added english language description for lwzsx instruction
[openpower-isa.git] / openpower / isa / simplev.mdwn
index a5182547f2fb23d31ebb587135a2b6566997b3fe..33a02e6612065f290d840e15a596dfc2177de5e5 100644 (file)
@@ -1,37 +1,66 @@
-<!-- This defines instructions described in PowerISA Version 3.0 B Book 1 -->
-
+<!-- This defines Draft SVP64 instructions to augment PowerISA Version 3.0 -->
 <!-- These are not described in book 1 -->
 
-# setvl
+# svstep
 
 SVL-Form
 
-* setvl RT, RA, SVi, vf, vs, ms
-* setvl. RT, RA, SVi, vf, vs, ms
+* svstep RT,SVi,vf (Rc=0)
+* svstep. RT,SVi,vf (Rc=1)
 
 Pseudo-code:
 
-    if (vf & (¬vs) & ¬(ms)) = 1 then
-        SVSTATE_NEXT(vf)
+    if SVi[3:4] = 0b11 then
+        # store pack and unpack in SVSTATE
+        SVSTATE[53] <- SVi[5]
+        SVSTATE[54] <- SVi[6]
+        RT <- [0]*62 || SVSTATE[53:54]
     else
-        VLimm <- SVi + 1
-        if vs = 1 then
-            if _RA != 0 then
-                VL <- (RA|0)[57:63]
-            else
-                VL <- VLimm[0:6]
-        else
-            VL <- SVSTATE[7:13]
-        if ms = 1 then
-            MVL <- VLimm[0:6]
-        else
-            MVL <- SVSTATE[0:6]
-        if VL > MVL then
-            VL = MVL
-        SVSTATE[0:6] <- MVL
-        SVSTATE[7:13] <- VL
-        RT <- [0]*57 || VL
-        MSR[6] <- vf
+        step <- SVSTATE_NEXT(SVi, vf)
+        RT <- [0]*57 || step
+
+Special Registers Altered:
+
+    CR0                     (if Rc=1)
+
+# setvl
+
+SVL-Form
+
+* setvl RT,RA,SVi,vf,vs,ms (Rc=0)
+* setvl. RT,RA,SVi,vf,vs,ms (Rc=1)
+
+Pseudo-code:
+
+    overflow <- 0b0
+    VLimm <- SVi + 1
+    # set or get MVL
+    if ms = 1 then MVL <- VLimm[0:6]
+    else           MVL <- SVSTATE[0:6]
+    # set or get VL
+    if vs = 0                then VL <- SVSTATE[7:13]
+    else if _RA != 0         then
+        if (RA) >u 0b1111111 then
+            VL <- 0b1111111
+            overflow <- 0b1
+        else                      VL <- (RA)[57:63]
+    else if _RT = 0          then VL <- VLimm[0:6]
+    else if CTR >u 0b1111111 then
+        VL <- 0b1111111
+        overflow <- 0b1
+    else                          VL <- CTR[57:63]
+    # limit VL to within MVL
+    if VL >u MVL then
+        overflow <- 0b1
+        VL <- MVL
+    SVSTATE[0:6] <- MVL
+    SVSTATE[7:13] <- VL
+    if _RT != 0 then
+       GPR(_RT) <- [0]*57 || VL
+    # MAXVL is a static "state-reset".
+    if ms = 1 then
+        SVSTATE[63] <- vf   # set Vertical-First mode
+        SVSTATE[62] <- 0b0  # clear persist bit
 
 Special Registers Altered:
 
@@ -39,19 +68,63 @@ Special Registers Altered:
 
 # svremap
 
+SVRM-Form
+
+* svremap SVme,mi0,mi1,mi2,mo0,mo1,pst
+
+Pseudo-code:
+
+    # registers RA RB RC RT EA/FRS SVSHAPE0-3 indices
+    SVSTATE[32:33] <- mi0
+    SVSTATE[34:35] <- mi1
+    SVSTATE[36:37] <- mi2
+    SVSTATE[38:39] <- mo0
+    SVSTATE[40:41] <- mo1
+    # enable bit for RA RB RC RT EA/FRS
+    SVSTATE[42:46] <- SVme
+    # persistence bit (applies to more than one instruction)
+    SVSTATE[62] <- pst
+
+Special Registers Altered:
+
+    None
+
+# svshape
+
 SVM-Form
 
-* svremap SVxd, SVyd, SVzd, SVRM
+* svshape SVxd,SVyd,SVzd,SVrm,vf
 
 Pseudo-code:
 
