | XO |d2 |
362 PO = 22
363 XO = 0b01011
364 (FRS, imm) = fields
365 # first split imm into d1, d0 and d2. sigh
366 d2 = (imm & 1) # LSB (0)
367 d1 = (imm >> 1) & 0b11111 # bits 1-5
368 d0 = (imm >> 6) # MSBs 6-15
369 return instruction(
370 (PO, 0, 5),
371 (FRS, 6, 10),
372 (d1, 11, 15),
373 (d0, 16, 25),
374 (XO, 26, 30),
375 (d2, 31, 31),
376 )
377
378
379 CUSTOM_INSNS = {}
380 for (name, hook) in (
381 ("setvl", setvl),
382 ("svstep", svstep),
383 ("fsins", fsins),
384 ("fcoss", fcoss),
385 ("ternlogi", ternlogi),
386 ):
387 CUSTOM_INSNS[name] = functools.partial(hook, Rc=False)
388 CUSTOM_INSNS[f"{name}."] = functools.partial(hook, Rc=True)
389 CUSTOM_INSNS["bmask"] = bmask
390 CUSTOM_INSNS["svshape"] = svshape
391 CUSTOM_INSNS["svindex"] = svindex
392 CUSTOM_INSNS["svremap"] = svremap
393 CUSTOM_INSNS["fmvis"] = fmvis
394 CUSTOM_INSNS["fishmv"] = fishmv
395
396 for (name, imm, wide) in (
397 ("grev", False, False),
398 ("grevi", True, False),
399 ("grevw", False, True),
400 ("grevwi", True, True),
401 ):
402 CUSTOM_INSNS[name] = functools.partial(grev,
403 imm=("i" in name), wide=("w" in name), Rc=False)
404 CUSTOM_INSNS[f"{name}."] = functools.partial(grev,
405 imm=("i" in name), wide=("w" in name), Rc=True)
406
407 for (name, XO) in (
408 ("maxs", 0b0111001110),
409 ("maxu", 0b0011001110),
410 ("minu", 0b0001001110),
411 ("mins", 0b0101001110),
412 ("absdu", 0b1011110110),
413 ("absds", 0b1001110110),
414 ("avgadd", 0b1101001110),
415 ("absdacu", 0b1111110110),
416 ("absdacs", 0b0111110110),
417 ("cprop", 0b0110001110),
418 ):
419 CUSTOM_INSNS[name] = functools.partial(av, XO=XO, Rc=False)
420 CUSTOM_INSNS[f"{name}."] = functools.partial(av, XO=XO, Rc=True)
421
422
423 # decode GPR into sv extra
424 def get_extra_gpr(etype, regmode, field):
425 if regmode == 'scalar':
426 # cut into 2-bits 5-bits SS FFFFF
427 sv_extra = field >> 5
428 field = field & 0b11111
429 else:
430 # cut into 5-bits 2-bits FFFFF SS
431 sv_extra = field & 0b11
432 field = field >> 2
433 return sv_extra, field
434
435
436 # decode 3-bit CR into sv extra
437 def get_extra_cr_3bit(etype, regmode, field):
438 if regmode == 'scalar':
439 # cut into 2-bits 3-bits SS FFF
440 sv_extra = field >> 3
441 field = field & 0b111
442 else:
443 # cut into 3-bits 4-bits FFF SSSS but will cut 2 zeros off later
444 sv_extra = field & 0b1111
445 field = field >> 4
446 return sv_extra, field
447
448
449 # decodes SUBVL
450 def decode_subvl(encoding):
451 pmap = {'2': 0b01, '3': 0b10, '4': 0b11}
452 assert encoding in pmap, \
453 "encoding %s for SUBVL not recognised" % encoding
454 return pmap[encoding]
455
456
457 # decodes elwidth
458 def decode_elwidth(encoding):
459 pmap = {'8': 0b11, '16': 0b10, '32': 0b01}
460 assert encoding in pmap, \
461 "encoding %s for elwidth not recognised" % encoding
462 return pmap[encoding]
463
464
465 # decodes predicate register encoding
466 def decode_predicate(encoding):
467 pmap = { # integer
468 '1<<r3': (0, 0b001),
469 'r3': (0, 0b010),
470 '~r3': (0, 0b011),
471 'r10': (0, 0b100),
472 '~r10': (0, 0b101),
473 'r30': (0, 0b110),
474 '~r30': (0, 0b111),
475 # CR
476 'lt': (1, 0b000),
477 'nl': (1, 0b001), 'ge': (1, 0b001), # same value
478 'gt': (1, 0b010),
479 'ng': (1, 0b011), 'le': (1, 0b011), # same value
480 'eq': (1, 0b100),
481 'ne': (1, 0b101),
482 'so': (1, 0b110), 'un': (1, 0b110), # same value
483 'ns': (1, 0b111), 'nu': (1, 0b111), # same value
484 }
485 assert encoding in pmap, \
486 "encoding %s for predicate not recognised" % encoding
487 return pmap[encoding]
488
489
490 # decodes "Mode" in similar way to BO field (supposed to, anyway)
491 def decode_bo(encoding):
492 pmap = { # TODO: double-check that these are the same as Branch BO
493 'lt': 0b000,
494 'nl': 0b001, 'ge': 0b001, # same value
495 'gt': 0b010,
496 'ng': 0b011, 'le': 0b011, # same value
497 'eq': 0b100,
498 'ne': 0b101,
499 'so': 0b110, 'un': 0b110, # same value
500 'ns': 0b111, 'nu': 0b111, # same value
501 }
502 assert encoding in pmap, \
503 "encoding %s for BO Mode not recognised" % encoding
504 return pmap[encoding]
505
506 # partial-decode fail-first mode
507
508
509 def decode_ffirst(encoding):
510 if encoding in ['RC1', '~RC1']:
511 return encoding
512 return decode_bo(encoding)
513
514
515 def decode_reg(field, macros=None):
516 if macros is None:
517 macros = {}
518 # decode the field number. "5.v" or "3.s" or "9"
519 # and now also "*0", and "*%0". note: *NOT* to add "*%rNNN" etc.