+    # for convenience, VL to be calculated and stored in SVSTATE
+    vlen <- [0] * 7
+    mscale[0:5] <- 0b000001 # for scaling MAXVL
+    itercount[0:6] <- [0] * 7
+    SVSTATE[0:31] <- [0] * 32
+    # only overwrite REMAP if "persistence" is zero
+    if (SVSTATE[62] = 0b0) then
+        SVSTATE[32:33] <- 0b00
+        SVSTATE[34:35] <- 0b00
+        SVSTATE[36:37] <- 0b00
+        SVSTATE[38:39] <- 0b00
+        SVSTATE[40:41] <- 0b00
+        SVSTATE[42:46] <- 0b00000
+        SVSTATE[62] <- 0b0
+        SVSTATE[63] <- 0b0
     # clear out all SVSHAPEs
     SVSHAPE0[0:31] <- [0] * 32
     SVSHAPE1[0:31] <- [0] * 32
     SVSHAPE2[0:31] <- [0] * 32
     SVSHAPE3[0:31] <- [0] * 32
     # set schedule up for multiply
-    if (SVRM = 0b00000) then
+    if (SVrm = 0b0000) then
+        # VL in Matrix Multiply is xd*yd*zd
+        xd <- (0b00 || SVxd) + 1
+        yd <- (0b00 || SVyd) + 1
+        zd <- (0b00 || SVzd) + 1
+        n <- xd * yd * zd
+        vlen[0:6] <- n[14:20]
         # set up template in SVSHAPE0, then copy to 1-3
         SVSHAPE0[0:5] <- (0b0 || SVxd)   # xdim
         SVSHAPE0[6:11] <- (0b0 || SVyd)   # ydim
@@ -67,11 +140,21 @@ Pseudo-code:
         # FRC
         SVSHAPE2[18:20] <- 0b001          # permute x,z,y
         SVSHAPE2[28:29] <- 0b11           # skip y
-    # set schedule up for butterfly
-    if (SVRM = 0b00001) then
+    # set schedule up for FFT butterfly
+    if (SVrm = 0b0001) then
+        # calculate O(N log2 N)
+        n <- [0] * 3
+        do while n < 5
+           if SVxd[4-n] = 0 then
+               leave
+           n <- n + 1
+        n <- ((0b0 || SVxd) + 1) * n
+        vlen[0:6] <- n[1:7]
         # set up template in SVSHAPE0, then copy to 1-3
         # for FRA and FRT
         SVSHAPE0[0:5] <- (0b0 || SVxd)   # xdim
+        SVSHAPE0[12:17] <- (0b0 || SVzd)   # zdim - "striding" (2D FFT)
+        mscale <- (0b0 || SVzd) + 1
         SVSHAPE0[30:31] <- 0b01          # Butterfly mode
         # copy
         SVSHAPE1[0:31] <- SVSHAPE0[0:31]
@@ -80,6 +163,313 @@ Pseudo-code:
         SVSHAPE1[28:29] <- 0b01           # j+halfstep schedule
         # FRC (coefficients)
         SVSHAPE2[28:29] <- 0b10           # k schedule
+    # set schedule up for (i)DCT Inner butterfly
+    # SVrm Mode 4 (Mode 12 for iDCT) is for on-the-fly (Vertical-First Mode)
+    if ((SVrm = 0b0100) |
+        (SVrm = 0b1100)) then
+        # calculate O(N log2 N)
+        n <- [0] * 3
+        do while n < 5
+           if SVxd[4-n] = 0 then
+               leave
+           n <- n + 1
+        n <- ((0b0 || SVxd) + 1) * n
+        vlen[0:6] <- n[1:7]
+        # set up template in SVSHAPE0, then copy to 1-3
+        # set up FRB and FRS
+        SVSHAPE0[0:5] <- (0b0 || SVxd)   # xdim
+        SVSHAPE0[12:17] <- (0b0 || SVzd)   # zdim - "striding" (2D DCT)
+        mscale <- (0b0 || SVzd) + 1
+        if (SVrm = 0b1100) then
+            SVSHAPE0[30:31] <- 0b11          # iDCT mode
+            SVSHAPE0[18:20] <- 0b011         # iDCT Inner Butterfly sub-mode
+        else
+            SVSHAPE0[30:31] <- 0b01          # DCT mode
+            SVSHAPE0[18:20] <- 0b001         # DCT Inner Butterfly sub-mode
+            SVSHAPE0[21:23] <- 0b001         # "inverse" on outer loop
+        SVSHAPE0[6:11] <- 0b000011       # (i)DCT Inner Butterfly mode 4
+        # copy
+        SVSHAPE1[0:31] <- SVSHAPE0[0:31]
+        SVSHAPE2[0:31] <- SVSHAPE0[0:31]
+        if (SVrm != 0b0100) & (SVrm != 0b1100) then
+            SVSHAPE3[0:31] <- SVSHAPE0[0:31]
+        # for FRA and FRT
+        SVSHAPE0[28:29] <- 0b01           # j+halfstep schedule