520 # https://bugs.libre-soc.org/show_bug.cgi?id=884#c0
521 if field.startswith(("*%", "*")):
522 if field.startswith("*%"):
523 field = field[2:]
524 else:
525 field = field[1:]
526 while field in macros:
527 field = macros[field]
528 return int(field), "vector" # actual register number
529
530 # try old convention (to be retired)
531 field = field.split(".")
532 regmode = 'scalar' # default
533 if len(field) == 2:
534 if field[1] == 's':
535 regmode = 'scalar'
536 elif field[1] == 'v':
537 regmode = 'vector'
538 field = int(field[0]) # actual register number
539 return field, regmode
540
541
542 def decode_imm(field):
543 ldst_imm = "(" in field and field[-1] == ')'
544 if ldst_imm:
545 return field[:-1].split("(")
546 else:
547 return None, field
548
549
550 def crf_extra(etype, regmode, field, extras):
551 """takes a CR Field number (CR0-CR127), splits into EXTRA2/3 and v3.0
552 the scalar/vector mode (crNN.v or crNN.s) changes both the format
553 of the EXTRA2/3 encoding as well as what range of registers is possible.
554 this function can be used for both BF/BFA and BA/BB/BT by first removing
555 the bottom 2 bits of BA/BB/BT then re-instating them after encoding.
556 see https://libre-soc.org/openpower/sv/svp64/appendix/#cr_extra
557 for specification
558 """
559 sv_extra, field = get_extra_cr_3bit(etype, regmode, field)
560 # now sanity-check (and shrink afterwards)
561 if etype == 'EXTRA2':
562 # 3-bit CR Field (BF, BFA) EXTRA2 encoding
563 if regmode == 'scalar':
564 # range is CR0-CR15 in increments of 1
565 assert (sv_extra >> 1) == 0, \
566 "scalar CR %s cannot fit into EXTRA2 %s" % \
567 (rname, str(extras[extra_idx]))
568 # all good: encode as scalar
569 sv_extra = sv_extra & 0b01
570 else: # vector
571 # range is CR0-CR127 in increments of 16
572 assert sv_extra & 0b111 == 0, \
573 "vector CR %s cannot fit into EXTRA2 %s" % \
574 (rname, str(extras[extra_idx]))
575 # all good: encode as vector (bit 2 set)
576 sv_extra = 0b10 | (sv_extra >> 3)
577 else:
578 # 3-bit CR Field (BF, BFA) EXTRA3 encoding
579 if regmode == 'scalar':
580 # range is CR0-CR31 in increments of 1
581 assert (sv_extra >> 2) == 0, \
582 "scalar CR %s cannot fit into EXTRA3 %s" % \
583 (rname, str(extras[extra_idx]))
584 # all good: encode as scalar
585 sv_extra = sv_extra & 0b11
586 else: # vector
587 # range is CR0-CR127 in increments of 8
588 assert sv_extra & 0b11 == 0, \
589 "vector CR %s cannot fit into EXTRA3 %s" % \
590 (rname, str(extras[extra_idx]))
591 # all good: encode as vector (bit 3 set)
592 sv_extra = 0b100 | (sv_extra >> 2)
593 return sv_extra, field
594
595
596 def to_number(field):
597 if field.startswith("0x"):
598 return eval(field)
599 if field.startswith("0b"):
600 return eval(field)
601 return int(field)
602
603
604 # decodes svp64 assembly listings and creates EXT001 svp64 prefixes
605 class SVP64Asm:
606 def __init__(self, lst, bigendian=False, macros=None):
607 if macros is None:
608 macros = {}
609 self.macros = macros
610 self.lst = lst
611 self.trans = self.translate(lst)
612 self.isa = ISA() # reads the v3.0B pseudo-code markdown files
613 self.svp64 = SVP64RM() # reads the svp64 Remap entries for registers
614 assert bigendian == False, "error, bigendian not supported yet"
615
616 def __iter__(self):
617 yield from self.trans
618
619 def translate_one(self, insn, macros=None):
620 if macros is None:
621 macros = {}
622 macros.update(self.macros)
623 isa = self.isa
624 svp64 = self.svp64
625 # find first space, to get opcode
626 ls = insn.split(' ')
627 opcode = ls[0]
628 # now find opcode fields
629 fields = ''.join(ls[1:]).split(',')
630 mfields = list(map(str.strip, fields))
631 log("opcode, fields", ls, opcode, mfields)
632 fields = []
633 # macro substitution
634 for field in mfields:
635 fields.append(macro_subst(macros, field))
636 log("opcode, fields substed", ls, opcode, fields)
637
638 # identify if it is a special instruction
639 custom_insn_hook = CUSTOM_INSNS.get(opcode)
640 if custom_insn_hook is not None:
641 fields = tuple(map(to_number, fields))
642 insn = custom_insn_hook(fields)
643 log(opcode, bin(insn))
644 yield ".long 0x%x" % insn
645 return
646
647 # identify if is a svp64 mnemonic
648 if not opcode.startswith('sv.'):
649 yield insn # unaltered
650 return
651 opcode = opcode[3:] # strip leading "sv"
652
653 # start working on decoding the svp64 op: sv.basev30Bop/vec2/mode
654 opmodes = opcode.split("/") # split at "/"
655 v30b_op_orig = opmodes.pop(0) # first is the v3.0B
656 # check instruction ends with dot
657 rc_mode = v30b_op_orig.endswith('.')
658 if rc_mode:
659 v30b_op = v30b_op_orig[:-1]
660 else:
661 v30b_op = v30b_op_orig
662
663 if v30b_op_orig not in isa.instr:
664 raise Exception("opcode %s of '%s' not supported" %
665 (v30b_op, insn))
666
667 if v30b_op_orig not in svp64.instrs:
668 raise Exception("opcode %s of '%s' not an svp64 instruction" %
669 (v30b_op, insn))
670 # get regs info "RT, RA, RB"
671 v30b_regs = isa.instr[v30b_op_orig].regs[0]
672 rm = svp64.instrs[v30b_op_orig] # one row of the svp64 RM CSV
673 log("v3.0B op", v30b_op, "Rc=1" if rc_mode else '')
674 log("v3.0B regs", opcode, v30b_regs)
675 log("RM", rm)
676
677 # right. the first thing to do is identify the ordering of
678 # the registers, by name. the EXTRA2/3 ordering is in
679 # rm['0']..rm['3'] but those fields contain the names RA, BB
680 # etc. we have to read the pseudocode to understand which
681 # reg is which in our instruction. sigh.
682
683 # first turn the svp64 rm into a "by name" dict, recording
684 # which position in the RM EXTRA it goes into
685 # also: record if the src or dest was a CR, for sanity-checking
686 # (elwidth overrides on CRs are banned)
687 decode = decode_extra(rm)
688 dest_reg_cr, src_reg_cr, svp64_src, svp64_dest = decode
689
690 log("EXTRA field index, src", svp64_src)
691 log("EXTRA field index, dest", svp64_dest)
692
693 # okaaay now we identify the field value (opcode N,N,N) with
694 # the pseudo-code info (opcode RT, RA, RB)
695 assert len(fields) == len(v30b_regs), \
696 "length of fields %s must match insn `%s` fields %s" % \
697 (str(v30b_regs), insn, str(fields))
698 opregfields = zip(fields, v30b_regs) # err that was easy
699
700 # now for each of those find its place in the EXTRA encoding
701 # note there is the possibility (for LD/ST-with-update) of
702 # RA occurring **TWICE**. to avoid it getting added to the
703 # v3.0B suffix twice, we spot it as a duplicate, here
704 extras = OrderedDict()
705 for idx, (field, regname) in enumerate(opregfields):
706 imm, regname = decode_imm(regname)
707 rtype = get_regtype(regname)
708 log(" idx find", rtype, idx, field, regname, imm)
709 if rtype is None:
710 # probably an immediate field, append it straight
711 extras[('imm', idx, False)] = (idx, field, None, None, None)
712 continue
713 extra = svp64_src.get(regname, None)
714 if extra is not None:
715 extra = ('s', extra, False) # not a duplicate
716 extras[extra] = (idx, field, regname, rtype, imm)
717 log(" idx src", idx, extra, extras[extra])
718 dextra = svp64_dest.get(regname, None)
719 log("regname in", regname, dextra)
720 if dextra is not None:
721 is_a_duplicate = extra is not None # duplicate spotted
722 dextra = ('d', dextra, is_a_duplicate)
723 extras[dextra] = (idx, field, regname, rtype, imm)
724 log(" idx dst", idx, extra, extras[dextra])
725
726 # great! got the extra fields in their associated positions:
727 # also we know the register type. now to create the EXTRA encodings
728 etype = rm['Etype'] # Extra type: EXTRA3/EXTRA2
729 ptype = rm['Ptype'] # Predication type: Twin / Single
730 extra_bits = 0
731 v30b_newfields = []
732 for extra_idx, (idx, field, rname, rtype, iname) in extras.items():
733 # is it a field we don't alter/examine? if so just put it
734 # into newfields
735 if rtype is None:
736 v30b_newfields.append(field)
737 continue
738
739 # identify if this is a ld/st immediate(reg) thing
740 ldst_imm = "(" in field and field[-1] == ')'
741 if ldst_imm:
742 immed, field = field[:-1].split("(")
743
744 field, regmode = decode_reg(field, macros=macros)
745 log(" ", extra_idx, rname, rtype,
746 regmode, iname, field, end=" ")
747
748 # see Mode field https://libre-soc.org/openpower/sv/svp64/
749 # XXX TODO: the following is a bit of a laborious repeated
750 # mess, which could (and should) easily be parameterised.
751 # XXX also TODO: the LD/ST modes which are different
752 # https://libre-soc.org/openpower/sv/ldst/
753
754 # rright. SVP64 register numbering is from 0 to 127
755 # for GPRs, FPRs *and* CR Fields, where for v3.0 the GPRs and RPFs
756 # are 0-31 and CR Fields are only 0-7. the SVP64 RM "Extra"
757 # area is used to extend the numbering from the 32-bit
758 # instruction, and also to record whether the register
759 # is scalar or vector. on a per-operand basis. this
760 # results in a slightly finnicky encoding: here we go...
761
762 # encode SV-GPR and SV-FPR field into extra, v3.0field
763 if rtype in ['GPR', 'FPR']:
764 sv_extra, field = get_extra_gpr(etype, regmode, field)
765 # now sanity-check. EXTRA3 is ok, EXTRA2 has limits
766 # (and shrink to a single bit if ok)
767 if etype == 'EXTRA2':
768 if regmode == 'scalar':
769 # range is r0-r63 in increments of 1
770 assert (sv_extra >> 1) == 0, \
771 "scalar GPR %s cannot fit into EXTRA2 %s" % \
772 (rname, str(extras[extra_idx]))
773 # all good: encode as scalar
774 sv_extra = sv_extra & 0b01
775 else:
776 # range is r0-r127 in increments of 2 (r0 r2 ... r126)
777 assert sv_extra & 0b01 == 0, \
778 "%s: vector field %s cannot fit " \
779 "into EXTRA2 %s" % \
780 (insn, rname, str(extras[extra_idx]))
781 # all good: encode as vector (bit 2 set)
782 sv_extra = 0b10 | (sv_extra >> 1)
783 elif regmode == 'vector':
784 # EXTRA3 vector bit needs marking
785 sv_extra |= 0b100
786
787 # encode SV-CR 3-bit field into extra, v3.0field.
788 # 3-bit is for things like BF and BFA
789 elif rtype == 'CR_3bit':
790 sv_extra, field = crf_extra(etype, regmode, field, extras)
791
792 # encode SV-CR 5-bit field into extra, v3.0field
793 # 5-bit is for things like BA BB BC BT etc.
794 # *sigh* this is the same as 3-bit except the 2 LSBs of the
795 # 5-bit field are passed through unaltered.