+        # for cos coefficient
+        SVSHAPE2[28:29] <- 0b10           # ci (k for mode 4) schedule
+        SVSHAPE2[12:17] <- 0b000000       # reset costable "striding" to 1
+        if (SVrm != 0b0100) & (SVrm != 0b1100) then
+            SVSHAPE3[28:29] <- 0b11           # size schedule
+    # set schedule up for (i)DCT Outer butterfly
+    if (SVrm = 0b0011) | (SVrm = 0b1011) then
+        # calculate O(N log2 N) number of outer butterfly overlapping adds
+        vlen[0:6] <- [0] * 7
+        n <- 0b000
+        size <- 0b0000001
+        itercount[0:6] <- (0b00 || SVxd) + 0b0000001
+        itercount[0:6] <- (0b0 || itercount[0:5])
+        do while n < 5
+           if SVxd[4-n] = 0 then
+               leave
+           n <- n + 1
+           count <- (itercount - 0b0000001) * size
+           vlen[0:6] <- vlen + count[7:13]
+           size[0:6] <- (size[1:6] || 0b0)
+           itercount[0:6] <- (0b0 || itercount[0:5])
+        # set up template in SVSHAPE0, then copy to 1-3
+        # set up FRB and FRS
+        SVSHAPE0[0:5] <- (0b0 || SVxd)   # xdim
+        SVSHAPE0[12:17] <- (0b0 || SVzd)   # zdim - "striding" (2D DCT)
+        mscale <- (0b0 || SVzd) + 1
+        if (SVrm = 0b1011) then
+            SVSHAPE0[30:31] <- 0b11      # iDCT mode
+            SVSHAPE0[18:20] <- 0b011     # iDCT Outer Butterfly sub-mode
+            SVSHAPE0[21:23] <- 0b101     # "inverse" on outer and inner loop
+        else
+            SVSHAPE0[30:31] <- 0b01      # DCT mode
+            SVSHAPE0[18:20] <- 0b100     # DCT Outer Butterfly sub-mode
+        SVSHAPE0[6:11] <- 0b000010       # DCT Butterfly mode
+        # copy
+        SVSHAPE1[0:31] <- SVSHAPE0[0:31] # j+halfstep schedule
+        SVSHAPE2[0:31] <- SVSHAPE0[0:31] # costable coefficients
+        # for FRA and FRT
+        SVSHAPE1[28:29] <- 0b01           # j+halfstep schedule
+        # reset costable "striding" to 1
+        SVSHAPE2[12:17] <- 0b000000
+    # set schedule up for DCT COS table generation
+    if (SVrm = 0b0101) | (SVrm = 0b1101) then
+        # calculate O(N log2 N)
+        vlen[0:6] <- [0] * 7
+        itercount[0:6] <- (0b00 || SVxd) + 0b0000001
+        itercount[0:6] <- (0b0 || itercount[0:5])
+        n <- [0] * 3
+        do while n < 5
+           if SVxd[4-n] = 0 then
+               leave
+           n <- n + 1
+           vlen[0:6] <- vlen + itercount
+           itercount[0:6] <- (0b0 || itercount[0:5])
+        # set up template in SVSHAPE0, then copy to 1-3
+        # set up FRB and FRS
+        SVSHAPE0[0:5] <- (0b0 || SVxd)   # xdim
+        SVSHAPE0[12:17] <- (0b0 || SVzd)   # zdim - "striding" (2D DCT)
+        mscale <- (0b0 || SVzd) + 1
+        SVSHAPE0[30:31] <- 0b01          # DCT/FFT mode
+        SVSHAPE0[6:11] <- 0b000100       # DCT Inner Butterfly COS-gen mode
+        if (SVrm = 0b0101) then
+            SVSHAPE0[21:23] <- 0b001     # "inverse" on outer loop for DCT
+        # copy
+        SVSHAPE1[0:31] <- SVSHAPE0[0:31]
+        SVSHAPE2[0:31] <- SVSHAPE0[0:31]
+        # for cos coefficient
+        SVSHAPE1[28:29] <- 0b10           # ci schedule
+        SVSHAPE2[28:29] <- 0b11           # size schedule
+    # set schedule up for iDCT / DCT inverse of half-swapped ordering
+    if (SVrm = 0b0110) | (SVrm = 0b1110) | (SVrm = 0b1111) then
+        vlen[0:6] <- (0b00 || SVxd) + 0b0000001
+        # set up template in SVSHAPE0
+        SVSHAPE0[0:5] <- (0b0 || SVxd)   # xdim
+        SVSHAPE0[12:17] <- (0b0 || SVzd)   # zdim - "striding" (2D DCT)
+        mscale <- (0b0 || SVzd) + 1
+        if (SVrm = 0b1110) then