796 elif rtype == 'CR_5bit':
797 cr_subfield = field & 0b11 # record bottom 2 bits for later
798 field = field >> 2 # strip bottom 2 bits
799 # use the exact same 3-bit function for the top 3 bits
800 sv_extra, field = crf_extra(etype, regmode, field, extras)
801 # reconstruct the actual 5-bit CR field (preserving the
802 # bottom 2 bits, unaltered)
803 field = (field << 2) | cr_subfield
804
805 else:
806 raise Exception("no type match: %s" % rtype)
807
808 # capture the extra field info
809 log("=>", "%5s" % bin(sv_extra), field)
810 extras[extra_idx] = sv_extra
811
812 # append altered field value to v3.0b, differs for LDST
813 # note that duplicates are skipped e.g. EXTRA2 contains
814 # *BOTH* s:RA *AND* d:RA which happens on LD/ST-with-update
815 srcdest, idx, duplicate = extra_idx
816 if duplicate: # skip adding to v3.0b fields, already added
817 continue
818 if ldst_imm:
819 v30b_newfields.append(("%s(%s)" % (immed, str(field))))
820 else:
821 v30b_newfields.append(str(field))
822
823 log("new v3.0B fields", v30b_op, v30b_newfields)
824 log("extras", extras)
825
826 # rright. now we have all the info. start creating SVP64 RM
827 svp64_rm = SVP64RMFields()
828
829 # begin with EXTRA fields
830 for idx, sv_extra in extras.items():
831 log(idx)
832 if idx is None:
833 continue
834 if idx[0] == 'imm':
835 continue
836 srcdest, idx, duplicate = idx
837 if etype == 'EXTRA2':
838 svp64_rm.extra2[idx].eq(
839 SelectableInt(sv_extra, SVP64RM_EXTRA2_SPEC_SIZE))
840 else:
841 svp64_rm.extra3[idx].eq(
842 SelectableInt(sv_extra, SVP64RM_EXTRA3_SPEC_SIZE))
843
844 # identify if the op is a LD/ST. the "blegh" way. copied
845 # from power_enums. TODO, split the list _insns down.
846 is_ld = v30b_op in [
847 "lbarx", "lbz", "lbzu", "lbzux", "lbzx", # load byte
848 "ld", "ldarx", "ldbrx", "ldu", "ldux", "ldx", # load double
849 "lfs", "lfsx", "lfsu", "lfsux", # FP load single
850 "lfd", "lfdx", "lfdu", "lfdux", "lfiwzx", "lfiwax", # FP load dbl
851 "lha", "lharx", "lhau", "lhaux", "lhax", # load half
852 "lhbrx", "lhz", "lhzu", "lhzux", "lhzx", # more load half
853 "lwa", "lwarx", "lwaux", "lwax", "lwbrx", # load word
854 "lwz", "lwzcix", "lwzu", "lwzux", "lwzx", # more load word
855 ]
856 is_st = v30b_op in [
857 "stb", "stbcix", "stbcx", "stbu", "stbux", "stbx",
858 "std", "stdbrx", "stdcx", "stdu", "stdux", "stdx",
859 "stfs", "stfsx", "stfsu", "stfux", # FP store sgl
860 "stfd", "stfdx", "stfdu", "stfdux", "stfiwx", # FP store dbl
861 "sth", "sthbrx", "sthcx", "sthu", "sthux", "sthx",
862 "stw", "stwbrx", "stwcx", "stwu", "stwux", "stwx",
863 ]
864 # use this to determine if the SVP64 RM format is different.
865 # see https://libre-soc.org/openpower/sv/ldst/
866 is_ldst = is_ld or is_st
867
868 # branch-conditional detection
869 is_bc = v30b_op in [
870 "bc", "bclr",
871 ]
872
873 # parts of svp64_rm
874 mmode = 0 # bit 0
875 pmask = 0 # bits 1-3
876 destwid = 0 # bits 4-5
877 srcwid = 0 # bits 6-7
878 subvl = 0 # bits 8-9
879 smask = 0 # bits 16-18 but only for twin-predication
880 mode = 0 # bits 19-23
881
882 mask_m_specified = False
883 has_pmask = False
884 has_smask = False
885
886 saturation = None
887 src_zero = 0
888 dst_zero = 0
889 sv_mode = None
890
891 mapreduce = False
892 reverse_gear = False
893 mapreduce_crm = False
894 mapreduce_svm = False
895
896 predresult = False
897 failfirst = False
898 ldst_elstride = 0
899
900 # branch-conditional bits
901 bc_all = 0
902 bc_lru = 0
903 bc_brc = 0
904 bc_svstep = 0
905 bc_vsb = 0
906 bc_vlset = 0
907 bc_vli = 0
908 bc_snz = 0
909
910 # ok let's start identifying opcode augmentation fields
911 for encmode in opmodes:
912 # predicate mask (src and dest)
913 if encmode.startswith("m="):
914 pme = encmode
915 pmmode, pmask = decode_predicate(encmode[2:])
916 smmode, smask = pmmode, pmask
917 mmode = pmmode
918 mask_m_specified = True
919 # predicate mask (dest)
920 elif encmode.startswith("dm="):
921 pme = encmode
922 pmmode, pmask = decode_predicate(encmode[3:])
923 mmode = pmmode
924 has_pmask = True
925 # predicate mask (src, twin-pred)
926 elif encmode.startswith("sm="):
927 sme = encmode
928 smmode, smask = decode_predicate(encmode[3:])
929 mmode = smmode
930 has_smask = True
931 # vec2/3/4
932 elif encmode.startswith("vec"):
933 subvl = decode_subvl(encmode[3:])
934 # elwidth
935 elif encmode.startswith("ew="):
936 destwid = decode_elwidth(encmode[3:])
937 elif encmode.startswith("sw="):
938 srcwid = decode_elwidth(encmode[3:])
939 # element-strided LD/ST
940 elif encmode == 'els':
941 ldst_elstride = 1
942 # saturation
943 elif encmode == 'sats':
944 assert sv_mode is None
945 saturation = 1
946 sv_mode = 0b10
947 elif encmode == 'satu':
948 assert sv_mode is None
949 sv_mode = 0b10
950 saturation = 0
951 # predicate zeroing
952 elif encmode == 'sz':
953 src_zero = 1
954 elif encmode == 'dz':
955 dst_zero = 1
956 # failfirst
957 elif encmode.startswith("ff="):
958 assert sv_mode is None
959 sv_mode = 0b01
960 failfirst = decode_ffirst(encmode[3:])
961 # predicate-result, interestingly same as fail-first
962 elif encmode.startswith("pr="):
963 assert sv_mode is None
964 sv_mode = 0b11
965 predresult = decode_ffirst(encmode[3:])
966 # map-reduce mode, reverse-gear
967 elif encmode == 'mrr':
968 assert sv_mode is None
969 sv_mode = 0b00
970 mapreduce = True
971 reverse_gear = True
972 # map-reduce mode
973 elif encmode == 'mr':
974 assert sv_mode is None
975 sv_mode = 0b00
976 mapreduce = True
977 elif encmode == 'crm': # CR on map-reduce
978 assert sv_mode is None
979 sv_mode = 0b00
980 mapreduce_crm = True
981 elif encmode == 'svm': # sub-vector mode
982 mapreduce_svm = True
983 elif is_bc:
984 if encmode == 'all':
985 bc_all = 1
986 elif encmode == 'st': # svstep mode
987 bc_step = 1
988 elif encmode == 'sr': # svstep BRc mode
989 bc_step = 1
990 bc_brc = 1
991 elif encmode == 'vs': # VLSET mode
992 bc_vlset = 1
993 elif encmode == 'vsi': # VLSET mode with VLI (VL inclusives)
994 bc_vlset = 1
995 bc_vli = 1
996 elif encmode == 'vsb': # VLSET mode with VSb
997 bc_vlset = 1
998 bc_vsb = 1
999 elif encmode == 'vsbi': # VLSET mode with VLI and VSb
1000 bc_vlset = 1
1001 bc_vli = 1
1002 bc_vsb = 1
1003 elif encmode == 'snz': # sz (only) already set above
1004 src_zero = 1
1005 bc_snz = 1
1006 elif encmode == 'lu': # LR update mode
1007 bc_lru = 1
1008 else:
1009 raise AssertionError("unknown encmode %s" % encmode)
1010 else:
1011 raise AssertionError("unknown encmode %s" % encmode)
1012
1013 if ptype == '2P':
1014 # since m=xx takes precedence (overrides) sm=xx and dm=xx,
1015 # treat them as mutually exclusive
1016 if mask_m_specified:
1017 assert not has_smask,\
1018 "cannot have both source-mask and predicate mask"
1019 assert not has_pmask,\
1020 "cannot have both dest-mask and predicate mask"
1021 # since the default is INT predication (ALWAYS), if you
1022 # specify one CR mask, you must specify both, to avoid
1023 # mixing INT and CR reg types
1024 if has_pmask and pmmode == 1:
1025 assert has_smask, \
1026 "need explicit source-mask in CR twin predication"
1027 if has_smask and smmode == 1:
1028 assert has_pmask, \
1029 "need explicit dest-mask in CR twin predication"
1030 # sanity-check that 2Pred mask is same mode
1031 if has_pmask and has_smask:
1032 assert smmode == pmmode, \
1033 "predicate masks %s and %s must be same reg type" % \
1034 (pme, sme)
1035
1036 # sanity-check that twin-predication mask only specified in 2P mode
1037 if ptype == '1P':
1038 assert not has_smask, \
1039 "source-mask can only be specified on Twin-predicate ops"
1040 assert not has_pmask, \
1041 "dest-mask can only be specified on Twin-predicate ops"
1042
1043 # construct the mode field, doing sanity-checking along the way
1044 if mapreduce_svm:
1045 assert sv_mode == 0b00, "sub-vector mode in mapreduce only"
1046 assert subvl != 0, "sub-vector mode not possible on SUBVL=1"
1047
1048 if src_zero:
1049 assert has_smask or mask_m_specified, \
1050 "src zeroing requires a source predicate"
1051 if dst_zero:
1052 assert has_pmask or mask_m_specified, \
1053 "dest zeroing requires a dest predicate"
1054
1055 # okaaay, so there are 4 different modes, here, which will be
1056 # partly-merged-in: is_ldst is merged in with "normal", but
1057 # is_bc is so different it's done separately. likewise is_cr
1058 # (when it is done). here are the maps:
1059
1060 # for "normal" arithmetic: https://libre-soc.org/openpower/sv/normal/
1061 """
1062 | 0-1 | 2 | 3 4 | description |
1063 | --- | --- |---------|-------------------------- |
1064 | 00 | 0 | dz sz | normal mode |
1065 | 00 | 1 | 0 RG | scalar reduce mode (mapreduce), SUBVL=1 |
1066 | 00 | 1 | 1 / | parallel reduce mode (mapreduce), SUBVL=1 |
1067 | 00 | 1 | SVM RG | subvector reduce mode, SUBVL>1 |
1068 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1069 | 01 | inv | VLi RC1 | Rc=0: ffirst z/nonz |
1070 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1071 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1072 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1073 """
1074
1075 # https://libre-soc.org/openpower/sv/ldst/
1076 # for LD/ST-immediate:
1077 """
1078 | 0-1 | 2 | 3 4 | description |
1079 | --- | --- |---------|--------------------------- |
1080 | 00 | 0 | dz els | normal mode |
1081 | 00 | 1 | dz shf | shift mode |
1082 | 01 | inv | CR-bit | Rc=1: ffirst CR sel |
1083 | 01 | inv | els RC1 | Rc=0: ffirst z/nonz |
1084 | 10 | N | dz els | sat mode: N=0/1 u/s |
1085 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1086 | 11 | inv | els RC1 | Rc=0: pred-result z/nonz |
1087 """
1088
1089 # for LD/ST-indexed (RA+RB):
1090 """
1091 | 0-1 | 2 | 3 4 | description |
1092 | --- | --- |---------|-------------------------- |
1093 | 00 | SEA | dz sz | normal mode |
1094 | 01 | SEA | dz sz | Strided (scalar only source) |
1095 | 10 | N | dz sz | sat mode: N=0/1 u/s |
1096 | 11 | inv | CR-bit | Rc=1: pred-result CR sel |
1097 | 11 | inv | dz RC1 | Rc=0: pred-result z/nonz |
1098 """
1099
1100 # and leaving out branches and cr_ops for now because they're
1101 # under development
1102 """ TODO branches and cr_ops
1103 """
1104
1105 # now create mode and (overridden) src/dst widths
1106 # XXX TODO: sanity-check bc modes
1107 if is_bc:
1108 sv_mode = ((bc_svstep << SVP64MODE.MOD2_MSB) |
1109 (bc_vlset << SVP64MODE.MOD2_LSB) |
1110 (bc_snz << SVP64MODE.BC_SNZ))
1111 srcwid = (bc_vsb << 1) | bc_lru
1112 destwid = (bc_lru << 1) | bc_all
1113
1114 else:
1115
1116 ######################################
1117 # "normal" mode
1118 if sv_mode is None:
1119 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1120 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1121 if is_ldst:
1122 # TODO: for now, LD/ST-indexed is ignored.
1123 mode |= ldst_elstride << SVP64MODE.ELS_NORMAL # el-strided
1124 else:
1125 # TODO, reduce and subvector mode
1126 # 00 1 dz CRM reduce mode (mapreduce), SUBVL=1
1127 # 00 1 SVM CRM subvector reduce mode, SUBVL>1
1128 pass
1129 sv_mode = 0b00
1130
1131 ######################################
1132 # "mapreduce" modes
1133 elif sv_mode == 0b00:
1134 mode |= (0b1 << SVP64MODE.REDUCE) # sets mapreduce
1135 assert dst_zero == 0, "dest-zero not allowed in mapreduce mode"
1136 if reverse_gear:
1137 mode |= (0b1 << SVP64MODE.RG) # sets Reverse-gear mode
1138 if mapreduce_crm:
1139 mode |= (0b1 << SVP64MODE.CRM) # sets CRM mode
1140 assert rc_mode, "CRM only allowed when Rc=1"
1141 # bit of weird encoding to jam zero-pred or SVM mode in.
1142 # SVM mode can be enabled only when SUBVL=2/3/4 (vec2/3/4)
1143 if subvl == 0:
1144 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1145 elif mapreduce_svm:
1146 mode |= (0b1 << SVP64MODE.SVM) # sets SVM mode
1147
1148 ######################################
1149 # "failfirst" modes
1150 elif sv_mode == 0b01:
1151 assert src_zero == 0, "dest-zero not allowed in failfirst mode"
1152 if failfirst == 'RC1':
1153 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1154 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1155 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1156 elif failfirst == '~RC1':
1157 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1158 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1159 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1160 assert rc_mode == False, "ffirst RC1 only ok when Rc=0"
1161 else:
1162 assert dst_zero == 0, "dst-zero not allowed in ffirst BO"
1163 assert rc_mode, "ffirst BO only possible when Rc=1"
1164 mode |= (failfirst << SVP64MODE.BO_LSB) # set BO
1165
1166 ######################################
1167 # "saturation" modes
1168 elif sv_mode == 0b10:
1169 mode |= src_zero << SVP64MODE.SZ # predicate zeroing
1170 mode |= dst_zero << SVP64MODE.DZ # predicate zeroing
1171 mode |= (saturation << SVP64MODE.N) # signed/us saturation
1172
1173 ######################################
1174 # "predicate-result" modes. err... code-duplication from ffirst
1175 elif sv_mode == 0b11:
1176 assert src_zero == 0, "dest-zero not allowed in predresult mode"
1177 if predresult == 'RC1':
1178 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1179 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1180 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1181 elif predresult == '~RC1':
1182 mode |= (0b1 << SVP64MODE.RC1) # sets RC1 mode
1183 mode |= (dst_zero << SVP64MODE.DZ) # predicate dst-zeroing
1184 mode |= (0b1 << SVP64MODE.INV) # ... with inversion
1185 assert rc_mode == False, "pr-mode RC1 only ok when Rc=0"
1186 else:
1187 assert dst_zero == 0, "dst-zero not allowed in pr-mode BO"
1188 assert rc_mode, "pr-mode BO only possible when Rc=1"
1189 mode |= (predresult << SVP64MODE.BO_LSB) # set BO
1190
1191 # whewww.... modes all done :)
1192 # now put into svp64_rm
1193 mode |= sv_mode
1194 # mode: bits 19-23
1195 svp64_rm.mode.eq(SelectableInt(mode, SVP64RM_MODE_SIZE))
1196
1197 # put in predicate masks into svp64_rm
1198 if ptype == '2P':
1199 # source pred: bits 16-18
1200 svp64_rm.smask.eq(SelectableInt(smask, SVP64RM_SMASK_SIZE))
1201 # mask mode: bit 0
1202 svp64_rm.mmode.eq(SelectableInt(mmode, SVP64RM_MMODE_SIZE))
1203 # 1-pred: bits 1-3
1204 svp64_rm.mask.eq(SelectableInt(pmask, SVP64RM_MASK_SIZE))
1205
1206 # and subvl: bits 8-9
1207 svp64_rm.subvl.eq(SelectableInt(subvl, SVP64RM_SUBVL_SIZE))
1208
1209 # put in elwidths
1210 # srcwid: bits 6-7
1211 svp64_rm.ewsrc.eq(SelectableInt(srcwid, SVP64RM_EWSRC_SIZE))
1212 # destwid: bits 4-5
1213 svp64_rm.elwidth.eq(SelectableInt(destwid, SVP64RM_ELWIDTH_SIZE))
1214
1215 # nice debug printout. (and now for something completely different)
1216 # https://youtu.be/u0WOIwlXE9g?t=146
1217 svp64_rm_value = svp64_rm.spr.value
1218 log("svp64_rm", hex(svp64_rm_value), bin(svp64_rm_value))
1219 log(" mmode 0 :", bin(mmode))
1220 log(" pmask 1-3 :", bin(pmask))
1221 log(" dstwid 4-5 :", bin(destwid))
1222 log(" srcwid 6-7 :", bin(srcwid))
1223 log(" subvl 8-9 :", bin(subvl))
1224 log(" mode 19-23:", bin(mode))
1225 offs = 2 if etype == 'EXTRA2' else 3 # 2 or 3 bits
1226 for idx, sv_extra in extras.items():
1227 if idx is None:
1228 continue
1229 if idx[0] == 'imm':
1230 continue
1231 srcdest, idx, duplicate = idx
1232 start = (10+idx*offs)
1233 end = start + offs-1
1234 log(" extra%d %2d-%2d:" % (idx, start, end),
1235 bin(sv_extra))
1236 if ptype == '2P':
1237 log(" smask 16-17:", bin(smask))
1238 log()
1239
1240 # first, construct the prefix from its subfields
1241 svp64_prefix = SVP64PrefixFields()
1242 svp64_prefix.major.eq(SelectableInt(0x1, SV64P_MAJOR_SIZE))
1243 svp64_prefix.pid.eq(SelectableInt(0b11, SV64P_PID_SIZE))
1244 svp64_prefix.rm.eq(svp64_rm.spr)
1245
1246 # fiinally yield the svp64 prefix and the thingy. v3.0b opcode
1247 rc = '.' if rc_mode else ''
1248 yield ".long 0x%08x" % svp64_prefix.insn.value
1249 log(v30b_op, v30b_newfields)
1250 # argh, sv.fmadds etc. need to be done manually
1251 if v30b_op == 'ffmadds':
1252 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1253 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1254 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1255 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1256 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1257 opcode |= 0b00101 << (32-31) # bits 26-30
1258 if rc:
1259 opcode |= 1 # Rc, bit 31.
1260 yield ".long 0x%x" % opcode
1261 # argh, sv.fdmadds need to be done manually
1262 elif v30b_op == 'fdmadds':
1263 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1264 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1265 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1266 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1267 opcode |= int(v30b_newfields[3]) << (32-26) # FRC
1268 opcode |= 0b01111 << (32-31) # bits 26-30
1269 if rc:
1270 opcode |= 1 # Rc, bit 31.
1271 yield ".long 0x%x" % opcode
1272 # argh, sv.ffadds etc. need to be done manually
1273 elif v30b_op == 'ffadds':
1274 opcode = 59 << (32-6) # bits 0..6 (MSB0)
1275 opcode |= int(v30b_newfields[0]) << (32-11) # FRT
1276 opcode |= int(v30b_newfields[1]) << (32-16) # FRA
1277 opcode |= int(v30b_newfields[2]) << (32-21) # FRB
1278 opcode |= 0b01101 << (32-31) # bits 26-30
1279 if rc:
1280 opcode |= 1 # Rc, bit 31.
1281 yield ".long 0x%x" % opcode
1282 # sigh have to do svstep here manually for now...
1283 elif v30b_op in ["svstep", "svstep."]:
1284 insn = 22 << (31-5) # opcode 22, bits 0-5
1285 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1286 insn |= int(v30b_newfields[1]) << (31-22) # SVi , bits 16-22
1287 insn |= int(v30b_newfields[2]) << (31-25) # vf , bit 25
1288 insn |= 0b10011 << (31-30) # XO , bits 26..30
1289 if opcode == 'svstep.':
1290 insn |= 1 << (31-31) # Rc=1 , bit 31
1291 log("svstep", bin(insn))
1292 yield ".long 0x%x" % insn
1293 # argh, sv.fcoss etc. need to be done manually
1294 elif v30b_op in ["fcoss", "fcoss."]:
1295 insn = 59 << (31-5) # opcode 59, bits 0-5
1296 insn |= int(v30b_newfields[0]) << (31-10) # RT , bits 6-10
1297 insn |= int(v30b_newfields[1]) << (31-20) # RB , bits 16-20
1298 insn |= 0b1000101110 << (31-30) # XO , bits 21..30
1299 if opcode == 'fcoss.':
1300 insn |= 1 << (31-31) # Rc=1 , bit 31
1301 log("fcoss", bin(insn))
1302 yield ".long 0x%x" % insn
1303 else:
1304 if not v30b_op.endswith('.'):
1305 v30b_op += rc
1306 yield "%s %s" % (v30b_op, ", ".join(v30b_newfields))
1307 log("new v3.0B fields", v30b_op, v30b_newfields)
1308
1309 def translate(self, lst):
1310 for insn in lst:
1311 yield from self.translate_one(insn)
1312
1313
1314 def macro_subst(macros, txt):
1315 again = True
1316 log("subst", txt, macros)
1317 while again:
1318 again = False
1319 for macro, value in macros.items():
1320 if macro == txt:
1321 again = True
1322 replaced = txt.replace(macro, value)
1323 log("macro", txt, "replaced", replaced, macro, value)
1324 txt = replaced
1325 continue
1326 toreplace = '%s.s' % macro
1327 if toreplace == txt:
1328 again = True
1329 replaced = txt.replace(toreplace, "%s.s" % value)
1330 log("macro", txt, "replaced", replaced, toreplace, value)
1331 txt = replaced
1332 continue
1333 toreplace = '%s.v' % macro
1334 if toreplace == txt:
1335 again = True
1336 replaced = txt.replace(toreplace, "%s.v" % value)
1337 log("macro", txt, "replaced", replaced, toreplace, value)
1338 txt = replaced
1339 continue
1340 toreplace = '(%s)' % macro
1341 if toreplace in txt:
1342 again = True
1343 replaced = txt.replace(toreplace, '(%s)' % value)
1344 log("macro", txt, "replaced", replaced, toreplace, value)
1345 txt = replaced
1346 continue
1347 log(" processed", txt)
1348 return txt
1349
1350
1351 def get_ws(line):
1352 # find whitespace
1353 ws = ''
1354 while line:
1355 if not line[0].isspace():
1356 break
1357 ws += line[0]
1358 line = line[1:]
1359 return ws, line
1360
1361
1362 def asm_process():
1363 # get an input file and an output file
1364 args = sys.argv[1:]
1365 if len(args) == 0:
1366 infile = sys.stdin
1367 outfile = sys.stdout
1368 # read the whole lot in advance in case of in-place
1369 lines = list(infile.readlines())
1370 elif len(args) != 2:
1371 print("pysvp64asm [infile | -] [outfile | -]", file=sys.stderr)
1372 exit(0)
1373 else:
1374 if args[0] == '--':
1375 infile = sys.stdin
1376 else:
1377 infile = open(args[0], "r")
1378 # read the whole lot in advance in case of in-place overwrite
1379 lines = list(infile.readlines())
1380
1381 if args[1] == '--':
1382 outfile = sys.stdout
1383 else:
1384 outfile = open(args[1], "w")
1385
1386 # read the line, look for custom insn, process it
1387 macros = {} # macros which start ".set"
1388 isa = SVP64Asm([])
1389 for line in lines:
1390 op = line.split("#")[0].strip()
1391 # identify macros
1392 if op.startswith(".set"):
1393 macro = op[4:].split(",")
1394 (macro, value) = map(str.strip, macro)
1395 macros[macro] = value
1396 if not op.startswith('sv.') and not op.startswith(tuple(CUSTOM_INSNS)):
1397 outfile.write(line)
1398 continue
1399
1400 (ws, line) = get_ws(line)
1401 lst = isa.translate_one(op, macros)
1402 lst = '; '.join(lst)
1403 outfile.write("%s%s # %s\n" % (ws, lst, op))
1404
1405
1406 if __name__ == '__main__':
1407 lst = ['slw 3, 1, 4',
1408 'extsw 5, 3',
1409 'sv.extsw 5, 3',
1410 'sv.cmpi 5, 1, 3, 2',
1411 'sv.setb 5, 31',
1412 'sv.isel 64.v, 3, 2, 65.v',
1413 'sv.setb/dm=r3/sm=1<<r3 5, 31',
1414 'sv.setb/m=r3 5, 31',
1415 'sv.setb/vec2 5, 31',
1416 'sv.setb/sw=8/ew=16 5, 31',
1417 'sv.extsw./ff=eq 5, 31',
1418 'sv.extsw./satu/sz/dz/sm=r3/dm=r3 5, 31',
1419 'sv.extsw./pr=eq 5.v, 31',
1420 'sv.add. 5.v, 2.v, 1.v',
1421 'sv.add./m=r3 5.v, 2.v, 1.v',
1422 ]
1423 lst += [
1424 'sv.stw 5.v, 4(1.v)',
1425 'sv.ld 5.v, 4(1.v)',
1426 'setvl. 2, 3, 4, 0, 1, 1',
1427 'sv.setvl. 2, 3, 4, 0, 1, 1',
1428 ]
1429 lst = [
1430 "sv.stfsu 0.v, 16(4.v)",
1431 ]
1432 lst = [
1433 "sv.stfsu/els 0.v, 16(4)",
1434 ]
1435 lst = [
1436 'sv.add./mr 5.v, 2.v, 1.v',
1437 ]
1438 macros = {'win2': '50', 'win': '60'}
1439 lst = [
1440 'sv.addi win2.v, win.v, -1',
1441 'sv.add./mrr 5.v, 2.v, 1.v',
1442 #'sv.lhzsh 5.v, 11(9.v), 15',
1443 #'sv.lwzsh 5.v, 11(9.v), 15',
1444 'sv.ffmadds 6.v, 2.v, 4.v, 6.v',
1445 ]
1446 lst = [
1447 #'sv.fmadds 0.v, 8.v, 16.v, 4.v',
1448 #'sv.ffadds 0.v, 8.v, 4.v',
1449 'svremap 11, 0, 1, 2, 3, 2, 1',
1450 'svshape 8, 1, 1, 1, 0',
1451 'svshape 8, 1, 1, 1, 1',
1452 ]
1453 lst = [
1454 #'sv.lfssh 4.v, 11(8.v), 15',
1455 #'sv.lwzsh 4.v, 11(8.v), 15',
1456 #'sv.svstep. 2.v, 4, 0',
1457 #'sv.fcfids. 48.v, 64.v',
1458 'sv.fcoss. 80.v, 0.v',
1459 'sv.fcoss. 20.v, 0.v',
1460 ]
1461 lst = [
1462 'sv.bc/all 3,12,192',
1463 'sv.bclr/vsbi 3,81.v,192',
1464 'sv.ld 5.v, 4(1.v)',
1465 'sv.svstep. 2.v, 4, 0',
1466 ]
1467 lst = [
1468 'maxs 3,12,5',
1469 'maxs. 3,12,5',
1470 'avgadd 3,12,5',
1471 'absdu 3,12,5',
1472 'absds 3,12,5',
1473 'absdacu 3,12,5',
1474 'absdacs 3,12,5',
1475 'cprop 3,12,5',
1476 'svindex 0,0,1,0,0,0,0',
1477 ]
1478 lst = [
1479 'sv.svstep./m=r3 2.v, 4, 0',
1480 'ternlogi 0,0,0,0x5',
1481 'fmvis 5,65535',
1482 'fmvis 5,1',
1483 'fmvis 5,2',
1484 'fmvis 5,4',
1485 'fmvis 5,8',
1486 'fmvis 5,16',
1487 'fmvis 5,32',
1488 'fmvis 5,64',
1489 'fmvis 5,32768',
1490 ]
1491 lst = [
1492 'sv.andi. *80, *80, 1',
1493 ]
1494 isa = SVP64Asm(lst, macros=macros)
1495 log("list", list(isa))
1496 # running svp64.py is designed to test hard-coded lists
1497 # (above) - which strictly speaking should all be unit tests.
1498 # if you need to actually do assembler translation at the
1499 # commandline use "pysvp64asm" - see setup.py
1500 # XXX NO. asm_process()