+            SVSHAPE0[18:20] <- 0b001     # DCT opposite half-swap
+        if (SVrm = 0b1111) then
+            SVSHAPE0[30:31] <- 0b01          # FFT mode
+        else
+            SVSHAPE0[30:31] <- 0b11          # DCT mode
+        SVSHAPE0[6:11] <- 0b000101       # DCT "half-swap" mode
+    # set schedule up for parallel reduction or prefix-sum
+    if (SVrm = 0b0111) then
+        # is scan/prefix-sum
+        is_scan <- SVyd = 2
+        # calculate the total number of operations (brute-force)
+        vlen[0:6] <- [0] * 7
+        itercount[0:6] <- (0b00 || SVxd) + 0b0000001
+        if is_scan then
+            # prefix sum algorithm with operations replaced with
+            # incrementing vlen
+            dist <- 1
+            vlen[0:6] <- 0
+            do while dist <u itercount
+                start <- dist * 2 - 1
+                step <- dist * 2
+                i <- start
+                do while i <u itercount
+                    vlen[0:6] <- vlen[0:6] + 1
+                    i <- i + step
+                dist <- dist * 2
+            dist <- dist / 2
+            do while dist != 0
+                i <- dist * 3 - 1
+                do while i <u itercount
+                    vlen[0:6] <- vlen[0:6] + 1
+                    i <- i + dist * 2
+                dist <- dist / 2
+        else
+            step <- 0b0000001
+            i <- 0b0000000
+            do while step <u itercount
+                newstep <- step[1:6] || 0b0
+                j[0:6] <- 0b0000000
+                do while (j+step <u itercount)
+                    j <- j + newstep
+                    i <- i + 1
+                step <- newstep
+            # VL in Parallel-Reduce is the number of operations
+            vlen[0:6] <- i
+        # set up template in SVSHAPE0, then copy to 1. only 2 needed
+        SVSHAPE0[0:5] <- (0b0 || SVxd)   # xdim
+        SVSHAPE0[12:17] <- (0b0 || SVzd)   # zdim - "striding" (2D DCT)
+        mscale <- (0b0 || SVzd) + 1
+        SVSHAPE0[30:31] <- 0b10          # parallel reduce/prefix submode
+        # copy
+        SVSHAPE1[0:31] <- SVSHAPE0[0:31]
+        # set up submodes: parallel or prefix
+        SVSHAPE0[28:29] <- 0b00   # left operand
+        SVSHAPE1[28:29] <- 0b01   # right operand
+        if is_scan then
+            SVSHAPE0[28:29] <- 0b10   # left operand
+            SVSHAPE1[28:29] <- 0b11   # right operand
+    # set VL, MVL and Vertical-First
+    m[0:12] <- vlen * mscale
+    maxvl[0:6] <- m[6:12]
+    SVSTATE[0:6] <- maxvl  # MAVXL
+    SVSTATE[7:13] <- vlen  # VL
+    SVSTATE[63] <- vf
+
+Special Registers Altered:
+
+    None
+
+# svindex
+
+SVI-Form
+
+* svindex SVG,rmm,SVd,ew,SVyx,mm,sk
+
+Pseudo-code:
+
+    # based on nearest MAXVL compute other dimension
+    MVL <- SVSTATE[0:6]
+    d <- [0] * 6
+    dim <- SVd+1
+    do while d*dim <u ([0]*4 || MVL)
+       d <- d + 1
+    # set up template, then copy once location identified
+    shape <- [0]*32
+    shape[30:31] <- 0b00            # mode
+    if SVyx = 0 then
+        shape[18:20] <- 0b110       # indexed xd/yd
+        shape[0:5] <- (0b0 || SVd)  # xdim
+        if sk = 0 then shape[6:11] <- 0 # ydim
+        else           shape[6:11] <- 0b111111 # ydim max
+    else
+        shape[18:20] <- 0b111       # indexed yd/xd
+        if sk = 1 then shape[6:11] <- 0 # ydim
+        else           shape[6:11] <- d-1 # ydim max
+        shape[0:5] <- (0b0 || SVd) # ydim
+    shape[12:17] <- (0b0 || SVG)        # SVGPR
+    shape[28:29] <- ew                  # element-width override
+    shape[21] <- sk                     # skip 1st dimension
+    # select the mode for updating SVSHAPEs
+    SVSTATE[62] <- mm # set or clear persistence
+    if mm = 0 then
+        # clear out all SVSHAPEs first
+        SVSHAPE0[0:31] <- [0] * 32
+        SVSHAPE1[0:31] <- [0] * 32
+        SVSHAPE2[0:31] <- [0] * 32
+        SVSHAPE3[0:31] <- [0] * 32
+        SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
+        SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme
+        idx <- 0
+        for bit = 0 to 4
+            if rmm[4-bit] then
+                # activate requested shape
+                if idx = 0 then SVSHAPE0 <- shape
+                if idx = 1 then SVSHAPE1 <- shape
+                if idx = 2 then SVSHAPE2 <- shape
+                if idx = 3 then SVSHAPE3 <- shape
+                SVSTATE[bit*2+32:bit*2+33] <- idx
+                # increment shape index, modulo 4
+                if idx = 3 then idx <- 0
+                else            idx <- idx + 1
+    else
+        # refined SVSHAPE/REMAP update mode
+        bit <- rmm[0:2]
+        idx <- rmm[3:4]
+        if idx = 0 then SVSHAPE0 <- shape
+        if idx = 1 then SVSHAPE1 <- shape
+        if idx = 2 then SVSHAPE2 <- shape
+        if idx = 3 then SVSHAPE3 <- shape
+        SVSTATE[bit*2+32:bit*2+33] <- idx
+        SVSTATE[46-bit] <- 1
+
+Special Registers Altered:
+
+    None
+
+# svshape2
+
+SVM2-Form
+
+* svshape2 SVo,SVyx,rmm,SVd,sk,mm
+
+Pseudo-code:
+
+    # based on nearest MAXVL compute other dimension
+    MVL <- SVSTATE[0:6]
+    d <- [0] * 6
+    dim <- SVd+1
+    do while d*dim <u ([0]*4 || MVL)
+       d <- d + 1
+    # set up template, then copy once location identified
+    shape <- [0]*32
+    shape[30:31] <- 0b00            # mode
+    shape[0:5] <- (0b0 || SVd)      # x/ydim
+    if SVyx = 0 then
+        shape[18:20] <- 0b000       # ordering xd/yd(/zd)
+        if sk = 0 then shape[6:11] <- 0 # ydim
+        else           shape[6:11] <- 0b111111 # ydim max
+    else
+        shape[18:20] <- 0b010       # ordering yd/xd(/zd)
+        if sk = 1 then shape[6:11] <- 0 # ydim
+        else           shape[6:11] <- d-1 # ydim max
+    # offset (the prime purpose of this instruction)
+    shape[24:27] <- SVo         # offset
+    if sk = 1 then shape[28:29] <- 0b01 # skip 1st dimension
+    else           shape[28:29] <- 0b00 # no skipping
+    # select the mode for updating SVSHAPEs
+    SVSTATE[62] <- mm # set or clear persistence
+    if mm = 0 then
+        # clear out all SVSHAPEs first
+        SVSHAPE0[0:31] <- [0] * 32
+        SVSHAPE1[0:31] <- [0] * 32
+        SVSHAPE2[0:31] <- [0] * 32
+        SVSHAPE3[0:31] <- [0] * 32
+        SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
+        SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme
+        idx <- 0
+        for bit = 0 to 4
+            if rmm[4-bit] then
+                # activate requested shape
+                if idx = 0 then SVSHAPE0 <- shape
+                if idx = 1 then SVSHAPE1 <- shape
+                if idx = 2 then SVSHAPE2 <- shape
+                if idx = 3 then SVSHAPE3 <- shape
+                SVSTATE[bit*2+32:bit*2+33] <- idx
+                # increment shape index, modulo 4
+                if idx = 3 then idx <- 0
+                else            idx <- idx + 1
+    else
+        # refined SVSHAPE/REMAP update mode
+        bit <- rmm[0:2]
+        idx <- rmm[3:4]
+        if idx = 0 then SVSHAPE0 <- shape
+        if idx = 1 then SVSHAPE1 <- shape
+        if idx = 2 then SVSHAPE2 <- shape
+        if idx = 3 then SVSHAPE3 <- shape
+        SVSTATE[bit*2+32:bit*2+33] <- idx
+        SVSTATE[46-bit] <- 1
 
 Special Registers Altered: